
E6-1 (a) v1 = (m2/m1)v2 = (2650 kg/816 kg)(16.0 km/h) = 52.0 km/h.
(b) v1 = (m2/m1)v2 = (9080 kg/816 kg)(16.0 km/h) = 178 km/h.

E6-2 ~pi = (2000 kg)(40 km/h)̂j = 8.00×104kg · km/hĵ. ~pf = (2000 kg)(50 km/h)̂i = 1.00×105kg ·
km/ĥi. ∆~p = ~pf − ~pi = 1.00×105kg · km/ĥi − 8.00×104kg · km/hĵ. ∆p =

√
(∆px)2 + (∆py)2 =

1.28×105kg · km/h. The direction is 38.7◦ south of east.

E6-3 The figure below shows the initial and final momentum vectors arranged to geometrically
show ~pf − ~pi = ∆~p. We can use the cosine law to find the length of ∆~p.

pf

-pi

∆ p

θ

The angle α = 42◦ + 42◦, pi = mv = (4.88 kg)(31.4 m/s) = 153 kg·m/s. Then the magnitude of
∆~p is

∆p =
√

(153 kg·m/s)2 + (153 kg·m/s)2 − 2(153 kg·m/s)2 cos(84◦) = 205 kg·m/s,

directed up from the plate. By symmetry it must be perpendicular.

E6-4 The change in momentum is ∆p = −mv = −(2300 kg)(15 m/s) = −3.5×104kg · m/s. The
average force is F = ∆p/∆t = (−3.5×104kg ·m/s)/(0.54 s) = −6.5×104N.

E6-5 (a) The change in momentum is ∆p = (−mv) − mv; the average force is F = ∆p/∆t =
−2mv/∆t.

(b) F = −2(0.14 kg)(7.8 m/s)/(3.9×10−3s) = 560 N.

E6-6 (a) J = ∆p = (0.046 kg)(52.2 m/s)− 0 = 2.4 N · s.
(b) The impulse imparted to the club is opposite that imparted to the ball.
(c) F = ∆p/∆t = (2.4 N · s)/(1.20×10−3s) = 2000 N.

E6-7 Choose the coordinate system so that the ball is only moving along the x axis, with away
from the batter as positive. Then pfx = mvfx = (0.150 kg)(61.5 m/s) = 9.23 kg·m/s and pix =
mvix = (0.150 kg)(−41.6 m/s) = −6.24 kg·m/s. The impulse is given by Jx = pfx − pix = 15.47
kg·m/s. We can find the average force by application of Eq. 6-7:

F av,x =
Jx
∆t

=
(15.47 kg ·m/s)
(4.7× 10−3 s)

= 3290 N.
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E6-8 The magnitude of the impulse is J = Fδt = (−984 N)(0.0270 s) = −26.6 N · s. Then pf =
pi + ∆p, so

vf =
(0.420 kg)(13.8 m/s) + (−26.6 N · s)

(0.420 kg)
= −49.5 m/s.

The ball moves backward!

E6-9 The change in momentum of the ball is ∆p = (mv)− (−mv) = 2mv = 2(0.058 kg)(32 m/s) =
3.7 kg ·m/s. The impulse is the area under a force - time graph; for the trapezoid in the figure this
area is J = Fmax(2 ms + 6 ms)/2 = (4 ms)Fmax. Then Fmax = (3.7 kg ·m/s)/(4 ms) = 930 N.

E6-10 The final speed of each object is given by vi = J/mi, where i refers to which object (as
opposed to “initial”). The object are going in different directions, so the relative speed will be the
sum. Then

vrel = v1 + v2 = (300 N · s)[1/(1200 kg) + 1/(1800 kg)] = 0.42 m/s.

E6-11 Use Simpson’s rule. Then the area is given by

Jx =
1
3
h (f0 + 4f1 + 2f2 + 4f3 + ...+ 4f13 + f14) ,

=
1
3

(0.2 ms) (200 + 4 · 800 + 2 · 1200...N)

which gives Jx = 4.28 kg·m/s.
Since the impulse is the change in momentum, and the ball started from rest, pfx = Jx+pix = 4.28

kg·m/s. The final velocity is then found from vx = px/m = 8.6 m/s.

E6-12 (a) The average speed during the the time the hand is in contact with the board is half of the
initial speed, or vav = 4.8 m/s. The time of contact is then t = y/vav = (0.028 m)/(4.8 m/s) = 5.8 ms.

(b) The impulse given to the board is the same as the magnitude in the change in momentum of
the hand, or J = (0.54 kg)(9.5 m/s) = 5.1 N · s. Then F av = (5.1 N · s)/(5.8 ms) = 880 N.

E6-13 ∆p = J = F∆t = (3000 N)(65.0 s) = 1.95×105N · s. The direction of the thrust relative to
the velocity doesn’t matter in this exercise.

E6-14 (a) p = mv = (2.14×10−3kg)(483 m/s) = 1.03 kg ·m/s.
(b) The impulse imparted to the wall in one second is ten times the above momentum, or

J = 10.3 kg ·m/s. The average force is then F av = (10.3 kg ·m/s)/(1.0 s) = 10.3 N.
(c) The average force for each individual particle is F av = (1.03 kg ·m/s)/(1.25×10−3 s) = 830 N.

E6-15 A transverse direction means at right angles, so the thrusters have imparted a momentum
sufficient to direct the spacecraft 100+3400 = 3500 km to the side of the original path. The spacecraft
is half-way through the six-month journey, so it has three months to move the 3500 km to the side.
This corresponds to a transverse speed of v = (3500×103m)/(90×86400 s) = 0.45 m/s. The required
time for the rocket to fire is ∆t = (5400 kg)(0.45 m/s)/(1200 N) = 2.0 s.

E6-16 Total initial momentum is zero, so

vm = − ms

mm
vs = − msg

mmg
vs = − (0.158 lb)

(195 lb)
(12.7 ft/s) = −1.0×10−2 ft/s.
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E6-17 Conservation of momentum:

pf,m + pf,c = pi,m + pi,c,

mmvf,m +mcvf,c = mmvi,m +mcvi,c,

vf,c − vi,c =
mmvi,m −mmvf,m

mc
,

∆vc =
(75.2 kg)(2.33 m/s)− (75.2 kg)(0)

(38.6 kg)
,

= 4.54 m/s.

The answer is positive; the cart speed increases.

E6-18 Conservation of momentum:

pf,m + pf,c = pi,m + pi,c,

mm(vf,c − vrel) +mcvf,c = (mm +mc)vi,c,

(mm +mc)vf,c −mmvrel = (mm +mc)vi,c,

∆vc = mmvrel/(mm +mc),
= wvrel/(w +W ).

E6-19 Conservation of momentum. Let m refer to motor and c refer to command module:

pf,m + pf,c = pi,m + pi,c,

mm(vf,c − vrel) +mcvf,c = (mm +mc)vi,c,

(mm +mc)vf,c −mmvrel = (mm +mc)vi,c,

vf,c =
mmvrel + (mm +mc)vi,c

(mm +mc)
,

=
4mc(125 km/h) + (4mc +mc)(3860 km/h)

(4mc +mc)
= 3960 km/h.

E6-20 Conservation of momentum. The block on the left is 1, the other is 2.

m1v1,f +m2v2,f = m1v1,i +m2v2,i,

v1,f = v1,i +
m2

m1
(v2,i − v2,f),

= (5.5 m/s) +
(2.4 kg)
(1.6 kg)

[(2.5 m/s)− (4.9 m/s)],

= 1.9 m/s.

E6-21 Conservation of momentum. The block on the left is 1, the other is 2.

m1v1,f +m2v2,f = m1v1,i +m2v2,i,

v1,f = v1,i +
m2

m1
(v2,i − v2,f),

= (5.5 m/s) +
(2.4 kg)
(1.6 kg)

[(−2.5 m/s)− (4.9 m/s)],

= −5.6 m/s.
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E6-22 Assume a completely inelastic collision. Call the Earth 1 and the meteorite 2. Then

m1v1,f +m2v2,f = m1v1,i +m2v2,i,

v1,f =
m2v2,i

m1 +m2
,

=
(5×1010kg)(7200 m/s)

(5.98×1024kg) + (5×1010kg)
= 7×10−11m/s.

That’s 2 mm/y!

E6-23 Conservation of momentum is used to solve the problem:

P f = P i,

pf,bl + pf,bu = pi,bl + pi,bu,

mblvf,bl +mbuvf,bu = mblvi,bl +mbuvi,bu,

(715 g)vf,bl + (5.18 g)(428 m/s) = (715 g)(0) + (5.18 g)(672 m/s),

which has solution vf,bl = 1.77 m/s.

E6-24 The y component of the initial momentum is zero; therefore the magnitudes of the y com-
ponents of the two particles must be equal after the collision. Then

mαvα sin θα = mOvO sin θO,

vα =
mOvO sin θO

mαvα sin θα
,

=
(16 u)(1.20×105m/s) sin(51◦)

(4.00 u) sin(64◦)
= 4.15×105m/s.

E6-25 The total momentum is

~p = (2.0 kg)[(15 m/s)̂i + (30 m/s)̂j] + (3.0 kg)[(−10 m/s)̂i + (5 m/s)̂j],

= 75 kg ·m/s ĵ.

The final velocity of B is

~vB f =
1
mB

(~p−mA~vAf),

=
1

(3.0 kg)
{(75 kg ·m/s ĵ)− (2.0 kg)[(−6.0 m/s)̂i + (30 m/s)̂j]},

= (4.0 m/s)̂i + (5.0 m/s)̂j.

E6-26 Assume electron travels in +x direction while neutrino travels in +y direction. Conservation
of momentum requires that

~p = −(1.2×10−22kg ·m/s)̂i− (6.4×10−23kg ·m/s)̂j

be the momentum of the nucleus after the decay. This has a magnitude of p = 1.4×10−22kg ·m/s
and be directed 152◦ from the electron.
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E6-27 What we know:

~p1,i = (1.50×105kg)(6.20 m/s)̂i = 9.30×105kg ·m/s î,

~p2,i = (2.78×105kg)(4.30 m/s)̂j = 1.20×106kg ·m/s ĵ,

~p2,f = (2.78×105kg)(5.10 m/s)[sin(18◦)̂i + cos(18◦)̂j],

= 4.38×105kg ·m/s î + 1.35×106kg ·m/s ĵ.

Conservation of momentum then requires

~p1,f = (9.30×105kg ·m/s î)− (4.38×105kg ·m/s î)

+(1.20×106kg ·m/s ĵ)− (1.35×106kg ·m/s ĵ),

= 4.92×105kg ·m/s î− 1.50×105kg ·m/s î.

This corresponds to a velocity of

~v1,f = 3.28 m/s î− 1.00 m/s ĵ,

which has a magnitude of 3.43 m/s directed 17◦ to the right.

E6-28 vf = −2.1 m/s.

E6-29 We want to solve Eq. 6-24 for m2 given that v1,f = 0 and v1,i = −v2,i. Making these
substitutions

(0) =
m1 −m2

m1 +m2
v1,i +

2m2

m1 +m2
(−v1,i),

0 = (m1 −m2)v1,i − (2m2)v1,i,

3m2 = m1

so m2 = 100 g.

E6-30 (a) Rearrange Eq. 6-27:

m2 = m1
v1i − v1f

v1i + v1f
= (0.342 kg)

(1.24 m/s)− (0.636 m/s)
(1.24 m/s) + (0.636 m/s)

= 0.110 kg.

(b) v2f = 2(0.342 kg)(1.24 m/s)/(0.342 kg + 0.110 kg) = 1.88 m/s.

E6-31 Rearrange Eq. 6-27:

m2 = m1
v1i − v1f

v1i + v1f
= (2.0 kg)

v1i − v1i/4
v1i + v1i/4

= 1.2 kg.

E6-32 I’ll multiply all momentum equations by g, then I can use weight directly without converting
to mass.

(a) vf = [(31.8 T)(5.20 ft/s) + (24.2 T)(2.90 ft/s)]/(31.8 T + 24.2 T) = 4.21 ft/s.
(b) Evaluate:

v1f =
31.8 T− 24.2 T
31.8 T + 24.2 T

(5.20 ft/s) +
2(24.2 T)

31.8 T + 24.2 T
(2.90 ft/s) = 3.21 ft/s.

v2f = −31.8 T− 24.2 T
31.8 T + 24.2 T

(2.90 ft/s) +
2(31.8 T)

31.8 T + 24.2 T
(5.20 ft/s) = 5.51 ft/s.
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E6-33 Let the initial momentum of the first object be ~p1,i = m~v1,i, that of the second object be
~p2,i = m~v2,i, and that of the combined final object be ~pf = 2m~vf . Then

~p1,i + ~p2,i = ~pf ,

implies that we can find a triangle with sides of length p1,i, p2,i, and pf . These lengths are

p1,i = mvi,

p2,i = mvi,

pf = 2mvf = 2mvi/2 = mvi,

so this is an equilateral triangle. This means the angle between the initial velocities is 120◦.

E6-34 We need to change to the center of mass system. Since both particles have the same
mass, the conservation of momentum problem is effectively the same as a (vector) conservation of
velocity problem. Since one of the particles is originally at rest, the center of mass moves with
speed vcm = v1i/2. In the figure below the center of mass velocities are primed; the transformation
velocity is vt.

v’

v’

1f

1i

t

v

v

v

v’

v’

v

1f

2i

2f

t

2f

Note that since vt = v′1i = v′2i = v′1f = v′2f the entire problem can be inscribed in a rhombus.
The diagonals of the rhombus are the directions of v1f and v2f ; note that the diagonals of a rhombus
are necessarily at right angles!

(a) The target proton moves off at 90◦ to the direction the incident proton moves after the
collision, or 26◦ away from the incident protons original direction.

(b) The y components of the final momenta must be equal, so v2f sin(26◦) = v1f sin(64◦), or v2f =
v1f tan(64◦). The x components must add to the original momentum, so (514 m/s) = v2f cos(26◦) +
v1f cos(64◦), or

v1f = (514 m/s)/{tan(64◦) cos(26◦) + cos(64◦)} = 225 m/s,

and
v2f = (225 m/s) tan(64◦) = 461 m/s.

E6-35 vcm = {(3.16 kg)(15.6 m/s)+(2.84 kg)(−12.2 m/s)}/{(3.16 kg)+(2.84 kg)} = 2.44 m/s, pos-
itive means to the left.

81



P6-1 The force is the change in momentum over change in time; the momentum is the mass time
velocity, so

F =
∆p
∆t

=
m∆v
∆t

= ∆v
m

∆t
= 2uµ,

since µ is the mass per unit time.

P6-2 (a) The initial momentum is ~pi = (1420 kg)(5.28 m/s)̂j = 7500 kg ·m/s ĵ. After making the
right hand turn the final momentum is ~pf = 7500 kg · m/s î. The impulse is ~J = 7500 kg · m/s î −
7500 kg ·m/s ĵ, which has magnitude J = 10600 kg ·m/s.

(b) During the collision the impulse is ~J = 0−7500 kg ·m/s î. The magnitude is J = 7500 kg ·m/s.
(c) The average force is F = J/t = (10600 kg ·m/s)/(4.60 s) = 2300 N.
(d) The average force is F = J/t = (7500 kg ·m/s)/(0.350 s) = 21400 N.

P6-3 (a) Only the component of the momentum which is perpendicular to the wall changes. Then

~J = ∆~p = −2(0.325 kg)(6.22 m/s) sin(33◦)̂j = −2.20 kg ·m/s ĵ.

(b) ~F = −~J/t = −(−2.20 kg ·m/s ĵ)/(0.0104 s) = 212 N.

P6-4 The change in momentum of one bullet is ∆p = 2mv = 2(0.0030 kg)(500 m/s) = 3.0 kg ·m/s.
The average force is the total impulse in one minute divided by one minute, or

F av = 100(3.0 kg ·m/s)/(60 s) = 5.0 N.

P6-5 (a) The volume of a hailstone is V = 4πr3/3 = 4π(0.5 cm)3/3 = 0.524 cm3. The mass of a
hailstone is m = ρV = (9.2×10−4kg/cm3)(0.524 cm3) = 4.8×10−4kg.

(b) The change in momentum of one hailstone when it hits the ground is

∆p = (4.8×10−4kg)(25 m/s) = 1.2×10−2kg ·m/s.

The hailstones fall at 25 m/s, which means that in one second the hailstones in a column 25 m high
hit the ground. Over an area of 10 m×20 m then there would be (25 m)(10 m)(20 m) = 500 m3 worth
of hailstones, or 6.00×105 hailstones per second striking the surface. Then

F av = 6.00×105(1.2×10−2 kg ·m/s)/(1 s) = 7200 N.

P6-6 Assume the links are not connected once the top link is released. Consider the link that
starts h above the table; it falls a distance h in a time t =

√
2h/g and hits the table with a speed

v = gt =
√

2hg. When the link hits the table h of the chain is already on the table, and L−h is yet
to come. The linear mass density of the chain is M/L, so when this link strikes the table the mass is
hitting the table at a rate dm/dt = (M/L)v = (M/L)

√
2hg. The average force required to stop the

falling link is then v dm/dt = (M/L)2hg = 2(M/L)hg. But the weight of the chain that is already
on the table is (M/L)hg, so the net force on the table is the sum of these two terms, or F = 3W .

P6-7 The weight of the marbles in the box after a time t is mgRt because Rt is the number of
marbles in the box.

The marbles fall a distance h from rest; the time required to fall this distance is t =
√

2h/g,
the speed of the marbles when they strike the box is v = gt =

√
2gh. The momentum each marble

imparts on the box is then m
√

2gh. If the marbles strike at a rate R then the force required to stop
them is Rm

√
2gh.
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The reading on the scale is then

W = mR(
√

2gh+ gt).

This will give a numerical result of

(4.60×10−3kg)(115 s−1)
(√

2(9.81 m/s2)(9.62 m) + (9.81 m/s2)(6.50 s)
)

= 41.0 N.

P6-8 (a) v = (108 kg)(9.74 m/s)/(108 kg + 1930 kg) = 0.516 m/s.
(b) Label the person as object 1 and the car as object 2. Then m1v1 +m2v2 = (108 kg)(9.74 m/s)

and v1 = v2 + 0.520 m/s. Combining,

v2 = [1050 kg ·m/s− (0.520 m/s)(108 kg)]/(108 kg + 1930 kg) = 0.488 m/s.

P6-9 (a) It takes a time t1 =
√

2h/g to fall h = 6.5 ft. An object will be moving at a speed
v1 = gt1 =

√
2hg after falling this distance. If there is an inelastic collision with the pile then the

two will move together with a speed of v2 = Mv1/(M +m) after the collision.
If the pile then stops within d = 1.5 inches, then the time of stopping is given by t2 = d/(v2/2) =

2d/v2.
For inelastic collisions this corresponds to an average force of

F av =
(M +m)v2

t2
=

(M +m)v2
2

2d
=

M2v2
1

2(M +m)d
=

(gM)2

g(M +m)
h

d
.

Note that we multiply through by g to get weights. The numerical result is F av = 130 t.
(b) For an elastic collision v2 = 2Mv1/(M + m); the time of stopping is still expressed by

t2 = 2d/v2, but we now know F av instead of d. Then

F av =
mv2

t2
=
mv2

2

2d
=

4Mmv2
1

(M +m)d
=

2(gM)(gm)
g(M +m)

h

d
.

or

d =
2(gM)(gm)
g(M +m)

h

F av
,

which has a numerical result of d = 0.51 inches.
But wait! The weight, which just had an elastic collision, “bounced” off of the pile, and then hit

it again. This drives the pile deeper into the earth. The weight hits the pile a second time with a
speed of v3 = (M−m)/(M+m)v1; the pile will (in this second elastic collision) then have a speed of
v4 = 2M(M +m)v3 = [(M −m)/(M +m)]v2. In other words, we have an infinite series of distances
traveled by the pile, and if α = [(M −m)/(M +m)] = 0.71, the depth driven by the pile is

df = d(1 + α2 + α4 + α6 · · ·) =
d

1− α2
,

or d = 1.03.

P6-10 The cat jumps off of sled A; conservation of momentum requires that MvA,1+m(vA,1+vc) =
0, or

vA,1 = −mvc/(m+M) = −(3.63 kg)(3.05 m/s)/(22.7 kg + 3.63 kg) = −0.420 m/s.

The cat lands on sled B; conservation of momentum requires vB,1 = m(vA,1 + vc)/(m + M). The
cat jumps off of sled B; conservation of momentum is now

MvB,2 +m(vB,2 − vc) = m(vA,1 + vc),
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or

vB,2 = 2mvc/(m+M) = (3.63 kg)[(−0.420 m/s) + 2(3.05 m/s)]/(22.7 kg + 3.63 kg) = 0.783 m/s.

The cat then lands on cart A; conservation of momentum requires that (M +m)vA,2 = −MvB,2, or

vA,2 = −(22.7 kg)(0.783 m/s)/(22.7 kg + 3.63 kg) = −0.675 m/s.

P6-11 We align the coordinate system so that west is +x and south is +y. The each car
contributes the following to the initial momentum

A : (2720 lb/g)(38.5 mi/h)̂i = 1.05×105 lb ·mi/h/g î,

B : (3640 lb/g)(58.0 mi/h)̂j = 2.11×105 lb ·mi/h/g ĵ.

These become the components of the final momentum. The direction is then

θ = arctan
2.11×105 lb ·mi/h/g
1.05×105 lb ·mi/h/g

= 63.5◦,

south of west. The magnitude is the square root of the sum of the squares,

2.36×105 lb ·mi/h/g,

and we divide this by the mass (6360 lb/g) to get the final speed after the collision: 37.1 mi/h.

P6-12 (a) Ball Amust carry off a momentum of ~p = mBv î−mBv/2 ĵ, which would be in a direction
θ = arctan(−0.5/1) = 27◦ from the original direction of B, or 117◦ from the final direction.

(b) No.

P6-13 (a) We assume all balls have a mass m. The collision imparts a “sideways” momentum to
the cue ball of m(3.50 m/s) sin(65◦) = m(3.17 m/s). The other ball must have an equal, but opposite
“sideways” momentum, so −m(3.17 m/s) = m(6.75 m/s) sin θ, or θ = −28.0◦.

(b) The final “forward” momentum is

m(3.50 m/s) cos(65◦) +m(6.75 m/s) cos(−28◦) = m(7.44 m/s),

so the initial speed of the cue ball would have been 7.44 m/s.

P6-14 Assuming M � m, Eq. 6-25 becomes

v2f = 2v1i − v1i = 2(13 km/s)− (−12 km/s) = 38 km/s.

P6-15 (a) We get

v2,f =
2(220 g)

(220 g) + (46.0 g)
(45.0 m/s) = 74.4 m/s.

(b) Doubling the mass of the clubhead we get

v2,f =
2(440 g)

(440 g) + (46.0 g)
(45.0 m/s) = 81.5 m/s.

(c) Tripling the mass of the clubhead we get

v2,f =
2(660 g)

(660 g) + (46.0 g)
(45.0 m/s) = 84.1 m/s.

Although the heavier club helps some, the maximum speed to get out of the ball will be less than
twice the speed of the club.
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P6-16 There will always be at least two collisions. The balls are a, b, and c from left to right.
After the first collision between a and b one has

vb,1 = v0 and va,1 = 0.

After the first collision between b and c one has

vc,1 = 2mv0/(m+M) and vb,2 = (m−M)v0/(m+M).

(a) If m ≥M then ball b continue to move to the right (or stops) and there are no more collisions.
(b) If m < M then ball b bounces back and strikes ball a which was at rest. Then

va,2 = (m−M)v0/(m+M) and vb,3 = 0.

P6-17 All three balls are identical in mass and radii? Then balls 2 and 3 will move off at 30◦ to
the initial direction of the first ball. By symmetry we expect balls 2 and 3 to have the same speed.

The problem now is to define an elastic three body collision. It is no longer the case that the
balls bounce off with the same speed in the center of mass. One can’t even treat the problem as two
separate collisions, one right after the other. No amount of momentum conservation laws will help
solve the problem; we need some additional physics, but at this point in the text we don’t have it.

P6-18 The original speed is v0 in the lab frame. Let α be the angle of deflection in the cm frame
and ~v′1 be the initial velocity in the cm frame. Then the velocity after the collision in the cm frame
is v′1 cosα î + v′1 sinα ĵ and the velocity in the lab frame is (v′1 cosα+ v)̂i + v′1 sinα ĵ, where v is the
speed of the cm frame. The deflection angle in the lab frame is

θ = arctan[(v′1 sinα)/(v′1 cosα+ v)],

but v = m1v0/(m1 +m2) and v′1 = v0 − v so v′1 = m2v0/(m1 +m2) and

θ = arctan[(m2 sinα)/(m2 cosα+m1)].

(c) θ is a maximum when (cosα + m1/m2)/ sinα is a minimum, which happens when cosα =
−m1/m2 if m1 ≤ m2. Then [(m2 sinα)/(m2 cosα + m1)] can have any value between −∞ and ∞,
so θ can be between 0 and π.

(a) If m1 > m2 then (cosα+m1/m2)/ sinα is a minimum when cosα = −m2/m1, then

[(m2 sinα)/(m2 cosα+m1)] = m2/
√
m2

1 −m2
2.

If tan θ = m2/
√
m2

1 −m2
2 then m1 is like a hypotenuse and m2 the opposite side. Then

cos θ =
√
m2

1 −m2
2/m1 =

√
1− (m2/m1)2.

(b) We need to change to the center of mass system. Since both particles have the same mass,
the conservation of momentum problem is effectively the same as a (vector) conservation of velocity
problem. Since one of the particles is originally at rest, the center of mass moves with speed
vcm = v1i/2. In the figure below the center of mass velocities are primed; the transformation
velocity is vt.
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Note that since vt = v′1i = v′2i = v′1f = v′2f the entire problem can be inscribed in a rhombus.
The diagonals of the rhombus are the directions of v1f and v2f ; note that the diagonals of a rhombus
are necessarily at right angles!

P6-19 (a) The speed of the bullet after leaving the first block but before entering the second can
be determined by momentum conservation.

P f = P i,

pf,bl + pf,bu = pi,bl + pi,bu,

mblvf,bl +mbuvf,bu = mblvi,bl +mbuvi,bu,

(1.78kg)(1.48 m/s)+(3.54×10−3kg)(1.48 m/s) = (1.78kg)(0)+(3.54×10−3kg)vi,bu,

which has solution vi,bl = 746 m/s.
(b) We do the same steps again, except applied to the first block,

P f = P i,

pf,bl + pf,bu = pi,bl + pi,bu,

mblvf,bl +mbuvf,bu = mblvi,bl +mbuvi,bu,

(1.22kg)(0.63 m/s)+(3.54×10−3kg)(746 m/s) = (1.22kg)(0)+(3.54×10−3kg)vi,bu,

which has solution vi,bl = 963 m/s.

P6-20 The acceleration of the block down the ramp is a1 = g sin(22◦). The ramp has a length of
d = h/ sin(22◦), so it takes a time t1 =

√
2d/a1 =

√
2h/g/ sin(22◦) to reach the bottom. The speed

when it reaches the bottom is v1 = a1t1 =
√

2gh. Notice that it is independent of the angle!
The collision is inelastic, so the two stick together and move with an initial speed of v2 =

m1v1/(m1 + m2). They slide a distance x before stopping; the average speed while decelerating is
vav = v2/2, so the stopping time is t2 = 2x/v2 and the deceleration is a2 = v2/t2 = v2

2/(2x). If the
retarding force is f = (m1 +m2)a2, then f = µk(m1 +m2)g. Glue it all together and

µk =
m2

1

(m1 +m2)2

h

x
=

(2.0 kg)2

(2.0 kg + 3.5 kg)2

(0.65 m)
(0.57 m)

= 0.15.
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P6-21 (a) For an object with initial speed v and deceleration −a which travels a distance x before
stopping, the time t to stop is t = v/a, the average speed while stopping is v/2, and d = at2/2.
Combining, v =

√
2ax. The deceleration in this case is given by a = µkg.

Then just after the collision

vA =
√

2(0.130)(9.81 m/s2)(8.20 m) = 4.57 m/s,

while
vB =

√
2(0.130)(9.81 m/s2)(6.10 m) = 3.94 m/s,

(b) v0 = [(1100 kg)(4.57 m/s) + (1400kg)(3.94 m/s)]/(1400 kg) = 7.53 m/s.
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