
E5-1 There are three forces which act on the charged sphere— an electric force, FE , the force of
gravity, W , and the tension in the string, T . All arranged as shown in the figure on the right below.

(a) Write the vectors so that they geometrically show that the sum is zero, as in the figure
on the left below. Now W = mg = (2.8 × 10−4 kg)(9.8 m/s2) = 2.7 × 10−3 N. The magnitude
of the electric force can be found from the tangent relationship, so FE = W tan θ = (2.7 × 10−3

N) tan(33◦) = 1.8× 10−3 N.
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(b) The tension can be found from the cosine relation, so

T = W/ cos θ = (2.7× 10−3 N)/ cos(33◦) = 3.2× 10−3 N.

E5-2 (a) The net force on the elevator is F = ma = Wa/g = (6200 lb)(3.8 ft/s2)/(32 ft/s2) =
740 lb. Positive means up. There are two force on the elevator: a weight W down and a tension
from the cable T up. Then F = T −W or T = F +W = (740 lb) + (6200 lb) = 6940 lb.

(b) If the elevator acceleration is down then F = −740 lb; consequently T = F+W = (−740 lb)+
(6200 lb) = 5460 lb.

E5-3 (a) The tension T is up, the weight W is down, and the net force F is in the direction of the
acceleration (up). Then F = T −W . But F = ma and W = mg, so

m = T/(a+ g) = (89 N)/[(2.4 m/s2) + (9.8 m/s2)] = 7.3 kg.

(b) T = 89 N. The direction of velocity is unimportant. In both (a) and (b) the acceleration is
up.

E5-4 The average speed of the elevator during deceleration is vav = 6.0 m/s. The time to stop the
elevator is then t = (42.0 m)/(6.0 m/s) = 7.0 s. The deceleration is then a = (12.0 m/s)/(7.0 s) =
1.7 m/s2. Since the elevator is moving downward but slowing down, then the acceleration is up,
which will be positive.

The net force on the elevator is F = ma; this is equal to the tension T minus the weight W .
Then

T = F +W = ma+mg = (1600 kg)[(1.7 m/s2) + (9.8 m/s2)] = 1.8×104N.

E5-5 (a) The magnitude of the man’s acceleration is given by

a =
m2 −m1

m2 +m1
g =

(110 kg)− (74 kg)
(110 kg) + (74 kg)

g = 0.2g,

and is directed down. The time which elapses while he falls is found by solving y = v0yt + 1
2ayt

2,
or, with numbers, (−12 m) = (0)t + 1

2 (−0.2g)t2 which has the solutions t = ±3.5 s. The velocity
with which he hits the ground is then v = v0y + ayt = (0) + (−0.2g)(3.5 s) = −6.9 m/s.
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(b) Reducing the speed can be accomplished by reducing the acceleration. We can’t change Eq.
5-4 without also changing one of the assumptions that went into it. Since the man is hoping to
reduce the speed with which he hits the ground, it makes sense that he might want to climb up the
rope.

E5-6 (a) Although it might be the monkey which does the work, the upward force to lift him still
comes from the tension in the rope. The minimum tension to lift the log is T = W l = mlg. The net
force on the monkey is T −Wm = mma. The acceleration of the monkey is then

a = (ml −mm)g/mm = [(15 kg)− (11 kg)](9.8 m/s2)/(11 kg) = 3.6 m/s2.

(b) Atwood’s machine!

a = (ml −mm)g/(ml +mm) = [(15 kg)− (11 kg)](9.8 m/s2)/[(15 kg) + (11 kg)] = 1.5 m/s.

(c) Atwood’s machine!

T = 2mlmmg/(ml +mm) = 2(15 kg)(11 kg)(9.8 m/s2)/[(15 kg) + (11 kg)] = 120 N.

E5-7 The weight of each car has two components: a component parallel to the cables W|| = W sin θ
and a component normal to the cables W⊥.. The normal component is “balanced” by the supporting
cable. The parallel component acts with the pull cable.

In order to accelerate a car up the incline there must be a net force up with magnitude F = ma.
Then F = T above − T below −W||, or

∆T = ma+mg sin θ = (2800 kg)[(0.81 m/s2) + (9.8 m/s2) sin(35◦)] = 1.8×104N.

E5-8 The tension in the cable is T , the weight of the man + platform system is W = mg, and the
net force on the man + platform system is F = ma = Wa/g = T −W . Then

T = Wa/g +W = W (a/g + 1) = (180 lb + 43 lb)[(1.2 ft/s2)/(32 ft/s2) + 1] = 231 lb.

E5-9 See Sample Problem 5-8. We need only apply the (unlabeled!) equation

µs = tan θ

to find the egg angle. In this case θ = tan−1(0.04) = 2.3◦.

E5-10 (a) The maximum force of friction is F = µsN . If the rear wheels support half of the weight
of the automobile then N = W/2 = mg/2. The maximum acceleration is then

a = F/m = µsN/m = µsg/2.

(b) a = (0.56)(9.8 m/s2)/2 = 2.7 m/s2.

E5-11 The maximum force of friction is F = µsN . Since there is no motion in the y direction the
magnitude of the normal force must equal the weight, N = W = mg. The maximum acceleration is
then

a = F/m = µsN/m = µsg = (0.95)(9.8 m/s2) = 9.3 m/s2.

E5-12 There is no motion in the vertical direction, so N = W = mg. Then µk = F/N =
(470 N)/[(9.8 m/s2)(79 kg)] = 0.61.
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E5-13 A 75 kg mass has a weight of W = (75 kg)(9.8 m/s2) = 735 N, so the force of friction on
each end of the bar must be 368 N. Then

F ≥ fs
µs

=
(368 N)
(0.41)

= 900 N.

E5-14 (a) There is no motion in the vertical direction, so N = W = mg.
To get the box moving you must overcome static friction and push with a force of P ≥ µsN =

(0.41)(240 N) = 98 N.
(b) To keep the box moving at constant speed you must push with a force equal to the kinetic

friction, P = µkN = (0.32)(240 N) = 77 N.
(c) If you push with a force of 98 N on a box that experiences a (kinetic) friction of 77 N, then

the net force on the box is 21 N. The box will accelerate at

a = F/m = Fg/W = (21 N)(9.8 m/s2)/(240 N) = 0.86 m/s2.

E5-15 (a) The maximum braking force is F = µsN . There is no motion in the vertical direction,
so N = W = mg. Then F = µsmg = (0.62)(1500 kg)(9.8 m/s2) = 9100 N.

(b) Although we still use F = µsN , N 6= W on an incline! The weight has two components;
one which is parallel to the surface and the other which is perpendicular. Since there is no motion
perpendicular to the surface we must have N = W⊥ = W cos θ. Then

F = µsmg cos θ = (0.62)(1500 kg)(9.8 m/s2) cos(8.6◦) = 9000 N.

E5-16 µs = tan θ is the condition for an object to sit without slipping on an incline. Then
θ = arctan(0.55) = 29◦. The angle should be reduced by 13◦.

E5-17 (a) The force of static friction is less than µsN , where N is the normal force. Since the
crate isn’t moving up or down,

∑
Fy = 0 = N −W . So in this case N = W = mg = (136 kg)(9.81

m/s2) = 1330 N. The force of static friction is less than or equal to (0.37)(1330 N) = 492 N; moving
the crate will require a force greater than or equal to 492 N.

(b) The second worker could lift upward with a force L, reducing the normal force, and hence
reducing the force of friction. If the first worker can move the block with a 412 N force, then
412 ≥ µsN . Solving for N , the normal force needs to be less than 1110 N. The crate doesn’t move
off the table, so then N + L = W , or L = W −N = (1330 N)− (1110 N) = 220 N.

(c) Or the second worker can help by adding a push so that the total force of both workers is
equal to 492 N. If the first worker pushes with a force of 412 N, the second would need to push with
a force of 80 N.

E5-18 The coefficient of static friction is µs = tan(28.0◦) = 0.532. The acceleration is a =
2(2.53 m)/(3.92 s)2 = .329 m/s2. We will need to insert a negative sign since this is downward.

The weight has two components: a component parallel to the plane, W|| = mg sin θ; and a
component perpendicular to the plane, W⊥ = mg cos θ. There is no motion perpendicular to the
plane, so N = W⊥. The kinetic friction is then f = µkN = µkmg cos θ. The net force parallel to
the plane is F = ma = f −W|| = µkmg cos θ −mg sin θ. Solving this for µk,

µk = (a+ g sin θ)/(g cos θ),
= [(−0.329 m/s2) + (9.81 m/s2) sin(28.0◦)]/[((9.81 m/s2) cos(28.0◦)] = 0.494.
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E5-19 The acceleration is a = −2d/t2, where d = 203 m is the distance down the slope and t is
the time to make the run.

The weight has two components: a component parallel to the incline, W|| = mg sin θ; and a
component perpendicular to the incline, W⊥ = mg cos θ. There is no motion perpendicular tot he
plane, so N = W⊥. The kinetic friction is then f = µkN = µkmg cos θ. The net force parallel to
the plane is F = ma = f −W|| = µkmg cos θ −mg sin θ. Solving this for µk,

µk = (a+ g sin θ)/(g cos θ),
= (g sin θ − 2d/t2)/(g cos θ).

If t = 61 s, then

µk =
(9.81 m/s2) sin(3.0◦)− 2(203 m)/(61 s)2

(9.81 m/s2) cos(3.0◦)
= 0.041;

if t = 42 s, then

µk =
(9.81 m/s2) sin(3.0◦)− 2(203 m)/(42 s)2

(9.81 m/s2) cos(3.0◦)
= 0.029.

E5-20 (a) If the block slides down with constant velocity then a = 0 and µk = tan θ. Not only
that, but the force of kinetic friction must be equal to the parallel component of the weight, f = W||.
If the block is projected up the ramp then the net force is now 2W|| = 2mg sin θ. The deceleration
is a = 2g sin θ; the block will travel a time t = v0/a before stopping, and travel a distance

d = −at2/2 + v0t = −a(v0/a)2/2 + v0(v0/a) = v2
0/(2a) = v2

0/(4g sin θ)

before stopping.
(b) Since µk < µs, the incline is not steep enough to get the block moving again once it stops.

E5-21 Let a1 be acceleration down frictionless incline of length l, and t1 the time taken. The a2

is acceleration down “rough” incline, and t2 = 2t1 is the time taken. Then

l =
1
2
a1t

2
1 and l =

1
2
a2(2t1)2.

Equate and find a1/a2 = 4.
There are two force which act on the ice when it sits on the frictionless incline. The normal force

acts perpendicular to the surface, so it doesn’t contribute any components parallel to the surface.
The force of gravity has a component parallel to the surface, given by

W|| = mg sin θ,

and a component perpendicular to the surface given by

W⊥ = mg cos θ.

The acceleration down the frictionless ramp is then

a1 =
W||

m
= g sin θ.

When friction is present the force of kinetic friction is fk = µkN ; since the ice doesn’t move
perpendicular to the surface we also have N = W⊥; and finally the acceleration down the ramp is

a2 =
W|| − fk

m
= g(sin θ − µ cos θ).
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Previously we found the ratio of a1/a2, so we now have

sin θ = 4 sin θ − 4µ cos θ,
sin 33◦ = 4 sin 33◦ − 4µ cos 33◦,

µ = 0.49.

E5-22 (a) The static friction between A and the table must be equal to the weight of block B to
keep A from sliding. This means mBg = µs(mA +mC)g, or mc = mB/µs −mA = (2.6 kg)/(0.18)−
(4.4 kg) = 10 kg.

(b) There is no up/down motion for block A, so f = µkN = µkmAg. The net force on the system
containing blocks A and B is F = WB − f = mBg − µkmAg; the acceleration of this system is then

a = g
mB − µkmA

mA +mB
= (9.m/s2)

(2.6 kg)− (0.15)(4.4 kg)
(2.6 kg) + (4.4 kg)

= 2.7 m/s2.

E5-23 There are four forces on the block— the force of gravity, W = mg; the normal force,
N ; the horizontal push, P , and the force of friction, f . Choose the coordinate system so that
components are either parallel (x-axis) to the plane or perpendicular (y-axis) to it. θ = 39◦. Refer
to the figure below.

P

θ

W

f

N

The magnitudes of the x components of the forces are Wx = W sin θ, Px = P cos θ and f ; the
magnitudes of the y components of the forces are Wy = W cos θ, Py = P sin θ.

(a) We consider the first the case of the block moving up the ramp; then f is directed down.
Newton’s second law for each set of components then reads as∑

Fx = Px − f −Wx = P cos θ − f −W sin θ = max,∑
Fy = N − Py −Wy = N − P sin θ −W cos θ = may

Then the second equation is easy to solve for N

N = P sin θ +W cos θ = (46 N) sin(39◦) + (4.8 kg)(9.8 m/s2) cos(39◦) = 66 N.

The force of friction is found from f = µkN = (0.33)(66 N) = 22 N. This is directed down the incline
while the block is moving up. We can now find the acceleration in the x direction.

max = P cos θ − f −W sin θ,
= (46 N) cos(39◦)− (22 N)− (4.8 kg)(9.8 m/s2) sin(39◦) = −16 N.

So the block is slowing down, with an acceleration of magnitude 3.3 m/s2.
(b) The block has an initial speed of v0x = 4.3 m/s; it will rise until it stops; so we can use

vy = 0 = v0y+ayt to find the time to the highest point. Then t = (vy−v0y)/ay = −(−4.3 m/s)/(3.3
m/s2 = 1.3 s. Now that we know the time we can use the other kinematic relation to find the
distance

y = v0yt+
1
2
ayt

2 = (4.3 m/s)(1.3 s) +
1
2

(−3.3 m/s2)(1.3 s)2 = 2.8 m
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(c) When the block gets to the top it might slide back down. But in order to do so the frictional
force, which is now directed up the ramp, must be sufficiently small so that f + Px ≤ Wx. Solving
for f we find f ≤ Wx − Px or, using our numbers from above, f ≤ −6 N. Is this possible? No, so
the block will not slide back down the ramp, even if the ramp were frictionless, while the horizontal
force is applied.

E5-24 (a) The horizontal force needs to overcome the maximum static friction, so P ≥ µsN =
µsmg = (0.52)(12 kg)(9.8 m/s2) = 61 N.

(b) If the force acts upward from the horizontal then there are two components: a horizontal
component Px = P cos θ and a vertical component Py = P sin θ. The normal force is now given by
W = Py + N ; consequently the maximum force of static friction is now µsN = µs(mg − P sin θ).
The block will move only if P cos θ ≥ µs(mg − P sin θ), or

P ≥ µsmg

cos θ + µs sin θ
=

(0.52)(12 kg)(9.8 m/s2)
cos(62◦) + (0.52) sin(62◦)

= 66 N.

(c) If the force acts downward from the horizontal then θ = −62◦, so

P ≥ µsmg

cos θ + µs sin θ
=

(0.52)(12 kg)(9.8 m/s2)
cos(−62◦) + (0.52) sin(−62◦)

= 5900 N.

E5-25 (a) If the tension acts upward from the horizontal then there are two components: a hori-
zontal component Tx = T cos θ and a vertical component Ty = T sin θ. The normal force is now given
by W = Ty +N ; consequently the maximum force of static friction is now µsN = µs(W − T sin θ).
The crate will move only if T cos θ ≥ µs(W − T sin θ), or

P ≥ µsW

cos θ + µs sin θ
=

(0.52)(150 lb)
cos(17◦) + (0.52) sin(17◦)

= 70 lb.

(b) Once the crate starts to move then the net force on the crate is F = Tx−f . The acceleration
is then

a =
g

W
[T cos θ − µk(W − T sin θ)],

=
(32 ft/s2)
(150 lb)

{(70 lb) cos(17◦)− (0.35)[(150 lb)− (70 lb) sin(17◦)]},

= 4.6 ft/s2
.

E5-26 If the tension acts upward from the horizontal then there are two components: a horizontal
component Tx = T cos θ and a vertical component Ty = T sin θ. The normal force is now given by
W = Ty +N ; consequently the maximum force of static friction is now µsN = µs(W −T sin θ). The
crate will move only if T cos θ ≥ µs(W − T sin θ), or

W ≤ T cos θ/µs + T sin θ.

We want the maximum, so we find dW/dθ,

dW/dθ = −(T/µs) sin θ + T cos θ,

which equals zero when µs = tan θ. For this problem θ = arctan(0.35) = 19◦, so

W ≤ (1220 N) cos(19◦)/(0.35) + (1220 N) sin(19◦) = 3690 N.
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E5-27 The three force on the know above A must add to zero. Construct a vector diagram:
~TA + ~TB + ~Td = 0, where ~Td refers to the diagonal rope. TA and TB must be related by TA =
TB tan θ, where θ = 41◦.

T

T

T A

B

d

There is no up/down motion of block B, so N = WB and f = µsWB . Since block B is at rest
f = TB . Since block A is at rest WA = TA. Then

WA = WB(µs tan θ) = (712 N)(0.25) tan(41◦) = 155 N.

E5-28 (a) Block 2 doesn’t move up/down, so N = W2 = m2g and the force of friction on block 2
is f = µkm2g. Block 1 is on a frictionless incline; only the component of the weight parallel to the
surface contributes to the motion, and W|| = m1g sin θ. There are two relevant forces on the two
mass system. The effective net force is the of magnitude W|| − f , so the acceleration is

a = g
m1 sin θ − µkm2

m1 +m2
= (9.81 m/s2)

(4.20 kg) sin(27◦)− (0.47)(2.30 kg)
(4.20 kg) + (2.30 kg)

= 1.25 m/s2.

The blocks accelerate down the ramp.
(b) The net force on block 2 is F = m2a = T − f . The tension in the cable is then

T = m2a+ µkm2g = (2.30 kg)[(1.25 m/s2) + (0.47)(9.81 m/s2)] = 13.5 N.

E5-29 This problem is similar to Sample Problem 5-7, except now there is friction which can act
on block B. The relevant equations are now for block B

N −mBg cos θ = 0

and
T −mBg sin θ ± f = mBa,

where the sign in front of f depends on the direction in which block B is moving. If the block is
moving up the ramp then friction is directed down the ramp, and we would use the negative sign.
If the block is moving down the ramp then friction will be directed up the ramp, and then we will
use the positive sign. Finally, if the block is stationary then friction we be in such a direction as to
make a = 0.

For block A the relevant equation is

mAg − T = mAa.

Combine the first two equations with f = µN to get

T −mBg sin θ ± µmBg cos θ = mBa.
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Take some care when interpreting friction for the static case, since the static value of µ yields the
maximum possible static friction force, which is not necessarily the actual static frictional force.

Combine this last equation with the block A equation,

mAg −mAa−mBg sin θ ± µmBg cos θ = mBa,

and then rearrange to get

a = g
mA −mB sin θ ± µmB cos θ

mA +mB
.

For convenience we will use metric units; then the masses are mA = 13.2 kg and mB = 42.6 kg. In
addition, sin 42◦ = 0.669 and cos 42◦ = 0.743.

(a) If the blocks are originally at rest then

mA −mB sin θ = (13.2 kg)− (42.6 kg)(0.669) = −15.3 kg

where the negative sign indicates that block B would slide downhill if there were no friction.
If the blocks are originally at rest we need to consider static friction, so the last term can be as

large as
µmB cos θ = (.56)(42.6 kg)(0.743) = 17.7 kg.

Since this quantity is larger than the first static friction would be large enough to stop the blocks
from accelerating if they are at rest.

(b) If block B is moving up the ramp we use the negative sign, and the acceleration is

a = (9.81 m/s2)
(13.2 kg)− (42.6 kg)(0.669)− (.25)(42.6 kg)(0.743)

(13.2 kg) + (42.6 kg)
= −4.08 m/s2.

where the negative sign means down the ramp. The block, originally moving up the ramp, will
slow down and stop. Once it stops the static friction takes over and the results of part (a) become
relevant.

(c) If block B is moving down the ramp we use the positive sign, and the acceleration is

a = (9.81 m/s2)
(13.2 kg)− (42.6 kg)(0.669) + (.25)(42.6 kg)(0.743)

(13.2 kg) + (42.6 kg)
= −1.30 m/s2.

where the negative sign means down the ramp. This means that if the block is moving down the
ramp it will continue to move down the ramp, faster and faster.

E5-30 The weight can be resolved into a component parallel to the incline, W|| = W sin θ and a
component that is perpendicular, W⊥ = W cos θ. There are two normal forces on the crate, one from
each side of the trough. By symmetry we expect them to have equal magnitudes; since they both
act perpendicular to their respective surfaces we expect them to be perpendicular to each other.
They must add to equal the perpendicular component of the weight. Since they are at right angles
and equal in magnitude, this yields N2 +N2 = W⊥

2, or N = W⊥/
√

2.
Each surface contributes a frictional force f = µkN = µkW⊥/

√
2; the total frictional force is

then twice this, or
√

2µkW⊥. The net force on the crate is F = W sin θ −
√

2µkW cos θ down the
ramp. The acceleration is then

a = g(sin θ −
√

2µk cos θ).
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E5-31 The normal force between the top slab and the bottom slab is N = W t = mtg. The force
of friction between the top and the bottom slab is f ≤ µN = µmtg. We don’t yet know if the slabs
slip relative to each other, so we don’t yet know what kind of friction to consider.

The acceleration of the top slab is

at = (110 N)/(9.7 kg)− µ(9.8 m/s2) = 11.3 m/s2 − µ(9.8 m/s2).

The acceleration of the bottom slab is

ab = µ(9.8 m/s2)(9.7, kg)/(42 kg) = µ(2.3 m/s2).

Can these two be equal? Only if µ ≥ 0.93. Since the static coefficient is less than this, the block
slide. Then at = 7.6 m/s2 and ab = 0.87 m/s2.

E5-32 (a) Convert the speed to ft/s: v = 88 ft/s. The acceleration is

a = v2/r = (88 ft/s)2/(25 ft) = 310 ft/s2
.

(b) a = 310 ft/s2
g/(32 ft/s2) = 9.7g.

E5-33 (a) The force required to keep the car in the turn is F = mv2/r = Wv2/(rg), or

F = (10700 N)(13.4 m/s)2/[(61.0 m)(9.81 m/s2)] = 3210 N.

(b) The coefficient of friction required is µs = F/W = (3210 N)/(10700 N) = 0.300.

E5-34 (a) The proper banking angle is given by

θ = arctan
v2

Rg
= arctan

(16.7 m/s)2

(150 m)(9.8 m/s2)
= 11◦.

(b) If the road is not banked then the force required to keep the car in the turn is F = mv2/r =
Wv2/(Rg) and the required coefficient of friction is

µs = F/W =
v2

Rg
=

(16.7 m/s)2

(150 m)(9.8 m/s2)
= 0.19.

E5-35 (a) This conical pendulum makes an angle θ = arcsin(0.25/1.4) = 10◦ with the vertical.
The pebble has a speed of

v =
√
Rg tan θ =

√
(0.25 m)(9.8 m/s2) tan(10◦) = 0.66 m/s.

(b) a = v2/r = (0.66 m/s)2/(0.25 m) = 1.7 m/s2.
(c) T = mg/cosθ = (0.053 kg)(9.8 m/s2)/ cos(10◦) = 0.53 N.

E5-36 Ignoring air friction (there must be a forward component to the friction!), we have a nor-
mal force upward which is equal to the weight: N = mg = (85 kg)(9.8 m/s2) = 833 N. There
is a sideways component to the friction which is equal tot eh centripetal force, F = mv2/r =
(85 kg)(8.7 m/s)2/(25 m) = 257 N. The magnitude of the net force of the road on the person is

F =
√

(833 N)2 + (257 N)2 = 870 N,

and the direction is θ = arctan(257/833) = 17◦ off of vertical.
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E5-37 (a) The speed is v = 2πrf = 2π(5.3×10−11 m)(6.6×1015/s) = 2.2×106m/s.
(b) The acceleration is a = v2/r = (2.2×106m/s)2/(5.3×10−11m) = 9.1×1022 m/s2.
(c) The net force is F = ma = (9.1×10−31 kg)(9.1×1022 m/s2) = 8.3×10−8N.

E5-38 The basket has speed v = 2πr/t. The basket experiences a frictional force F = mv2/r =
m(2πr/t)2/r = 4π2mr/t2. The coefficient of static friction is µs = F/N = F/W . Combining,

µs =
4π2r

gt2
=

4π2(4.6 m)
(9.8 m/s2)(24 s)2

= 0.032.

E5-39 There are two forces on the hanging cylinder: the force of the cord pulling up T and the
force of gravity W = Mg. The cylinder is at rest, so these two forces must balance, or T = W .
There are three forces on the disk, but only the force of the cord on the disk T is relevant here, since
there is no friction or vertical motion.

The disk undergoes circular motion, so T = mv2/r. We want to solve this for v and then express
the answer in terms of m, M , r, and G.

v =

√
Tr

m
=

√
Mgr

m
.

E5-40 (a) The frictional force stopping the car is F = µsN = µsmg. The deceleration of the car
is then a = µsg. If the car is moving at v = 13.3 m/s then the average speed while decelerating
is half this, or vav = 6.7 m/s. The time required to stop is t = x/vav = (21 m)/(6.7 m/s) = 3.1 s.
The deceleration is a = (13.3 m/s)/(3.1 s) = 4.3 m/s2. The coefficient of friction is µs = a/g =
(4.3 m/s2)/(9.8 m/s2) = 0.44.

(b) The acceleration is the same as in part (a), so r = v2/a = (13.3 m/s)2/(4.3 m/s2) = 41 m.

E5-41 There are three forces to consider: the normal force of the road on the car N ; the force of
gravity on the car W ; and the frictional force on the car f . The acceleration of the car in circular
motion is toward the center of the circle; this means the net force on the car is horizontal, toward
the center. We will arrange our coordinate system so that r is horizontal and z is vertical. Then the
components of the normal force are Nr = N sin θ and Nz = N cos θ; the components of the frictional
force are fr = f cos θ and fz = f sin θ.

The direction of the friction depends on the speed of the car. The figure below shows the two
force diagrams.

W

f

N

θ
W

N

θ

f

The turn is designed for 95 km/hr, at this speed a car should require no friction to stay on the
road. Using Eq. 5-17 we find that the banking angle is given by

tan θb =
v2

rg
=

(26 m/s)2

(210 m)(9.8 m/s2)
= 0.33,
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for a bank angle of θb = 18◦.
(a) On the rainy day traffic is moving at 14 m/s. This is slower than the rated speed, so any

frictional force must be directed up the incline. Newton’s second law is then∑
Fr = Nr − fr = N sin θ − f cos θ =

mv2

r
,∑

Fz = Nz + fz −W = N cos θ + f sin θ −mg = 0.

We can substitute f = µsN to find the minimum value of µs which will keep the cars from slipping.
There will then be two equations and two unknowns, µs and N . Solving for N ,

N (sin θ − µs cos θ) =
mv2

r
and N (cos θ + µs sin θ) = mg.

Combining,

(sin θ − µs cos θ)mg = (cos θ + µs sin θ)
mv2

r
Rearrange,

µs =
gr sin θ − v2 cos θ
gr cos θ + v2 sin θ

.

We know all the numbers. Put them in and we’ll find µs = 0.22
(b) Now the frictional force will point the other way, so Newton’s second law is now∑

Fr = Nr + fr = N sin θ + f cos θ =
mv2

r
,∑

Fz = Nz − fz −W = N cos θ − f sin θ −mg = 0.

The bottom equation can be rearranged to show that

N =
mg

cos θ − µs sin θ
.

This can be combined with the top equation to give

mg
sin θ + µs cos θ
cos θ − µs sin θ

=
mv2

r
.

We can solve this final expression for v using all our previous numbers and get v = 35 m/s. That’s
about 130 km/hr.

E5-42 (a) The net force on the person at the top of the Ferris wheel is mv2/r = W −N t, pointing
down. The net force on the bottom is still mv2/r, but this quantity now equals Nb−W and is point
up. Then Nb = 2W −N t = 2(150 lb)− (125 lb) = 175 lb.

(b) Doubling the speed would quadruple the net force, so the new scale reading at the top would
be (150 lb)− 4[(150 lb)− (125 lb)] = 50 lb. Wee!

E5-43 The net force on the object when it is not sliding is F = mv2/r; the speed of the object is
v = 2πrf (f is rotational frequency here), so F = 4π2mrf2. The coefficient of friction is then at
least µs = F/W = 4π2rf2/g. If the object stays put when the table rotates at 33 1

3 rev/min then

µs ≥ 4π2(0.13 m)(33.3/60 /s)2/(9.8 m/s2) = 0.16.

If the object slips when the table rotates at 45.0 rev/min then

µs ≤ 4π2(0.13 m)(45.0/60 /s)2/(9.8 m/s2) = 0.30.
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E5-44 This is effectively a banked highway problem if the pilot is flying correctly.

r =
v2

g tan θ
=

(134 m/s)2

(9.8 m/s2) tan(38.2◦)
= 2330 m.

E5-45 (a) Assume that frigate bird flies as well as a pilot. Then this is a banked highway problem.
The speed of the bird is given by v2 = gr tan θ. But there is also vt = 2πr, so 2πv2 = gvt tan θ, or

v =
gt tan θ

2π
=

(9.8 m/s2)(13 s) tan(25◦)
2π

= 9.5 m/s.

(b) r = vt/(2π) = (9.5 m/s)(13 s)/(2π) = 20 m.

E5-46 (a) The radius of the turn is r =
√

(33 m)2 − (18 m)2 = 28 m. The speed of the plane is v =
2πrf = 2π(28 m)(4.4/60 /s) = 13 m/s. The acceleration is a = v2/r = (13 m/s)2/(28 m) = 6.0m/s2.

(b) The tension has two components: Tx = T cos θ and Ty = T sin θ. In this case θ =
arcsin(18/33) = 33◦. All of the centripetal force is provided for by Tx, so

T = (0.75 kg)(6.0 m/s2)/ cos(33◦) = 5.4 N.

(c) The lift is balanced by the weight and Ty. The lift is then

Ty +W = (5.4 N) sin(33◦) + (0.75 kg)(9.8 m/s2) = 10 N.

E5-47 (a) The acceleration is a = v2/r = 4π2r/t2 = 4π2(6.37×106m)/(8.64×104s)2 = 3.37×
10−2m/s2. The centripetal force on the standard kilogram is F = ma = (1.00 kg)(3.37×10−2m/s2) =
0.0337 N.

(b) The tension in the balance would be T = W − F = (9.80 N)− (0.0337 N) = 9.77 N.

E5-48 (a) v = 4(0.179 m/s4)(7.18 s)3 − 2(2.08 m/s2)(7.18 s) = 235 m/s.
(b) a = 12(0.179 m/s4)(7.18 s)2 − 2(2.08 m/s2) = 107 m/s2.
(c) F = ma = (2.17 kg)(107 m/s2) = 232 N.

E5-49 The force only has an x component, so we can use Eq. 5-19 to find the velocity.

vx = v0x +
1
m

∫ t

0

Fx dt = v0 +
F0

m

∫ t

0

(1− t/T ) dt

Integrating,

vx = v0 + a0

(
t− 1

2T
t2
)

Now put this expression into Eq. 5-20 to find the position as a function of time

x = x0 +
∫ t

0

vx dt =
∫ t

0

(
v0x + a0

(
t− 1

2T
t2
))

dt

Integrating,

x = v0T + a0

(
1
2
T 2 − 1

6T
T 3

)
= v0T + a0

T 2

3
.

Now we can put t = T into the expression for v.

vx = v0 + a0

(
T − 1

2T
T 2

)
= v0 + a0T/2.
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P5-1 (a) There are two forces which accelerate block 1: the tension, T , and the parallel component
of the weight, W||,1 = m1g sin θ1. Assuming the block accelerates to the right,

m1a = m1g sin θ1 − T.

There are two forces which accelerate block 2: the tension, T , and the parallel component of the
weight, W||,2 = m2g sin θ2. Assuming the block 1 accelerates to the right, block 2 must also accelerate
to the right, and

m2a = T −m2g sin θ2.

Add these two equations,
(m1 +m2)a = m1g sin θ1 −m2g sin θ2,

and then rearrange:

a =
m1g sin θ1 −m2g sin θ2

m1 +m2
.

Or, take the two net force equations, divide each side by the mass, and set them equal to each other:

g sin θ1 − T/m1 = T/m2 − g sin θ2.

Rearrange,

T

(
1
m1

+
1
m2

)
= g sin θ1 + g sin θ2,

and then rearrange again:
T =

m1m2g

m1 +m2
(sin θ1 + sin θ2).

(b) The negative sign we get in the answer means that block 1 accelerates up the ramp.

a =
(3.70 kg) sin(28◦)− (4.86 kg) sin(42◦)

(3.70 kg) + (4.86 kg)
(9.81 m/s2) = −1.74 m/s2.

T =
(3.70 kg)(4.86 kg)(9.81 m/s2)

(3.70 kg) + (4.86 kg)
[sin(28◦) + sin(42◦)] = 23.5 N.

(c) No acceleration happens when m2 = (3.70 kg) sin(28◦)/ sin(42◦) = 2.60 kg. If m2 is more
massive than this m1 will accelerate up the plane; if m2 is less massive than this m1 will accelerate
down the plane.

P5-2 (a) Since the pulley is massless, F = 2T . The largest value of T that will allow block 2 to
remain on the floor is T ≤W2 = m2g. So F ≤ 2(1.9 kg)(9.8 m/s2) = 37 N.

(b) T = F/2 = (110 N)/2 = 55 N.
(c) The net force on block 1 is T −W1 = (55 N)− (1.2 kg)(9.8 m/s2) = 43 N. This will result in

an acceleration of a = (43 N)/(1.2 kg) = 36 m/s2.

P5-3 As the string is pulled the two masses will move together so that the configuration will look
like the figure below. The point where the force is applied to the string is massless, so

∑
F = 0 at

that point. We can take advantage of this fact and the figure below to find the tension in the cords,
F/2 = T cos θ. The factor of 1/2 occurs because only 1/2 of F is contained in the right triangle that
has T as the hypotenuse. From the figure we can find the x component of the force on one mass to
be Tx = T sin θ. Combining,

Tx =
F

2
sin θ
cos θ

=
F

2
tan θ.
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But the tangent is equal to

tan θ =
Opposite
Adjacent

=
x√

L2 − x2

And now we have the answer in the book.

F

T
θ

T

What happens when x = L? Well, ax is infinite according to this expression. Since that could
only happen if the tension in the string were infinite, then there must be some other physics that
we had previously ignored.

P5-4 (a) The force of static friction can be as large as f ≤ µsN = (0.60)(12 lb) = 7.2 lb. That is
more than enough to hold the block up.

(b) The force of static friction is actually only large enough to hold up the block: f = 5.0 lb.
The magnitude of the force of the wall on the block is then F bw =

√
(5.0)2 + (12.0)2lb = 13 lb.

P5-5 (a) The weight has two components: normal to the incline, W⊥ = mg cos θ and parallel to the
incline, W|| = mg sin θ. There is no motion perpendicular to the incline, so N = W⊥ = mg cos θ. The
force of friction on the block is then f = µN = µmg cos θ, where we use whichever µ is appropriate.
The net force on the block is F − f −W|| = F ± µmg cos θ −mg sin θ.

To hold the block in place we use µs and friction will point up the ramp so the ± is +, and

F = (7.96 kg)(9.81 m/s2)[sin(22.0◦)− (0.25) cos(22.0◦)] = 11.2 N.

(b) To find the minimum force to begin sliding the block up the ramp we still have static friction,
but now friction points down, so

F = (7.96 kg)(9.81 m/s2)[sin(22.0◦) + (0.25) cos(22.0◦)] = 47.4 N.

(c) To keep the block sliding up at constant speed we have kinetic friction, so

F = (7.96 kg)(9.81 m/s2)[sin(22.0◦) + (0.15) cos(22.0◦)] = 40.1 N.

P5-6 The sand will slide if the cone makes an angle greater than θ where µs = tan θ. But
tan θ = h/R or h = R tan θ. The volume of the cone is then

Ah/3 = πR2h/3 = πR3 tan θ/3 = πµsR
3/3.

P5-7 There are four forces on the broom: the force of gravity W = mg; the normal force of the
floor N ; the force of friction f ; and the applied force from the person P (the book calls it F ). Then∑

Fx = Px − f = P sin θ − f = max,∑
Fy = N − Py −W = N − P cos θ −mg = may = 0

Solve the second equation for N ,
N = P cos θ +mg.
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(a) If the mop slides at constant speed f = µkN . Then

P sin θ − f = P sin θ − µk (P cos θ +mg) = 0.

We can solve this for P (which was called F in the book);

P =
µmg

sin θ − µk cos θ
.

This is the force required to push the broom at constant speed.
(b) Note that P becomes negative (or infinite) if sin θ ≤ µk cos θ. This occurs when tan θc ≤ µk.

If this happens the mop stops moving, to get it started again you must overcome the static friction,
but this is impossible if tan θ0 ≤ µs

P5-8 (a) The condition to slide is µs ≤ tan θ. In this case, (0.63) > tan(24◦) = 0.445.
(b) The normal force on the slab is N = W⊥ = mg cos θ. There are three forces parallel to the

surface: friction, f = µsN = µsmg cos θ; the parallel component of the weight, W|| = mg sin θ, and
the force F . The block will slide if these don’t balance, or

F > µsmg cos θ −mg sin θ = (1.8×107kg)(9.8 m/s2)[(0.63) cos(24◦)− sin(24◦)] = 3.0×107N.

P5-9 To hold up the smaller block the frictional force between the larger block and smaller block
must be as large as the weight of the smaller block. This can be written as f = mg. The normal
force of the larger block on the smaller block is N , and the frictional force is given by f ≤ µsN . So
the smaller block won’t fall if mg ≤ µsN .

There is only one horizontal force on the large block, which is the normal force of the small block
on the large block. Newton’s third law says this force has a magnitude N , so the acceleration of the
large block is N = Ma.

There is only one horizontal force on the two block system, the force F . So the acceleration of
this system is given by F = (M +m)a. The two accelerations are equal, otherwise the blocks won’t
stick together. Equating, then, gives N/M = F/(M +m).

We can combine this last expression with mg ≤ µsN and get

mg ≤ µsF
M

M +m

or

F ≥ g(M +m)m
µsM

=
(9.81 m/s2)(88 kg + 16 kg)(16 kg)

(0.38)(88 kg)
= 490 N

P5-10 The normal force on the ith block is Ni = mig cos θ; the force of friction on the ith block
is then fi = µimig cos θ. The parallel component of the weight on the ith block is W||,i = mig sin θ.

(a) The net force on the system is

F =
∑
i

mig(sin θ − µi cos θ).

Then

a = (9.81 m/s2)
(1.65 kg)(sin 29.5◦ − 0.226 cos 29.5◦) + (3.22 kg)(sin 29.5◦ − 0.127 cos 29.5◦)

(1.65 kg) + (3.22 kg)
,

= 3.46 m/s2.

(b) The net force on the lower mass is m2a = W||,2 − f2 − T , so the tension is

T = (9.81 m/s2)(3.22 kg)(sin 29.5◦ − 0.127 cos 29.5◦)− (3.22 kg)(3.46 m/s2) = 0.922 N.
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(c) The acceleration will stay the same, since the system is still the same. Reversing the order
of the masses can only result in a reversing of the tension: it is still 0.992 N, but is now negative,
meaning compression.

P5-11 The rope wraps around the dowel and there is a contribution to the frictional force ∆f
from each small segment of the rope where it touches the dowel. There is also a normal force ∆N at
each point where the contact occurs. We can find ∆N much the same way that we solve the circular
motion problem.

In the figure on the left below we see that we can form a triangle with long side T and short side
∆N . In the figure on the right below we see a triangle with long side r and short side r∆θ. These
triangles are similar, so r∆θ/r = ∆N/T .

T

T

r
r

r∆θ∆ N

Now ∆f = µ∆N and T (θ) + ∆f ≈ T (θ + ∆θ). Combining, and taking the limit as ∆θ → 0,
dT = df ∫

1
µ

dT

T
=
∫
dθ

integrating both sides of this expression,∫
1
µ

dT

T
=

∫
dθ,

1
µ

lnT |T2
T1

= π,

T2 = T1e
πµ.

In this case T1 is the weight and T2 is the downward force.

P5-12 Answer this out of order!
(b) The maximum static friction between the blocks is 12.0 N; the maximum acceleration of the

top block is then a = F/m = (12.0 N)/(4.40 kg) = 2.73 m/s2.
(a) The net force on a system of two blocks that will accelerate them at 2.73 m/s2 is F =

(4.40 kg + 5.50 kg)(2.73 m/s2) = 27.0 N.
(c) The coefficient of friction is µs = F/N = F/mg = (12.0 N)/[(4.40 kg)(9.81 m/s2)] = 0.278.

P5-13 The speed is v = 23.6 m/s.
(a) The average speed while stopping is half the initial speed, or vav = 11.8 m/s. The time to stop

is t = (62 m)/(11.8 m/s) = 5.25 s. The rate of deceleration is a = (23.6 m/s)/(5.25 s) = 4.50 m/s2.
The stopping force is F = ma; this is related to the frictional force by F = µsmg, so µs = a/g =
(4.50 m/s2)/(9.81 m/s2) = 0.46.

72



(b) Turning,
a = v2/r = (23.6 m/s)2/(62 m) = 8.98 m/s2.

Then µs = a/g = (8.98 m/s2)/(9.81 m/s2) = 0.92.

P5-14 (a) The net force on car as it travels at the top of a circular hill is F net = mv2/r = W −N ;
in this case we are told N = W/2, so F net = W/2 = (16000 N)/2 = 8000 N. When the car travels
through the bottom valley the net force at the bottom is F net = mv2/r = N − W . Since the
magnitude of v, r, and hence F net is the same in both cases,

N = W/2 +W = 3W/2 = 3(16000 N)/2 = 24000 N

at the bottom of the valley.
(b) You leave the hill when N = 0, or

v =
√
rg =

√
(250 m)(9.81 m/s2) = 50 m/s.

(c) At this speed F net = W , so at the bottom of the valley N = 2W = 32000 N.

P5-15 (a) v = 2πr/t = 2π(0.052 m)(3/3.3 s) = 0.30 m/s.
(b) a = v2/r = (0.30 m/s)2/(0.052 m) = 1.7 m/s2, toward center.
(c) F = ma = (0.0017 kg)(1.7 m/s2) = 2.9×10−3N.
(d) If the coin can be as far away as r before slipping, then

µs = F/mg = (2πr/t)2/(rg) = 4π2r/(t2g) = 4π2(0.12 m)/[(3/3.3 s)2(9.8 m/s2)] = 0.59.

P5-16 (a) Whether you assume constant speed or constant energy, the tension in the string must
be the greatest at the bottom of the circle, so that’s where the string will break.

(b) The net force on the stone at the bottom is T −W = mv2/r. Then

v =
√
rg[T/W − 1] =

√
(2.9 ft)(32 ft/s2)[(9.2 lb)/(0.82 lb)− 1] = 31 ft/s.

P5-17 (a) In order to keep the ball moving in a circle there must be a net centripetal force Fc
directed horizontally toward the rod. There are only three forces which act on the ball: the force
of gravity, W = mg = (1.34 kg)(9.81 m/s2) = 13.1 N; the tension in the top string T1 = 35.0 N, and
the tension in the bottom string, T2.

The components of the force from the tension in the top string are

T1,x = (35.0 N) cos 30◦ = 30.3 N and T1,y = (35.0 N) sin 30◦ = 17.5 N.

The vertical components do balance, so

T1,y + T2,y = W,

or T2,y = (13.1 N)− (17.5 N) = −4.4 N. From this we can find the tension in the bottom string,

T2 = T2,y/ sin(−30◦) = 8.8 N.

(b) The net force on the object will be the sum of the two horizontal components,

Fc = (30.3 N) + (8.8 N) cos 30◦ = 37.9 N.

(c) The speed will be found from

v =
√
acr =

√
Fcr/m,

=
√

(37.9 m)(1.70 m) sin 60◦/(1.34 kg) = 6.45 m/s.
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P5-18 The net force on the cube is F = mv2/r. The speed is 2πrω. (Note that we are using ω in
a non-standard way!) Then F = 4π2mrω2. There are three forces to consider: the normal force of
the funnel on the cube N ; the force of gravity on the cube W ; and the frictional force on the cube
f . The acceleration of the cube in circular motion is toward the center of the circle; this means the
net force on the cube is horizontal, toward the center. We will arrange our coordinate system so
that r is horizontal and z is vertical. Then the components of the normal force are Nr = N sin θ
and Nz = N cos θ; the components of the frictional force are fr = f cos θ and fz = f sin θ.

The direction of the friction depends on the speed of the cube; it will point up if ω is small and
down if ω is large.

(a) If ω is small, Newton’s second law is∑
Fr = Nr − fr = N sin θ − f cos θ = 4π2mrω2,∑
Fz = Nz + fz −W = N cos θ + f sin θ −mg = 0.

We can substitute f = µsN . Solving for N ,

N (cos θ + µs sin θ) = mg.

Combining,

4π2rω2 = g
sin θ − µs cos θ
cos θ + µs sin θ

.

Rearrange,

ω =
1

2π

√
g

r

sin θ − µs cos θ
cos θ + µs sin θ

.

This is the minimum value.
(b) Now the frictional force will point the other way, so Newton’s second law is now∑

Fr = Nr + fr = N sin θ + f cos θ = 4π2mrω2,∑
Fz = Nz − fz −W = N cos θ − f sin θ −mg = 0.

We’ve swapped + and - signs, so

ω =
1

2π

√
g

r

sin θ + µs cos θ
cos θ − µs sin θ

is the maximum value.

P5-19 (a) The radial distance from the axis of rotation at a latitude L is R cosL. The speed
in the circle is then v = 2πR cosL/T . The net force on a hanging object is F = mv2/(R cosL) =
4π2mR cosL/T 2. This net force is not directed toward the center of the earth, but is instead directed
toward the axis of rotation. It makes an angle L with the Earth’s vertical. The tension in the cable
must then have two components: one which is vertical (compared to the Earth) and the other which
is horizontal. If the cable makes an angle θ with the vertical, then T|| = T sin θ and T⊥ = T cos θ.
Then T|| = F|| and W − T⊥ = F⊥. Written with a little more detail,

T sin θ = 4π2mR cosL sinL/T 2 ≈ Tθ,

and
T cos θ = 4π2mR cos2 L/T 2 +mg ≈ T.
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But 4π2R cos2 L/T 2 � g, so it can be ignored in the last equation compared to g, and T ≈ mg.
Then from the first equation,

θ = 2π2R sin 2L/(gT 2).

(b) This is a maximum when sin 2L is a maximum, which happens when L = 45◦. Then

θ = 2π2(6.37×106m)/[(9.8 m/s2)(86400 s)2] = 1.7×10−3 rad.

(c) The deflection at both the equator and the poles would be zero.

P5-20 a = (F0/m)e−t/T . Then v =
∫ t

0
a dt = (F0T/m)e−t/T , and x =

∫ t
0
v dt = (F0T

2/m)e−t/T .
(a) When t = T v = (F0T/m)e−1 = 0.368(F0T/m).
(b) When t = T x = (F0T

2/m)e−1 = 0.368(F0T
2/m).
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