
E8-1 An n-dimensional object can be oriented by stating the position of n different carefully
chosen points Pi inside the body. Since each point has n coordinates, one might think there are n2

coordinates required to completely specify the position of the body. But if the body is rigid then
the distances between the points are fixed. There is a distance dij for every pair of points Pi and
Pj . For each distance dij we need one fewer coordinate to specify the position of the body. There
are n(n − 1)/2 ways to connect n objects in pairs, so n2 − n(n − 1)/2 = n(n + 1)/2 is the number
of coordinates required.

E8-2 (1 rev/min)(2π rad/rev)/(60 s/min) = 0.105 rad/s.

E8-3 (a) ω = a+ 3bt2 − 4ct3.
(b) α = 6bt− 12t2.

E8-4 (a) The radius is r = (2.3×104ly)(3.0×108m/s) = 6.9×1012m · y/s. The time to make one
revolution is t = (2π6.9×1012m · y/s)/(250×103m/s) = 1.7×108y.

(b) The Sun has made 4.5×109y/1.7×108y = 26 revolutions.

E8-5 (a) Integrate.

ωz = ω0 +
∫ t

0

(
4at3 − 3bt2

)
dt = ω0 + at4 − bt3

(b) Integrate, again.

∆θ =
∫ t

0

ωzdt =
∫ t

0

(
ω0 + at4 − bt3

)
dt = ω0t+

1
5
at5 − 1

4
bt4

E8-6 (a) (1 rev/min)(2π rad/rev)/(60 s/min) = 0.105 rad/s.
(b) (1 rev/h)(2π rad/rev)/(3600 s/h) = 1.75×10−3 rad/s.
(c) (1/12 rev/h)(2π rad/rev)/(3600 s/h) = 1.45×10−3 rad/s.

E8-7 85 mi/h = 125 ft/s. The ball takes t = (60 ft)/(125 ft/s) = 0.48 s to reach the plate. It
makes (30 rev/s)(0.48 s) = 14 revolutions in that time.

E8-8 It takes t =
√

2(10 m)/(9.81 m/s2) = 1.43 s to fall 10 m. The average angular velocity is
then ω = (2.5)(2π rad)/(1.43 s) = 11 rad/s.

E8-9 (a) Since there are eight spokes, this means the wheel can make no more than 1/8 of a
revolution while the arrow traverses the plane of the wheel. The wheel rotates at 2.5 rev/s; it
makes one revolution every 1/2.5 = 0.4 s; so the arrow must pass through the wheel in less than
0.4/8 = 0.05 s.

The arrow is 0.24 m long, and it must move at least one arrow length in 0.05 s. The corresponding
minimum speed is (0.24 m)/(0.05 s) = 4.8 m/s.

(b) It does not matter where you aim, because the wheel is rigid. It is the angle through which
the spokes have turned, not the distance, which matters here.

95



E8-10 We look for the times when the Sun, the Earth, and the other planet are collinear in some
specified order.

Since the outer planets revolve around the Sun more slowly than Earth, after one year the Earth
has returned to the original position, but the outer planet has completed less than one revolution.
The Earth will then “catch up” with the outer planet before the planet has completed a revolution.
If θE is the angle through which Earth moved and θP is the angle through which the planet moved,
then θE = θP + 2π, since the Earth completed one more revolution than the planet.

If ωP is the angular velocity of the planet, then the angle through which it moves during the
time TS (the time for the planet to line up with the Earth). Then

θE = θP + 2π,
ωETS = ωPTS + 2π,
ωE = ωP + 2π/TS

The angular velocity of a planet is ω = 2π/T , where T is the period of revolution. Substituting this
into the last equation above yields

1/TE = 1/TP + 1/TS .

E8-11 We look for the times when the Sun, the Earth, and the other planet are collinear in some
specified order.

Since the inner planets revolve around the Sun more quickly than Earth, after one year the Earth
has returned to the original position, but the inner planet has completed more than one revolution.
The inner planet must then have “caught-up” with the Earth before the Earth has completed a
revolution. If θE is the angle through which Earth moved and θP is the angle through which the
planet moved, then θP = θE + 2π, since the inner planet completed one more revolution than the
Earth.
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If ωP is the angular velocity of the planet, then the angle through which it moves during the
time TS (the time for the planet to line up with the Earth). Then

θP = θE + 2π,
ωPTS = ωETS + 2π,
ωP = ωE + 2π/TS

The angular velocity of a planet is ω = 2π/T , where T is the period of revolution. Substituting this
into the last equation above yields

1/TP = 1/TE + 1/TS .

E8-12 (a) α = (−78 rev/min)/(0.533 min) = −150 rev/min2
.

(b) Average angular speed while slowing down is 39 rev/min, so (39 rev/min)(0.533 min) =
21 rev.

E8-13 (a) α = (2880 rev/min− 1170 rev/min)/(0.210 min) = 8140 rev/min2
.

(b) Average angular speed while accelerating is 2030 rev/min, so (2030 rev/min)(0.210 min) =
425 rev.

E8-14 Find area under curve.
1
2

(5 min + 2.5 min)(3000 rev/min) = 1.13×104 rev.

E8-15 (a) ω0z = 25.2 rad/s; ωz = 0; t = 19.7 s; and αz and φ are unknown. From Eq. 8-6,

ωz = ω0z + αzt,

(0) = (25.2 rad/s) + αz(19.7 s),

αz = −1.28 rad/s2

(b) We use Eq. 8-7 to find the angle through which the wheel rotates.

φ = φ0+ω0zt+
1
2
αzt

2 = (0)+(25.2 rad/s)(19.7 s)+
1
2

(−1.28 rad/s2)(19.7 s)2 = 248 rad.
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(c) φ = 248 rad 1 rev
2π rad = 39.5 rev.

E8-16 (a) α = (225 rev/min− 315 rev/min)/(1.00 min) = −90.0 rev/min2
.

(b) t = (0− 225 rev/min)/(−90.0 rev/min2) = 2.50 min.
(c) (−90.0 rev/min2)(2.50 min)2/2 + (225 rev/min)(2.50 min) = 281 rev.

E8-17 (a) The average angular speed was (90 rev)/(15 s) = 6.0 rev/s. The angular speed at the
beginning of the interval was then 2(6.0 rev/s)− (10 rev/s) = 2.0 rev/s.

(b) The angular acceleration was (10 rev/s−2.0 rev/s)/(15 s) = 0.533 rev/s2. The time required
to get the wheel to 2.0 rev/s was t = (2.0 rev/s)/(0.533 rev/s2) = 3.8 s.

E8-18 (a) The wheel will rotate through an angle φ where

φ = (563 cm)/(8.14 cm/2) = 138 rad.

(b) t =
√

2(138 rad)/(1.47 rad/s2) = 13.7 s.

E8-19 (a) We are given φ = 42.3 rev= 266 rad, ω0z = 1.44 rad/s, and ωz = 0. Assuming a
uniform deceleration, the average angular velocity during the interval is

ωav,z =
1
2

(ω0z + ωz) = 0.72 rad/s.

Then the time taken for deceleration is given by φ = ωav,zt, so t = 369 s.
(b) The angular acceleration can be found from Eq. 8-6,

ωz = ω0z + αzt,

(0) = (1.44 rad/s) + αz(369 s),

αz = −3.9× 10−3 rad/s2
.

(c) We’ll solve Eq. 8-7 for t,

φ = φ0 + ω0zt+
1
2
αzt

2,

(133 rad) = (0) + (1.44 rad/s)t+
1
2

(−3.9× 10−3 rad/s2)t2,

0 = −133 + (1.44 s−1)t− (−1.95× 10−3s−2)t2.

Solving this quadratic expression yields two answers: t = 108 s and t = 630 s.

E8-20 The angular acceleration is α = (4.96 rad/s)/(2.33 s) = 2.13 rad/s2
. The angle through

which the wheel turned while accelerating is φ = (2.13 rad/s2)(23.0 s)2/2 = 563 rad. The angular
speed at this time is ω = (2.13 rad/s2)(23.0 s) = 49.0 rad/s. The wheel spins through an additional
angle of (49.0 rad/s)(46 s− 23 s) = 1130 rad, for a total angle of 1690 rad.

E8-21 ω = (14.6 m/s)/(110 m) = 0.133 rad/s.

E8-22 The linear acceleration is (25 m/s− 12 m/s)/(6.2 s) = 2.1 m/s2. The angular acceleration is
α = (2.1 m/s2)/(0.75 m/2) = 5.6 rad/s.
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E8-23 (a) The angular speed is given by vT = ωr. So ω = vT /r = (28, 700 km/hr)/(3220
km) = 8.91 rad/hr. That’s the same thing as 2.48×10−3 rad/s.

(b) aR = ω2r = (8.91 rad/h)2(3220 km) = 256000 km/h2, or

aR = 256000 km/h2(1/3600 h/s)2(1000 m/km) = 19.8 m/s2.

(c) If the speed is constant then the tangential acceleration is zero, regardless of the shape of the
trajectory!

E8-24 The bar needs to make

(1.50 cm)(12.0 turns/cm) = 18 turns.

This will happen is (18 rev)/(237 rev/min) = 4.56 s.

E8-25 (a) The angular speed is ω = (2π rad)/(86400 s) = 7.27×10−5 rad/s.
(b) The distance from the polar axis is r = (6.37×106m) cos(40◦) = 4.88×106m. The linear speed

is then v = (7.27×10−5 rad/s)(4.88×106m) = 355 m/s.
(c) The angular speed is the same as part (a). The distance from the polar axis is r = (6.37×

106m) cos(0◦) = 6.37×106m. The linear speed is then v = (7.27×10−5 rad/s)(6.37×106m) = 463 m/s.

E8-26 (a) aT = (14.2 rad/s2)(0.0283 m) = 0.402 m/s2.
(b) Full speed is ω = 289 rad/s. aR = (289 rad/s)2(0.0283 m) = 2360 m/s2.
(c) It takes

t = (289 rad/s)/(14.2 rad/s2) = 20.4 s

to get up to full speed. Then x = (0.402 m/s2)(20.4 s)2/2 = 83.6 m is the distance through which a
point on the rim moves.

E8-27 (a) The pilot sees the propeller rotate, no more. So the tip of the propeller is moving with
a tangential velocity of vT = ωr = (2000 rev/min)(2π rad/rev)(1.5 m) = 18900 m/min. This is the
same thing as 315 m/s.

(b) The observer on the ground sees this tangential motion and sees the forward motion of
the plane. These two velocity components are perpendicular, so the magnitude of the sum is√

(315 m/s)2 + (133 m/s)2 = 342 m/s.

E8-28 aT = aR when rα = rω2 = r(αt)2, or t =
√

1/(0.236 rad/s2) = 2.06 s.

E8-29 (a) aR = rω2 = rα2t2.
(b) aT = rα.
(c) Since aR = aT tan(57.0◦), t =

√
tan(57.0◦)/α. Then

φ =
1
2
αt2 =

1
2

tan(57.0◦) = 0.77 rad = 44.1◦.

E8-30 (a) The tangential speed of the edge of the wheel relative axle is v = 27 m/s. ω =
(27 m/s)/(0.38 m) = 71 rad/s.

(b) The average angular speed while slowing is 71 rad/s/2, the time required to stop is then
t = (30× 2π rad)/(71 rad/s/2) = 5.3 s. The angular acceleration is then α = (−71 rad/s)/(5.3 s) =
−13 rad/s.

(c) The car moves forward (27 m/s/2)(5.3 s) = 72 m.
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E8-31 Yes, the speed would be wrong. The angular velocity of the small wheel would be ω = vt/rs,
but the reported velocity would be v = ωrl = vtrl/rs. This would be in error by a fraction

∆v
vt

=
(72 cm)
(62 cm)

− 1 = 0.16.

E8-32 (a) Square both equations and then add them:

x2 + y2 = (R cosωt)2 + (R sinωt)2 = R2,

which is the equation for a circle of radius R.
(b) vx = −Rω sinωt = −ωy; vy = Rω cosωt = ωx. Square and add, v = ωR. The direction is

tangent to the circle.
(b) ax = −Rω2 cosωt = −ω2x; ay = −Rω2 sinωt = −ω2y. Square and add, a = ω2R. The

direction is toward the center.

E8-33 (a) The object is “slowing down”, so ~α = (−2.66 rad/s2)k̂. We know the direction
because it is rotating about the z axis and we are given the direction of ~ω. Then from Eq. 8-19,
~v = ~ω × ~R = (14.3 rad/s)k̂ × [(1.83 m)̂j + (1.26 m)k̂]. But only the cross term k̂ × ĵ survives, so
~v = (−26.2 m/s)̂i.

(b) We find the acceleration from Eq. 8-21,

~a = ~α× ~R + ~ω × ~v,
= (−2.66 rad/s2)k̂× [(1.83 m)̂j + (1.26 m)k̂] + (14.3 rad/s)k̂× (−26.2 m/s)̂i,

= (4.87 m/s2)̂i + (−375 m/s2)̂j.

E8-34 (a) ~F = −2m~ω × ~v = −2mωv cos θ, where θ is the latitude. Then

F = 2(12 kg)(2π rad/86400 s)(35 m/s) cos(45◦) = 0.043 N,

and is directed west.
(b) Reversing the velocity will reverse the direction, so east.
(c) No. The Coriolis force pushes it to the west on the way up and gives it a westerly velocity;

on the way down the Coriolis force slows down the westerly motion, but does not push it back east.
The object lands to the west of the starting point.

P8-1 (a) ω = (4.0 rad/s)− (6.0 rad/s2)t+ (3.0 rad/s)t2. Then ω(2.0 s) = 4.0 rad/s and ω(4.0 s) =
28.0 rad/s.

(b) αav = (28.0 rad/s− 4.0 rad/s)/(4.0 s− 2.0 s) = 12 rad/s2
.

(c) α = −(6.0 rad/s2) + (6.0 rad/s)t. Then α(2.0 s) = 6.0 rad/s2 and α(4.0 s) = 18.0 rad/s2.

P8-2 If the wheel really does move counterclockwise at 4.0 rev/min, then it turns through

(4.0 rev/min)/[(60 s/min)(24 frames/s)] = 2.78×10−3 rev/frame.

This means that a spoke has moved 2.78×10−3 rev. There are 16 spokes each located 1/16 of a
revolution around the wheel. If instead of moving counterclockwise the wheel was instead moving
clockwise so that a different spoke had moved 1/16 rev − 2.78×10−3 rev = 0.0597 rev, then the
same effect would be present. The wheel then would be turning clockwise with a speed of ω =
(0.0597 rev)(60 s/min)(24 frames/s) = 86 rev/min.

100



P8-3 (a) In the diagram below the Earth is shown at two locations a day apart. The Earth rotates
clockwise in this figure.

Note that the Earth rotates through 2π rad in order to be correctly oriented for a complete
sidereal day, but because the Earth has moved in the orbit it needs to go farther through an angle
θ in order to complete a solar day. By the time the Earth has gone all of the way around the sun
the total angle θ will be 2π rad, which means that there was one more sidereal day than solar day.

(b) There are (365.25 d)(24.000 h/d) = 8.7660×103 hours in a year with 265.25 solar days. But
there are 366.25 sidereal days, so each one has a length of 8.7660×103/366.25 = 23.934 hours, or 23
hours and 56 minutes and 4 seconds.

P8-4 (a) The period is time per complete rotation, so ω = 2π/T .
(b) α = ∆ω/∆t, so

α =
(

2π
T0 + ∆T

− 2π
T0

)
/(∆t),

=
2π
∆t

(
−∆T

T0(T0 + ∆T )

)
,

≈ 2π
∆t
−∆T
T 2

0

,

=
2π

(3.16×107s)
−(1.26×10−5s)

(0.033 s)2
= −2.30×10−9rad/s2

.

(c) t = (2π/0.033 s)/(2.30×10−9rad/s2) = 8.28×1010s, or 2600 years.
(d) 2π/T0 = 2π/T − αt, or

T0 =
(

1/(0.033 s)− (−2.3×10−9rad/s2)(3.0×1010 s)/(2π)
)−1

= 0.024 s.

P8-5 The final angular velocity during the acceleration phase is ωz = αzt = (3.0 rad/s)(4.0
s) = 12.0 rad/s. Since both the acceleration and deceleration phases are uniform with endpoints
ωz = 0, the average angular velocity for both phases is the same, and given by half of the maximum:
ωav,z = 6.0 rad/s.
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The angle through which the wheel turns is then

φ = ωav,zt = (6.0 rad/s)(4.1 s) = 24.6 rad.

The time is the total for both phases.
(a) The first student sees the wheel rotate through the smallest angle less than one revolution;

this student would have no idea that the disk had rotated more than once. Since the disk moved
through 3.92 revolutions, the first student will either assume the disk moved forward through 0.92
revolutions or backward through 0.08 revolutions.

(b) According to whom? We’ve already answered from the perspective of the second student.

P8-6 ω = (0.652 rad/s2)t and α = (0.652 rad/s2).
(a) ω = (0.652 rad/s2)(5.60 s) = 3.65 rad/s
(b) vT = ωr = (3.65 rad/s)(10.4 m) = 38 m/s.
(c) aT = αr = (0.652 rad/s2)(10.4 m) = 6.78 m/s2.
(d) aR = ω2r = (3.65 rad/s)2(10.4 m) = 139 m/s2.

P8-7 (a) ω = (2π rad)/(3.16×107 s) = 1.99×10−7 rad/s.
(b) vT = ωR = (1.99×10−7 rad/s)(1.50×1011m) = 2.99×104m/s.
(c) aR = ω2R = (1.99×10−7 rad/s)2(1.50×1011m) = 5.94×10−3m/s2.

P8-8 (a) α = (−156 rev/min)/(2.2× 60 min) = −1.18 rev/min2
.

(b) The average angular speed while slowing down is 78 rev/min, so the wheel turns through
(78 rev/min)(2.2× 60 min) = 10300 revolutions.

(c) aT = (2π rad/rev)(−1.18 rev/min2)(0.524 m) = −3.89 m/min2. That’s the same as −1.08×
10−3m/s2.

(d) aR = (2π rad/rev)(72.5 rev/min)2(0.524 m) = 1.73× 104 m/min2. That’s the same as
4.81m/s2. This is so much larger than the aT term that the magnitude of the total linear ac-
celeration is simply 4.81m/s2.

P8-9 (a) There are 500 teeth (and 500 spaces between these teeth); so disk rotates 2π/500 rad
between the outgoing light pulse and the incoming light pulse. The light traveled 1000 m, so the
elapsed time is t = (1000 m)/(3×108 m/s) = 3.33×10−6s.

Then the angular speed of the disk is ωz = φ/t = 1.26×10−2 rad)/(3.33×10−6s) = 3800 rad/s.
(b) The linear speed of a point on the edge of the would be

vT = ωR = (3800 rad/s)(0.05 m) = 190 m/s.

P8-10 The linear acceleration of the belt is a = αArA. The angular acceleration of C is αC =
a/rC = αA(rA/rC). The time required for C to get up to speed is

t =
(2π rad/rev)(100 rev/min)(1/60 min/s)

(1.60 rad/s2)(10.0/25.0)
= 16.4 s.

P8-11 (a) The final angular speed is ωo = (130 cm/s)/(5.80 cm) = 22.4 rad/s.
(b) The recording area is π(Ro

2 −Ri
2), the recorded track has a length l and width w, so

l =
π[(5.80 cm)2 − (2.50 cm2)]

(1.60×10−4 cm)
= 5.38×105 cm.

(c) Playing time is t = (5.38×105 cm)/(130 cm/s) = 4140 s, or 69 minutes.
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P8-12 The angular position is given by φ = arctan(vt/b). The derivative (Maple!) is

ω =
vb

b2 + v2t2
,

and is directed up. Take the derivative again,

α =
2bv3t

(b2 + v2t2)2
,

but is directed down.

P8-13 (a) Let the rocket sled move along the line x = b. The observer is at the origin and
sees the rocket move with a constant angular speed, so the angle made with the x axis increases
according to θ = ωt. The observer, rocket, and starting point form a right triangle; the position y
of the rocket is the opposite side of this triangle, so

tan θ = y/b implies y = b/ tanωt.

We want to take the derivative of this with respect to time and get

v(t) = ωb/ cos2(ωt).

(b) The speed becomes infinite (which is clearly unphysical) when t = π/2ω.
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