
E9-1 (a) First, ~F = (5.0 N)̂i.

~τ = [yFz − zFy ]̂i + [zFx − xFz ]̂j + [xFy − yFx]k̂,

= [y(0)− (0)(0)]̂i + [(0)Fx − x(0)]̂j + [x(0)− yFx]k̂,

= [−yFx]k̂ = −(3.0 m)(5.0 N)k̂ = −(15.0 N ·m)k̂.

(b) Now ~F = (5.0 N)̂j. Ignoring all zero terms,

~τ = [xFy]k̂ = (2.0 m)(5.0 N)k̂ = (10 N ·m)k̂.

(c) Finally, ~F = (−5.0 N)̂i.

~τ = [−yFx]k̂ = −(3.0 m)(−5.0 N)k̂ = (15.0 N ·m)k̂.

E9-2 (a) Everything is in the plane of the page, so the net torque will either be directed normal
to the page. Let out be positive, then the net torque is τ = r1F1 sin θ1 − r2F2 sin θ2.

(b) τ = (1.30 m)(4.20 N) sin(75.0◦)− (2.15 m)(4.90 N) sin(58.0◦) = −3.66N ·m.

E9-4 Everything is in the plane of the page, so the net torque will either be directed normal to
the page. Let out be positive, then the net torque is

τ = (8.0 m)(10 N) sin(45◦)− (4.0 m)(16 N) sin(90◦) + (3.0 m)(19 N) sin(20◦) = 12N ·m.

E9-5 Since ~r and ~s lie in the xy plane, then ~t = ~r×~s must be perpendicular to that plane, and
can only point along the z axis.

The angle between ~r and ~s is 320◦ − 85◦ = 235◦. So |~t| = rs| sin θ| = (4.5)(7.3)| sin(235◦)| = 27.
Now for the direction of ~t. The smaller rotation to bring ~r into ~s is through a counterclockwise

rotation; the right hand rule would then show that the cross product points along the positive z
direction.

E9-6 ~a = (3.20)[cos(63.0◦)̂j + sin(63.0◦)k̂] and ~b = (1.40)[cos(48.0◦)̂i + sin(48.0◦)k̂]. Then

~a× ~b = (3.20) cos(63.0◦)(1.40) sin(48.0◦)̂i

+(3.20) sin(63.0◦)(1.40) cos(48.0◦)̂j

−(3.20) cos(63.0◦)(1.40) cos(48.0◦)k̂

= 1.51̂i + 2.67ĵ− 1.36k̂.

E9-7 ~b×~a has magnitude ab sinφ and points in the negative z direction. It is then perpendicular
to ~a, so ~c has magnitude a2b sinφ. The direction of ~c is perpendicular to ~a but lies in the plane
containing vectors ~a and ~b. Then it makes an angle π/2− φ with ~b.

E9-8 (a) In unit vector notation,

~c = [(−3)(−3)− (−2)(1)]̂i + [(1)(4)− (2)(−3)]̂j + [(2)(−2)− (−3)(4)]k̂,

= 11̂i + 10ĵ + 8k̂.

(b) Evaluate arcsin[|~a× b|/(ab)], finding magnitudes with the Pythagoras relationship:

φ = arcsin (16.8)/[(3.74)(5.39)] = 56◦.
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E9-9 This exercise is a three dimensional generalization of Ex. 9-1, except nothing is zero.

~τ = [yFz − zFy ]̂i + [zFx − xFz ]̂j + [xFy − yFx]k̂,

= [(−2.0 m)(4.3 N)− (1.6 m)(−2.4 N)]̂i + [(1.6 m)(3.5 N)− (1.5 m)(4.3 N)]̂j

+[(1.5 m)(−2.4 N)− (−2.0 m)(3.5 N)]k̂,

= [−4.8 N·m]̂i + [−0.85 N·m]̂j + [3.4 N·m]k̂.

E9-10 (a) ~F = (2.6 N)̂i, then ~τ = (0.85 m)(2.6 N)̂j− (−0.36 m)(2.6 N)k̂ = 2.2 N ·mĵ + 0.94 N ·mk̂.
(b) ~F = (−2.6 N)k̂, then ~τ = (−0.36 m)(−2.6 N)̂i− (0.54 m)(−2.6 N)̂j = 0.93 N ·mî + 1.4 N ·mĵ.

E9-11 (a) The rotational inertia about an axis through the origin is

I = mr2 = (0.025 kg)(0.74 m)2 = 1.4×10−2kg ·m2.

(b) α = (0.74 m)(22 N) sin(50◦)/(1.4×10−2kg ·m2) = 890 rad/s.

E9-12 (a) I0 = (0.052 kg)(0.27 m)2 + (0.035 kg)(0.45 m)2 + (0.024 kg)(0.65 m)2 = 2.1×10−2kg ·m2.
(b) The center of mass is located at

xcm =
(0.052 kg)(0.27 m) + (0.035 kg)(0.45 m) + (0.024 kg)(0.65 m)

(0.052 kg) + (0.035 kg) + (0.024 kg)
= 0.41 m.

Applying the parallel axis theorem yields Icm = 2.1×10−2kg ·m2−(0.11 kg)(0.41 m)2 = 2.5×10−3kg ·
m2.

E9-13 (a) Rotational inertia is additive so long as we consider the inertia about the same axis.
We can use Eq. 9-10:

I =
∑

mnr
2
n = (0.075 kg)(0.42 m)2 + (0.030 kg)(0.65 m)2 = 0.026 kg·m2.

(b) No change.

E9-14 ~τ = [(0.42 m)(2.5 N) − (0.65 m)(3.6 N)]k̂ = −1.29 N · m k̂. Using the result from E9-13,
~α = (−1.29 N ·m k̂)/(0.026 kg·m2) = 50 rad/s2k̂. That’s clockwise if viewed from above.

E9-15 (a) F = mω2r = (110 kg)(33.5 rad/s)2(3.90 m) = 4.81×105N.
(b) The angular acceleration is α = (33.5 rad/s)/(6.70 s) = 5.00 rad/s2. The rotational inertia

about the axis of rotation is I = (110 kg)(7.80 m)2/3 = 2.23×103kg ·m2. τ = Iα = (2.23×103kg ·
m2)(5.00 rad/s2) = 1.12×104N ·m.

E9-16 We can add the inertias for the three rods together,

I = 3
(

1
3
ML2

)
= (240 kg)(5.20 m)2 = 6.49×103kg ·m2.

E9-17 The diagonal distance from the axis through the center of mass and the axis through the
edge is h =

√
(a/2)2 + (b/2)2, so

I = Icm +Mh2 =
1
12
M
(
a2 + b2

)
+M

(
(a/2)2 + (b/2)2

)
=
(

1
12

+
1
4

)
M
(
a2 + b2

)
.

Simplifying, I = 1
3M

(
a2 + b2

)
.
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E9-18 I = Icm +Mh2 = (0.56 kg)(1.0 m)2/12 + (0.56)(0.30 m)2 = 9.7×10−2kg ·m2.

E9-19 For particle one I1 = mr2 = mL2; for particle two I2 = mr2 = m(2L)2 = 4mL2. The
rotational inertia of the rod is Irod = 1

3 (2M)(2L)2 = 8
3ML2. Add the three inertias:

I =
(

5m+
8
3
M

)
L2.

E9-20 (a) I = MR2/2 = M(R/
√

2)2.
(b) Let I be the rotational inertia. Assuming that k is the radius of a hoop with an equivalent

rotational inertia, then I = Mk2, or k =
√
I/M .

E9-21 Note the mistakes in the equation in the part (b) of the exercise text.
(a) mn = M/N .
(b) Each piece has a thickness t = L/N , the distance from the end to the nth piece is xn =

(n − 1/2)t = (n − 1/2)L/N . The axis of rotation is the center, so the distance from the center is
rn = xn − L/2 = nL/N − (1 + 1/2N)L.

(c) The rotational inertia is

I =
N∑
n=1

mnr
2
n,

=
ML2

N3

N∑
n=1

(n− 1/2−N)2,

=
ML2

N3

N∑
n=1

(
n2 − (2N + 1)n+ (N + 1/2)2

)
,

=
ML2

N3

(
N(N + 1)(2N + 1)

6
− (2N + 1)

N(N + 1)
2

+ (N + 1/2)2N

)
,

≈ ML2

N3

(
2N3

6
− 2N3

2
+N3

)
,

= ML2/3.

E9-22 F = (46 N)(2.6 cm)/(13 cm) = 9.2 N.

E9-23 Tower topples when center of gravity is no longer above base. Assuming center of gravity
is located at the very center of the tower, then when the tower leans 7.0 m then the tower falls. This
is 2.5 m farther than the present.

(b) θ = arcsin(7.0 m/55 m) = 7.3◦.

E9-24 If the torque from the force is sufficient to lift edge the cube then the cube will tip. The
net torque about the edge which stays in contact with the ground will be τ = Fd −mgd/2 if F is
sufficiently large. Then F ≥ mg/2 is the minimum force which will cause the cube to tip.

The minimum force to get the cube to slide is F ≥ µsmg = (0.46)mg. The cube will slide first.
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E9-25 The ladder slips if the force of static friction required to keep the ladder up exceeds µsN .
Equations 9-31 give us the normal force in terms of the masses of the ladder and the firefighter,
N = (m + M)g, and is independent of the location of the firefighter on the ladder. Also from Eq.
9-31 is the relationship between the force from the wall and the force of friction; the condition at
which slipping occurs is Fw ≥ µs(m+M)g.

Now go straight to Eq. 9-32. The a/2 in the second term is the location of the firefighter, who in
the example was halfway between the base of the ladder and the top of the ladder. In the exercise
we don’t know where the firefighter is, so we’ll replace a/2 with x. Then

−Fwh+Mgx+
mga

3
= 0

is an expression for rotational equilibrium. Substitute in the condition of Fw when slipping just
starts, and we get

− (µs(m+M)g)h+Mgx+
mga

3
= 0.

Solve this for x,

x = µs

(m
M

+ 1
)
h− ma

3M
= (0.54)

(
45 kg
72 kg

+ 1
)

(9.3 m)− (45 kg)(7.6 m)
3(72 kg)

= 6.6 m

This is the horizontal distance; the fraction of the total length along the ladder is then given by
x/a = (6.6 m)/(7.6 m) = 0.87. The firefighter can climb (0.87)(12 m) = 10.4 m up the ladder.

E9-26 (a) The net torque about the rear axle is (1360 kg)(9.8 m/s2)(3.05 m−1.78 m)−F f(3.05 m) =
0, which has solution F f = 5.55×103N. Each of the front tires support half of this, or 2.77×103N.

(b) The net torque about the front axle is (1360 kg)(9.8 m/s2)(1.78 m) − F f(3.05 m) = 0, which
has solution F f = 7.78×103N. Each of the front tires support half of this, or 3.89×103N.

E9-27 The net torque on the bridge about the end closest to the person is

(160 lb)L/4 + (600 lb)L/2− F fL = 0,

which has a solution for the supporting force on the far end of F f = 340 lb.
The net force on the bridge is (160 lb)L/4 + (600 lb)L/2− (340 lb)−F c = 0, so the force on the

close end of the bridge is F c = 420 lb.

E9-28 The net torque on the board about the left end is

F r(1.55 m)− (142 N)(2.24 m)− (582 N)(4.48 m) = 0,

which has a solution for the supporting force for the right pedestal of F r = 1890 N. The force on the
board from the pedestal is up, so the force on the pedestal from the board is down (compression).

The net force on the board is F l +(1890 N)−(142 N)−(582 N) = 0, so the force from the pedestal
on the left is F l = −1170 N. The negative sign means up, so the pedestal is under tension.

E9-29 We can assume that both the force ~F and the force of gravity ~W act on the center of the
wheel. Then the wheel will just start to lift when

~W ×~r + ~F×~r = 0,

or
W sin θ = F cos θ,
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where θ is the angle between the vertical (pointing down) and the line between the center of the
wheel and the point of contact with the step. The use of the sine on the left is a straightforward
application of Eq. 9-2. Why the cosine on the right? Because

sin(90◦ − θ) = cos θ.

Then F = W tan θ. We can express the angle θ in terms of trig functions, h, and r. r cos θ is the
vertical distance from the center of the wheel to the top of the step, or r − h. Then

cos θ = 1− h

r
and sin θ =

√
1−

(
1− h

r

)2

.

Finally by combining the above we get

F = W

√
2h
r −

h2

r2

1− h
r

= W

√
2hr − h2

r − h
.

E9-30 (a) Assume that each of the two support points for the square sign experience the same
tension, equal to half of the weight of the sign. The net torque on the rod about an axis through
the hinge is

(52.3 kg/2)(9.81 m/s2)(0.95 m) + (52.3 kg/2)(9.81 m/s2)(2.88 m)− (2.88 m)T sin θ = 0,

where T is the tension in the cable and θ is the angle between the cable and the rod. The angle can
be found from θ = arctan(4.12 m/2.88 m) = 55.0◦, so T = 416 N.

(b) There are two components to the tension, one which is vertical, (416 N) sin(55.0◦) = 341 N,
and another which is horizontal, (416 N) cos(55.0◦) = 239 N. The horizontal force exerted by the wall
must then be 239 N. The net vertical force on the rod is F + (341 N)− (52.3 kg/2)(9.81 m/s2) = 0,
which has solution F = 172 N as the vertical upward force of the wall on the rod.

E9-31 (a) The net torque on the rod about an axis through the hinge is

τ = W (L/2) cos(54.0◦)− TL sin(153.0◦) = 0.

or T = (52.7 lb/2)(sin 54.0◦/ sin 153.0◦) = 47.0 lb.
(b) The vertical upward force of the wire on the rod is Ty = T cos(27.0◦). The vertical upward

force of the wall on the rod is Py = W − T cos(27.0◦), where W is the weight of the rod. Then

Py = (52.7 lb)− (47.0 lb) cos(27.0◦) = 10.8 lb

The horizontal force from the wall is balanced by the horizontal force from the wire. Then Px =
(47.0 lb) sin(27.0◦) = 21.3 lb.

E9-32 If the ladder is not slipping then the torque about an axis through the point of contact with
the ground is

τ = (WL/2) cos θ −Nh/ sin θ = 0,

where N is the normal force of the edge on the ladder. Then N = WL cos θ sin θ /(2h).
N has two components; one which is vertically up, Ny = N cos θ, and another which is horizontal,

Nx = N sin θ. The horizontal force must be offset by the static friction.
The normal force on the ladder from the ground is given by

Ng = W −N cos θ = W [1− L cos2 θ sin θ /(2h)].
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The force of static friction can be as large as f = µsNg, so

µs =
WL cos θ sin2 θ /(2h)

W [1− L cos2 θ sin θ /(2h)]
=

L cos θ sin2 θ

2h− L cos2 θ sin θ
.

Put in the numbers and θ = 68.0◦. Then µs = 0.407.

E9-33 Let out be positive. The net torque about the axis is then

τ = (0.118 m)(5.88 N)− (0.118 m)(4.13 m)− (0.0493 m)(2.12 N) = 0.102 N ·m.

The rotational inertia of the disk is I = (1.92 kg)(0.118 m)2/2 = 1.34×10−2kg · m2. Then α =
(0.102 N ·m)/(1.34×10−2kg ·m2) = 7.61 rad/s2

.

E9-34 (a) I = τ/α = (960 N ·m)/(6.23 rad/s2) = 154 kg ·m2.
(b) m = (3/2)I/r2 = (1.5)(154 kg ·m2)/(1.88 m)2 = 65.4 kg.

E9-35 (a) The angular acceleration is

α =
∆ω
∆t

=
6.20 rad/s

0.22 s
= 28.2 rad/s2

(b) From Eq. 9-11, τ = Iα = (12.0 kg·m2)(28.2 rad/s2) = 338 N·m.

E9-36 The angular acceleration is α = 2(π/2 rad)/(30 s)2 = 3.5×10−3 rad/s2. The required force
is then

F = τ/r = Iα/r = (8.7×104kg ·m2)(3.5×10−3 rad/s2)/(2.4 m) = 127 N.

Don’t let the door slam...

E9-37 The torque is τ = rF , the angular acceleration is α = τ/I = rF/I. The angular velocity is

ω =
∫ t

0

αdt =
rAt2

2I
+
rBt3

3I
,

so when t = 3.60 s,

ω =
(9.88×10−2m)(0.496 N/s)(3.60 s)2

2(1.14×10−3kg ·m2)
+

(9.88×10−2m)(0.305 N/s2)(3.60 s)3

3(1.14×10−3kg ·m2)
= 690 rad/s.

E9-38 (a) α = 2θ/t2.
(b) a = αR = 2θR/t2.
(c) T1 and T2 are not equal. Instead, (T1 − T2)R = Iα. For the hanging block Mg − T1 = Ma.

Then
T1 = Mg − 2MRθ/t2,

and
T2 = Mg − 2MRθ/t2 − 2(I/R)θ/t2.
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E9-39 Apply a kinematic equation from chapter 2 to find the acceleration:

y = v0yt+
1
2
ayt

2,

ay =
2y
t2

=
2(0.765 m)
(5.11 s)2

= 0.0586 m/s2

Closely follow the approach in Sample Problem 9-10. For the heavier block, m1 = 0.512 kg, and
Newton’s second law gives

m1g − T1 = m1ay,

where ay is positive and down. For the lighter block, m2 = 0.463 kg, and Newton’s second law gives

T2 −m2g = m2ay,

where ay is positive and up. We do know that T1 > T2; the net force on the pulley creates a torque
which results in the pulley rotating toward the heavier mass. That net force is T1 − T2; so the
rotational form of Newton’s second law gives

(T1 − T2)R = Iαz = IaT /R,

where R = 0.049 m is the radius of the pulley and aT is the tangential acceleration. But this
acceleration is equal to ay, because everything— both blocks and the pulley— are moving together.

We then have three equations and three unknowns. We’ll add the first two together,

m1g − T1 + T2 −m2g = m1ay +m2ay,

T1 − T2 = (g − ay)m1 − (g + ay)m2,

and then combine this with the third equation by substituting for T1 − T2,

(g − ay)m1 − (g + ay)m2 = Iay/R
2,[(

g

ay
− 1
)
m1 −

(
g

ay
+ 1
)
m2

]
R2 = I.

Now for the numbers:(
(9.81 m/s2)

(0.0586 m/s2)
− 1
)

(0.512 kg)−
(

(9.81 m/s2)
(0.0586 m/s2)

+ 1
)

(0.463 kg) = 7.23 kg,

(7.23 kg)(0.049 m)2 = 0.0174 kg·m2.

E9-40 The wheel turns with an initial angular speed of ω0 = 88.0 rad/s. The average speed while
decelerating is ωav = ω0/2. The wheel stops turning in a time t = φ/ωav = 2φ/ω0. The deceleration
is then α = −ω0/t = −ω2

0/(2φ).
The rotational inertia is I = MR2/2, so the torque required to stop the disk is τ = Iα =

−MR2ω2
0/(4φ). The force of friction on the disk is f = µN , so τ = Rf . Then

µ =
MRω2

0

4Nφ
=

(1.40 kg)(0.23 m)(88.0 rad/s)2

4(130 N)(17.6 rad)
= 0.272.

E9-41 (a) The automobile has an initial speed of v0 = 21.8 m/s. The angular speed is then
ω0 = (21.8 m/s)/(0.385 m) = 56.6 rad/s.

(b) The average speed while decelerating is ωav = ω0/2. The wheel stops turning in a time
t = φ/ωav = 2φ/ω0. The deceleration is then

α = −ω0/t = −ω2
0/(2φ) = −(56.6 rad/s)2/[2(180 rad)] = −8.90 rad/s.

(c) The automobile traveled x = φr = (180 rad)(0.385 m) = 69.3 m.
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E9-42 (a) The angular acceleration is derived in Sample Problem 9-13,

α =
g

R0

1
1 + I/(MR2

0)
=

(981 cm/s2)
(0.320 cm)

1
1 + (0.950 kg · cm2)/[(0.120 kg)(0.320 cm)2]

= 39.1 rad/s2
.

The acceleration is a = αR0 = (39.1 rad/s2)(0.320 cm) = 12.5 cm/s2
.

(b) Starting from rest, t =
√

2x/a =
√

2(134 cm)/(12.5 cm/s2) = 4.63 s.

(c) ω = αt = (39.1 rad/s2)(4.63 s) = 181 rad/s. This is the same as 28.8 rev/s.
(d) The yo-yo accelerates toward the ground according to y = at2 + v0t, where down is positive.

The time required to move to the end of the string is found from

t =
−v0 +

√
v2

0 + 4ay
2a

=
−(1.30 m/s) +

√
(1.30 m/s)2 + 4(0.125 m/s2)(1.34 m)

2(0.125 m/s2)
= 0.945 s

The initial rotational speed was ω0 = (1.30 m/s)/(3.2×10−3m) = 406 rad/s. Then

ω = ω0 + αt = (406 rad/s) + (39.1 rad/s2)(0.945 s) = 443 rad/s,

which is the same as 70.5 rev/s.

E9-43 (a) Assuming a perfect hinge at B, the only two vertical forces on the tire will be the
normal force from the belt and the force of gravity. Then N = W = mg, or N = (15.0 kg)(9.8
m/s2) = 147 N.

While the tire skids we have kinetic friction, so f = µkN = (0.600)(147 N) = 88.2 N. The force
of gravity and and the pull from the holding rod AB both act at the axis of rotation, so can’t
contribute to the net torque. The normal force acts at a point which is parallel to the displacement
from the axis of rotation, so it doesn’t contribute to the torque either (because the cross product
would vanish); so the only contribution to the torque is from the frictional force.

The frictional force is perpendicular to the radial vector, so the magnitude of the torque is just
τ = rf = (0.300 m)(88.2 N) = 26.5 N·m. This means the angular acceleration will be α = τ/I =
(26.5 N·m)/(0.750 kg·m2) = 35.3 rad/s2.

When ωR = vT = 12.0 m/s the tire is no longer slipping. We solve for ω and get ω = 40 rad/s.
Now we solve ω = ω0 + αt for the time. The wheel started from rest, so t = 1.13 s.
(b) The length of the skid is x = vt = (12.0 m/s)(1.13 s) = 13.6 m long.

P9-1 The problem of sliding down the ramp has been solved (see Sample Problem 5-8); the
critical angle θs is given by tan θs = µs.

The problem of tipping is actually not that much harder: an object tips when the center of
gravity is no longer over the base. The important angle for tipping is shown in the figure below; we
can find that by trigonometry to be

tan θt =
O

A
=

(0.56 m)
(0.56 m) + (0.28 m)

= 0.67,

so θt = 34◦.
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Nf

θ

(a) If µs = 0.60 then θs = 31◦ and the crate slides.
(b) If µs = 0.70 then θs = 35◦ and the crate tips before sliding; it tips at 34◦.

P9-2 (a) The total force up on the chain needs to be equal to the total force down; the force
down is W . Assuming the tension at the end points is T then T sin θ is the upward component, so
T = W/(2 sin θ).

(b) There is a horizontal component to the tension T cos θ at the wall; this must be the tension
at the horizontal point at the bottom of the cable. Then T bottom = W/(2 tan θ).

P9-3 (a) The rope exerts a force on the sphere which has horizontal T sin θ and vertical T cos θ
components, where θ = arctan(r/L). The weight of the sphere is balanced by the upward force from
the rope, so T cos θ = W . But cos θ = L/

√
r2 + L2, so T = W

√
1 + r2/L2.

(b) The wall pushes outward against the sphere equal to the inward push on the sphere from the
rope, or P = T sin θ = W tan θ = Wr/L.

P9-4 Treat the problem as having two forces: the man at one end lifting with force F = W/3
and the two men acting together a distance x away from the first man and lifting with a force
2F = 2W/3. Then the torque about an axis through the end of the beam where the first man is
lifting is τ = 2xW/3−WL/2, where L is the length of the beam. This expression equal zero when
x = 3L/4.

P9-5 (a) We can solve this problem with Eq. 9-32 after a few modifications. We’ll assume the
center of mass of the ladder is at the center, then the third term of Eq. 9-32 is mga/2. The cleaner
didn’t climb half-way, he climbed 3.10/5.12 = 60.5% of the way, so the second term of Eq. 9-32
becomes Mga(0.605). h, L, and a are related by L2 = a2 +h2, so h =

√
(5.12 m)2 − (2.45 m)2 = 4.5

m. Then, putting the correction into Eq. 9-32,

Fw =
1
h

[
Mga(0.605) +

mga

2

]
,

=
1

(4.5 m)

[
(74.6 kg)(9.81 m/s2)(2.45 m)(0.605) ,

+ (10.3 kg)(9.81 m/s2)(2.45 m)/2
]
,

= 269 N

(b) The vertical component of the force of the ground on the ground is the sum of the weight of
the window cleaner and the weight of the ladder, or 833 N.
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The horizontal component is equal in magnitude to the force of the ladder on the window. Then
the net force of the ground on the ladder has magnitude√

(269 N)2 + (833 N)2 = 875 N

and direction
θ = arctan(833/269) = 72◦ above the horizontal.

P9-6 (a) There are no upward forces other than the normal force on the bottom ball, so the force
exerted on the bottom ball by the container is 2W .

(c) The bottom ball must exert a force on the top ball which has a vertical component equal to the
weight of the top ball. Then W = N sin θ or the force of contact between the balls is N = W/ sin θ.

(b) The force of contact between the balls has a horizontal component P = N cos θ = W/ tan θ,
this must also be the force of the walls on the balls.

P9-7 (a) There are three forces on the ball: weight ~W, the normal force from the lower plane ~N1,
and the normal force from the upper plane ~N2. The force from the lower plane has components
N1,x = −N1 sin θ1 and N1,y = N1 cos θ1. The force from the upper plane has components N2,x =
N2 sin θ2 and N2,y = −N2 cos θ2. Then N1 sin θ1 = N2 sin θ2 and N1 cos θ1 = W +N2 cos θ2.

Solving for N2 by dividing one expression by the other,

cos θ1

sin θ1
=

W

N2 sin θ2
+

cos θ2

sin θ2
,

or

N2 =
W

sin θ2

(
cos θ1

sin θ1
− cos θ2

sin θ2

)−1

,

=
W

sin θ2

cos θ1 sin θ2 − cos θ2 sin θ1

sin θ1 sin θ2
,

=
W sin θ1

sin(θ2 − θ1)
.

Then solve for N1,

N1 =
W sin θ2

sin(θ2 − θ1)
.

(b) Friction changes everything.

P9-8 (a) The net torque about a line through A is

τ = Wx− TL sin θ = 0,

so T = Wx/(L sin θ).
(b) The horizontal force on the pin is equal in magnitude to the horizontal component of the

tension: T cos θ = Wx/(L tan θ). The vertical component balances the weight: W −Wx/L.
(c) x = (520 N)(2.75 m) sin(32.0◦)/(315 N) = 2.41 m.

P9-9 (a) As long as the center of gravity of an object (even if combined) is above the base, then
the object will not tip.

Stack the bricks from the top down. The center of gravity of the top brick is L/2 from the edge
of the top brick. This top brick can be offset nor more than L/2 from the one beneath. The center
of gravity of the top two bricks is located at

xcm = [(L/2) + (L)]/2 = 3L/4.
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These top two bricks can be offset no more than L/4 from the brick beneath. The center of gravity
of the top three bricks is located at

xcm = [(L/2) + 2(L)]/3 = 5L/6.

These top three bricks can be offset no more than L/6 from the brick beneath. The total offset is
then L/2 + L/4 + L/6 = 11L/12.

(b) Actually, we never need to know the location of the center of gravity; we now realize that
each brick is located with an offset L/(2n) with the brick beneath, where n is the number of the
brick counting from the top. The series is then of the form

(L/2)[(1/1) + (1/2) + (1/3) + (1/4) + · · ·],

a series (harmonic, for those of you who care) which does not converge.
(c) The center of gravity would be half way between the ends of the two extreme bricks. This

would be at NL/n; the pile will topple when this value exceeds L, or when N = n.

P9-10 (a) For a planar object which lies in the x− y plane, Ix =
∫
x2dm and Iy =

∫
y2dm. Then

Ix + Iy =
∫

(x2 + y2)dm =
∫
r2 dm. But this is the rotational inertia about the z axis, sent r is the

distance from the z axis.
(b) Since the rotational inertia about one diameter (Ix) should be the same as the rotational

inertia about any other (Iy) then Ix = Iy and Ix = Iz/2 = MR2/4.

P9-11 Problem 9-10 says that Ix + Iy = Iz for any thin, flat object which lies only in the
x − y plane.It doesn’t matter in which direction the x and y axes are chosen, so long as they are
perpendicular. We can then orient our square as in either of the pictures below:

y

x

y

x

By symmetry Ix = Iy in either picture. Consequently, Ix = Iy = Iz/2 for either picture. It is
the same square, so Iz is the same for both picture. Then Ix is also the same for both orientations.

P9-12 Let M0 be the mass of the plate before the holes are cut out. Then M1 = M0(a/L)2 is the
mass of the part cut out of each hole and M = M0 − 9M1 is the mass of the plate. The rotational
inertia (about an axis perpendicular to the plane through the center of the square) for the large
uncut square is M0L

2/6 and for each smaller cut out is M1a
2/6.

From the large uncut square’s inertia we need to remove M1a
2/6 for the center cut-out, M1a

2/6+
M1(L/3)2 for each of the four edge cut-outs, and M1a

2/6 + M1(
√

2L/3)2 for each of the corner
sections.
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Then

I =
M0L

2

6
− 9

M1a
2

6
− 4

M1L
2

9
− 4

2M1L2

9
,

=
M0L

2

6
− 3

M0a
4

2L2
− 4

M0a
2

3
.

P9-13 (a) From Eq. 9-15, I =
∫
r2dm about some axis of rotation when r is measured from that

axis. If we consider the x axis as our axis of rotation, then r =
√
y2 + z2, since the distance to the

x axis depends only on the y and z coordinates. We have similar equations for the y and z axes, so

Ix =
∫ (

y2 + z2
)
dm,

Iy =
∫ (

x2 + z2
)
dm,

Iz =
∫ (

x2 + y2
)
dm.

These three equations can be added together to give

Ix + Iy + Iz = 2
∫ (

x2 + y2 + z2
)
dm,

so if we now define r to be measured from the origin (which is not the definition used above), then
we end up with the answer in the text.

(b) The right hand side of the equation is integrated over the entire body, regardless of how
the axes are defined. So the integral should be the same, no matter how the coordinate system is
rotated.

P9-14 (a) Since the shell is spherically symmetric Ix = Iy = Iz, so Ix = (2/3)
∫
r2dm =

(2R2/3)
∫
dm = 2MR2/3.

(b) Since the solid ball is spherically symmetric Ix = Iy = Iz, so

Ix =
2
3

∫
r2 3Mr2 dr

R3
=

2
5
MR2.

P9-15 (a) A simple ratio will suffice:

dm

2πr dr
=

M

πR2
or dm =

2Mr

R2
dr.

(b) dI = r2dm = (2Mr3/R2)dr.
(c) I =

∫ R
0

(2Mr3/R2)dr = MR2/2.

P9-16 (a) Another simple ratio will suffice:

dm

πr2dz
=

M

(4/3)πR3
or dm =

3M(R2 − z2)
4R3

dz.

(b) dI = r2dm/2 = [3M(R2 − z2)2/8R3]dz.
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(c) There are a few steps to do here:

I =
∫ R

−R

3M(R2 − z2)2

8R3
dz,

=
3M
4R3

∫ R

0

(R4 − 2R2z2 + z4)dz,

=
3M
4R3

(R5 − 2R5/3 +R5/5) =
2
5
MR2.

P9-17 The rotational acceleration will be given by αz =
∑
τ/I.

The torque about the pivot comes from the force of gravity on each block. This forces will both
originally be at right angles to the pivot arm, so the net torque will be

∑
τ = mgL2−mgL1, where

clockwise as seen on the page is positive.
The rotational inertia about the pivot is given by I =

∑
mnr

2
n = m(L2

2 + L2
1). So we can now

find the rotational acceleration,

α =
∑
τ

I
=
mgL2 −mgL1

m(L2
2 + L2

1)
= g

L2 − L1

L2
2 + L2

1

= 8.66 rad/s2
.

The linear acceleration is the tangential acceleration, aT = αR. For the left block, aT = 1.73 m/s2;
for the right block aT = 6.93 m/s2.

P9-18 (a) The force of friction on the hub is µkMg. The torque is τ = µkMga. The angular
acceleration has magnitude α = τ/I = µkga/k

2. The time it takes to stop the wheel will be
t = ω0/α = ω0k

2/(µkga).
(b) The average rotational speed while slowing is ω0/2. The angle through which it turns while

slowing is ω0t/2 radians, or ω0t/(4π) = ω2
0k

2/(4πµkga)

P9-19 (a) Consider a differential ring of the disk. The torque on the ring because of friction is

dτ = r dF = r
µkMg

πR2
2πr dr =

2µkMgr2

R2
dr.

The net torque is then

τ =
∫
dτ =

∫ R

0

2µkMgr2

R2
dr =

2
3
µkMgR.

(b) The rotational acceleration has magnitude α = τ/I = 4
3µkg/R. Then it will take a time

t = ω0/α =
3Rω0

4µkg

to stop.

P9-20 We need only show that the two objects have the same acceleration.
Consider first the hoop. There is a force W|| = W sin θ = mg sin θ pulling it down the ramp

and a frictional force f pulling it up the ramp. The frictional force is just large enough to cause
a torque that will allow the hoop to roll without slipping. This means a = αR; consequently,
fR = αI = aI/R. In this case I = mR2.

The acceleration down the plane is

ma = mg sin θ − f = mg sin θ −maI/R2 = mg sin θ −ma.
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Then a = g sin θ /2. The mass and radius are irrelevant!
For a block sliding with friction there are also two forces: W|| = W sin θ = mg sin θ and f =

µkmg cos θ. Then the acceleration down the plane will be given by

a = g sin θ − µkg cos θ,

which will be equal to that of the hoop if

µk =
sin θ − sin θ/2

cos θ
=

1
2

tan θ.

P9-21 This problem is equivalent to Sample Problem 9-11, except that we have a sphere instead
of a cylinder. We’ll have the same two equations for Newton’s second law,

Mg sin θ − f = Macm and N −Mg cos θ = 0.

Newton’s second law for rotation will look like

−fR = Icmα.

The conditions for accelerating without slipping are acm = αR, rearrange the rotational equation to
get

f = −Icmα

R
= −Icm(−acm)

R2
,

and then

Mg sin θ − Icm(acm)
R2

= Macm,

and solve for acm. For fun, let’s write the rotational inertia as I = βMR2, where β = 2/5 for the
sphere. Then, upon some mild rearranging, we get

acm = g
sin θ
1 + β

For the sphere, acm = 5/7g sin θ.
(a) If acm = 0.133g, then sin θ = 7/5(0.133) = 0.186, and θ = 10.7◦.
(b) A frictionless block has no rotational properties; in this case β = 0! Then acm = g sin θ =

0.186g.

P9-22 (a) There are three forces on the cylinder: gravity W and the tension from each cable T .
The downward acceleration of the cylinder is then given by ma = W − 2T .

The ropes unwind according to α = a/R, but α = τ/I and I = mR2/2. Then

a = τR/I = (2TR)R/(mR2/2) = 4T/m.

Combining the above, 4T = W − 2T , or T = W/6.
(b) a = 4(mg/6)/m = 2g/3.

P9-23 The force of friction required to keep the cylinder rolling is given by

f =
1
3
Mg sin θ;

the normal force is given to be N = Mg cos θ; so the coefficient of static friction is given by

µs ≥
f

N
=

1
3

tan θ.
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P9-24 a = F/M , since F is the net force on the disk. The torque about the center of mass is FR,
so the disk has an angular acceleration of

α =
FR

I
=

FR

MR2/2
=

2F
MR

.

P9-25 This problem is equivalent to Sample Problem 9-11, except that we have an unknown rolling
object. We’ll have the same two equations for Newton’s second law,

Mg sin θ − f = Macm and N −Mg cos θ = 0.

Newton’s second law for rotation will look like

−fR = Icmα.

The conditions for accelerating without slipping are acm = αR, rearrange the rotational equation to
get

f = −Icmα

R
= −Icm(−acm)

R2
,

and then

Mg sin θ − Icm(acm)
R2

= Macm,

and solve for acm. Write the rotational inertia as I = βMR2, where β = 2/5 for a sphere, β = 1/2
for a cylinder, and β = 1 for a hoop. Then, upon some mild rearranging, we get

acm = g
sin θ
1 + β

Note that a is largest when β is smallest; consequently the cylinder wins. Neither M nor R entered
into the final equation.
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