
E4-1 (a) The time to pass between the plates is t = x/vx = (2.3 cm)/(9.6×108 cm/s) = 2.4×10−9s.
(b) The vertical displacement of the beam is then y = ayt

2/2 == (9.4× 1016 cm/s2)(2.4×
10−9s)2/2 = 0.27 cm.

(c) The velocity components are vx = 9.6×108 cm/s and vy = ayt = (9.4×1016 cm/s2)(2.4×
10−9s) = 2.3×108cm/s.

E4-2 ~a = ∆~v/∆t = −(6.30̂i− 8.42ĵ)(m/s)/(3 s) = (−2.10̂i + 2.81ĵ)(m/s2).

E4-3 (a) The velocity is given by

d~r
dt

=
d

dt

(
Aî
)

+
d

dt

(
Bt2ĵ

)
+
d

dt

(
Ctk̂

)
,

~v = (0) + 2Bt̂j + Ck̂.

(b) The acceleration is given by

d~v
dt

=
d

dt

(
2Bt̂j

)
+
d

dt

(
Ck̂
)
,

~a = (0) + 2Bĵ + (0).

(c) Nothing exciting happens in the x direction, so we will focus on the yz plane. The trajectory
in this plane is a parabola.

E4-4 (a) Maximum x is when vx = 0. Since vx = axt + vx,0, vx = 0 when t = −vx,0/ax =
−(3.6 m/s)/(−1.2 m/s2) = 3.0 s.

(b) Since vx = 0 we have |~v| = |vy|. But vy = ayt + vy,0 = −(1.4 m/s)(3.0 s) + (0) = −4.2 m/s.
Then |~v| = 4.2 m/s.

(c) ~r = ~at2/2 + ~v0t, so

~r = [−(0.6 m/s2)̂i− (0.7 m/s2)̂j](3.0 s)2 + [(3.6 m/s)̂i](3.0 s) = (5.4 m)̂i− (6.3 m)̂j.

E4-5 ~F = ~F1 + ~F2 = (3.7 N)̂j + (4.3 N)̂i. Then ~a = ~F/m = (0.71 m/s2)̂j + (0.83 m/s2)̂i.

E4-6 (a) The acceleration is ~a = ~F/m = (2.2 m/s2)̂j. The velocity after 15 seconds is ~v = ~at+ ~v0,
or

~v = [(2.2 m/s2)̂j](15 s) + [(42 m/s)̂i] = (42 m/s)̂i + (33 m/s)̂j.

(b) ~r = ~at2/2 + ~v0t, so

~r = [(1.1 m/s2)̂j](15 s)2 + [(42 m/s)̂i](15 s) = (630 m)̂i + (250 m)̂j.

E4-7 The block has a weight W = mg = (5.1 kg)(9.8 m/s2) = 50 N.
(a) Initially P = 12 N, so Py = (12 N) sin(25◦) = 5.1 N and Px = (12 N) cos(25◦) = 11 N. Since

the upward component is less than the weight, the block doesn’t leave the floor, and a normal force
will be present which will make

∑
Fy = 0. There is only one contribution to the horizontal force,

so
∑
Fx = Px. Newton’s second law then gives ax = Px/m = (11 N)/(5.1 kg) = 2.2 m/s2.

(b) As P is increased, so is Py; eventually Py will be large enough to overcome the weight of the
block. This happens just after Py = W = 50 N, which occurs when P = Py/ sin θ = 120 N.

(c) Repeat part (a), except now P = 120 N. Then Px = 110 N, and the acceleration of the block
is ax = Px/m = 22 m/s2.
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E4-8 (a) The block has weight W = mg = (96.0 kg)(9.81 m/s2) = 942 N. Px = (450 N) cos(38◦) =
355 N; Py = (450 N) sin(38◦) = 277 N. Since Py < W the crate stays on the floor and there is a
normal force N = W − Py. The net force in the x direction is Fx = Px − (125 N) = 230 N. The
acceleration is ax = Fx/m = (230 N)/(96.0 kg) = 2.40 m/s2.

(b) The block has mass m = W/g = (96.0 N)/(9.81 m/s2) = 9.79 kg. Px = (450 N) cos(38◦) =
355 N; Py = (450 N) sin(38◦) = 277 N. Since Py > W the crate lifts off of the floor! The net
force in the x direction is Fx = Px − (125 N) = 230 N. The x acceleration is ax = Fx/m =
(230 N)/(9.79 kg) = 23.5 m/s2. The net force in the y direction is Fy = Py −W = 181 N. The y
acceleration is ay = Fy/m = (181 N)/(9.79 kg) = 18.5 m/s2. Wow.

E4-9 Let y be perpendicular and x be parallel to the incline. Then P = 4600 N;

Px = (4600 N) cos(27◦) = 4100 N;

Py = (4600 N) sin(27◦) = 2090 N.

The weight of the car is W = mg = (1200 kg)(9.81 m/s2) = 11800 N;

Wx = (11800 N) sin(18◦) = 3650 N;

Wy = (11800 N) cos(18◦) = 11200 N.

Since Wy > Py the car stays on the incline. The net force in the x direction is Fx = Px−Wx = 450 N.
The acceleration in the x direction is ax = Fx/m = (450 N)/(1200 kg) = 0.375 m/s2. The distance
traveled in 7.5 s is x = axt

2/2 = (0.375 m/s2)(7.5 s)2/2 = 10.5 m.

E4-10 Constant speed means zero acceleration, so net force is zero. Let y be perpendicular and x be
parallel to the incline. The weight is W = mg = (110 kg)(9.81 m/s2) = 1080 N; Wx = W sin(34◦);
Wy = W cos(34◦). The push F has components Fx = F cos(34◦) and Fy = −F sin(34◦). The
y components will balance after a normal force is introduced; the x components will balance if
Fx = Wx, or F = W tan(34◦) = (1080 N) tan(34◦) = 730 N.

E4-11 If the x axis is parallel to the river and the y axis is perpendicular, then ~a = 0.12̂i m/s2.
The net force on the barge is∑

~F = m~a = (9500 kg)(0.12̂i m/s2) = 1100̂i N.

The force exerted on the barge by the horse has components in both the x and y direction. If
P = 7900 N is the magnitude of the pull and θ = 18◦ is the direction, then ~P = P cos θî +P sin θĵ =
(7500̂i + 2400ĵ) N.

Let the force exerted on the barge by the water be ~Fw = Fw,x î + Fw,y ĵ. Then
∑
Fx = (7500

N) + Fw,x and
∑
Fy = (2400 N) + Fw,y. But we already found

∑ ~F, so

Fx = 1100 N = 7500 N + Fw,x,

Fy = 0 = 2400 N + Fw,y.

Solving, Fw,x = −6400 N and Fw,y = −2400 N. The magnitude is found by Fw =
√
F 2
w,x + F 2

w,y =
6800 N.
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E4-12 (a) Let y be perpendicular and x be parallel to the direction of motion of the plane.
Then Wx = mg sin θ; Wy = mg cos θ; m = W/g. The plane is accelerating in the x direction, so
ax = 2.62 m/s2; the net force is in the x direction, where Fx = max. But Fx = T −Wx, so

T = Fx +Wx = W
ax
g

+W sin θ = (7.93×104N)
[

(2.62 m/s2)
(9.81 m/s2)

+ sin(27◦)
]

= 5.72×104N.

(b) There is no motion in the y direction, so

L = Wy = (7.93×104N) cos(27◦) = 7.07×104N.

E4-13 (a) The ball rolled off horizontally so v0y = 0. Then

y = v0yt−
1
2
gt2,

(−4.23 ft) = (0)t− 1
2

(32.2 ft/s2)t2,

which can be solved to yield t = 0.514 s.
(b) The initial velocity in the x direction can be found from x = v0xt; rearranging, v0x = x/t =

(5.11 ft)/(0.514 s) = 9.94 ft/s. Since there is no y component to the velocity, then the initial speed
is v0 = 9.94 ft/s.

E4-14 The electron travels for a time t = x/vx. The electron “falls” vertically through a distance
y = −gt2/2 in that time. Then

y = −g
2

(
x

vx

)2

= − (9.81 m/s2)
2

(
(1.0 m)

(3.0×107m/s)

)2

= −5.5×10−15 m.

E4-15 (a) The dart “falls” vertically through a distance y = −gt2/2 = −(9.81 m/s2)(0.19 s)2/2 =
−0.18 m.

(b) The dart travels horizontally x = vxt = (10 m/s)(0.19 s) = 1.9 m.

E4-16 The initial velocity components are

vx,0 = (15 m/s) cos(20◦) = 14 m/s

and
vy,0 = −(15 m/s) sin(20◦) = −5.1 m/s.

(a) The horizontal displacement is x = vxt = (14 m/s)(2.3 s) = 32 m.
(b) The vertical displacement is

y = −gt2/2 + vy,0t = −(9.81 m/s2)(2.3 s)2/2 + (−5.1 m/s)(2.3 s) = −38 m.

E4-17 Find the time in terms of the the initial y component of the velocity:

vy = v0y − gt,
(0) = v0y − gt,
t = v0y/g.
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Use this time to find the highest point:

y = v0yt−
1
2
gt2,

ymax = v0y

(
v0y

g

)
− 1

2
g

(
v0y

g

)2

,

=
v2

0y

2g
.

Finally, we know the initial y component of the velocity from Eq. 2-6, so ymax = (v0 sinφ0)2
/2g.

E4-18 The horizontal displacement is x = vxt. The vertical displacement is y = −gt2/2. Combin-
ing, y = −g(x/vx)2/2. The edge of the nth step is located at y = −nw, x = nw, where w = 2/3 ft.
If |y| > nw when x = nw then the ball hasn’t hit the step. Solving,

g(nw/vx)2/2 < nw,

gnw/v2
x < 2,

n < 2v2
x/(gw) = 2(5.0 ft/s)2/[(32 ft/s2)(2/3 ft)] = 2.34.

Then the ball lands on the third step.

E4-19 (a) Start from the observation point 9.1 m above the ground. The ball will reach the
highest point when vy = 0, this will happen at a time t after the observation such that t = vy,0/g =
(6.1 m/s)/(9.81 m/s2) = 0.62 s. The vertical displacement (from the ground) will be

y = −gt2/2 + vy,0t+ y0 = −(9.81 m/s2)(0.62 s)2/2 + (6.1 m/s)(0.62 s) + (9.1 m) = 11 m.

(b) The time for the ball to return to the ground from the highest point is t =
√

2ymax/g =√
2(11 m)/(9.81 m/s2) = 1.5 s. The total time of flight is twice this, or 3.0 s. The horizontal distance

traveled is x = vxt = (7.6 m/s)(3.0 s) = 23 m.
(c) The velocity of the ball just prior to hitting the ground is

~v = ~at+ ~v0 = (−9.81 m/s2)̂j(1.5 s) + (7.6 m/s)̂i = 7.6 m/ŝi− 15 m/suj.

The magnitude is
√

7.62 + 152(m/s) = 17 m/s. The direction is

θ = arctan(−15/7.6) = −63◦.

E4-20 Focus on the time it takes the ball to get to the plate, assuming it traveled in a straight
line. The ball has a “horizontal” velocity of 135 ft/s. Then t = x/vx = (60.5 ft)/(135 ft/s) = 0.448 s.
The ball will “fall” a vertical distance of y = −gt2/2 = −(32 ft/s2)(0.448 s)2/2 = −3.2 ft. That’s in
the strike zone.

E4-21 Since R ∝ 1/g one can write R2/R1 = g1/g2, or

∆R = R2 −R1 = R1

(
1− g1

g2

)
= (8.09 m)

[
1− (9.7999 m/s2)

(9.8128 m/s2)

]
= 1.06 cm.
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E4-22 If initial position is ~r0 = 0, then final position is ~r = (13 ft)̂i + (3 ft)̂j. The initial velocity
is ~v0 = v cos θî + v sin θĵ. The horizontal equation is (13 ft) = v cos θt; the vertical equation is
(3 ft) = −(g/2)t2 + v sin θt. Rearrange the vertical equation and then divide by the horizontal
equation to get

3 ft + (g/2)t2

(13 ft)
= tan θ,

or
t2 = [(13 ft) tan(55◦)− (3 ft)][2/(32 m/s2)] = 0.973 s2,

or t = 0.986 s. Then v = (13 ft)/(cos(55◦)(0.986 s)) = 23 ft/s.

E4-23 vx = x/t = (150 ft)/(4.50 s) = 33.3 ft/s. The time to the highest point is half the hang
time, or 2.25 s. The vertical speed when the ball hits the ground is vy = −gt = −(32 ft/s2)(2.25 s) =
72.0 ft/s. Then the initial vertical velocity is 72.0 ft/s. The magnitude of the initial velocity is√

722 + 332(ft/s) = 79 ft/s. The direction is

θ = arctan(72/33) = 65◦.

E4-24 (a) The magnitude of the initial velocity of the projectile is v = 264 ft/s. The projectile
was in the air for a time t where

t =
x

vx
=

x

v cos θ
=

(2300 ft)
(264 ft/s) cos(−27◦)

= 9.8 s.

(b) The height of the plane was −y where

−y = gt2/2− vy,0t = (32 ft/s)(9.8 s)2/2− (264 ft/s) sin(−27◦)(9.8 s) = 2700 ft.

E4-25 Define the point the ball leaves the racquet as ~r = 0.
(a) The initial conditions are given as v0x = 23.6 m/s and v0y = 0. The time it takes for the ball

to reach the horizontal location of the net is found from

x = v0xt,

(12 m) = (23.6 m/s)t,
0.51 s = t,

Find how far the ball has moved horizontally in this time:

y = v0yt−
1
2
gt2 = (0)(0.51 s)− 1

2
(9.8 m/s2)(0.51 s)2 = −1.3 m.

Did the ball clear the net? The ball started 2.37 m above the ground and “fell” through a distance
of 1.3 m by the time it arrived at the net. So it is still 1.1 m above the ground and 0.2 m above the
net.

(b) The initial conditions are now given by v0x = (23.6 m/s)(cos[−5.0◦]) = 23.5 m/s and v0y =
(23.6 m/s)(sin[−5.0◦]) = −2.1 m/s. Now find the time to reach the net just as done in part (a):

t = x/v0x = (12.0 m)/(23.5 m/s) = 0.51 s.

Find the vertical position of the ball when it arrives at the net:

y = v0yt−
1
2
gt2 = (−2.1 m/s)(0.51 s)− 1

2
(9.8 m/s2)(0.51 s)2 = −2.3 m.

Did the ball clear the net? Not this time; it started 2.37 m above the ground and then passed the
net 2.3 m lower, or only 0.07 m above the ground.
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E4-26 The initial speed of the ball is given by v =
√
gR =

√
(32 ft/s2)(350 ft) = 106 ft/s. The

time of flight from the batter to the wall is

t = x/vx = (320 ft)/[(106 ft/s) cos(45◦)] = 4.3 s.

The height of the ball at that time is given by y = y0 + v0yt− 1
2gt

2, or

y = (4 ft) + (106 ft/s) sin(45◦)(4.3 s)− (16 ft/s2)(4.3 s)2 = 31 ft,

clearing the fence by 7 feet.

E4-27 The ball lands x = (358 ft) + (39 ft) cos(28◦) = 392 ft from the initial position. The ball
lands y = (39 ft) sin(28◦) − (4.60 ft) = 14 ft above the initial position. The horizontal equation
is (392 ft) = v cos θt; the vertical equation is (14 ft) = −(g/2)t2 + v sin θt. Rearrange the vertical
equation and then divide by the horizontal equation to get

14 ft + (g/2)t2

(392 ft)
= tan θ,

or
t2 = [(392 ft) tan(52◦)− (14 ft)][2/(32 m/s2)] = 30.5 s2,

or t = 5.52 s. Then v = (392 ft)/(cos(52◦)(5.52 s)) = 115 ft/s.

E4-28 Since ball is traveling at 45◦ when it returns to the same level from which it was thrown
for maximum range, then we can assume it actually traveled ≈ 1.6 m. farther than it would have
had it been launched from the ground level. This won’t make a big difference, but that means that
R = 60.0 m − 1.6 m = 58.4 m. If v0 is initial speed of ball thrown directly up, the ball rises to the
highest point in a time t = v0/g, and that point is ymax = gt2/2 = v2

0/(2g) above the launch point.
But v2

0 = gR, so ymax = R/2 = (58.4 m)/2 = 29.2 m. To this we add the 1.60 m point of release to
get 30.8 m.

E4-29 The net force on the pebble is zero, so
∑
Fy = 0. There are only two forces on the

pebble, the force of gravity W and the force of the water on the pebble FPW . These point in
opposite directions, so 0 = FPW − W . But W = mg = (0.150 kg)(9.81 m/s2) = 1.47 N. Since
FPW = W in this problem, the force of the water on the pebble must also be 1.47 N.

E4-30 Terminal speed is when drag force equal weight, or mg = bvT
2. Then vT =

√
mg/b.

E4-31 Eq. 4-22 is

vy(t) = vT

(
1− e−bt/m

)
,

where we have used Eq. 4-24 to substitute for the terminal speed. We want to solve this equation
for time when vy(t) = vT/2, so

1
2vT = vT

(
1− e−bt/m

)
,

1
2 =

(
1− e−bt/m

)
,

e−bt/m = 1
2

bt/m = − ln(1/2)
t = m

b ln 2
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E4-32 The terminal speed is 7 m/s for a raindrop with r = 0.15 cm. The mass of this drop is
m = 4πρr3/3, so

b =
mg

vT
=

4π(1.0×10−3kg/cm3)(0.15 cm)3(9.81 m/s2)
3(7 m/s)

= 2.0×10−5kg/s.

E4-33 (a) The speed of the train is v = 9.58 m/s. The drag force on one car is f = 243(9.58) N =
2330 N. The total drag force is 23(2330 N) = 5.36×104N. The net force exerted on the cars (treated
as a single entity) is F = ma = 23(48.6×103kg)(0.182 m/s2) = 2.03×105N. The pull of the locomotive
is then P = 2.03×105N + 5.36×104N = 2.57×105N.

(b) If the locomotive is pulling the cars at constant speed up an incline then it must exert a
force on the cars equal to the sum of the drag force and the parallel component of the weight. The
drag force is the same in each case, so the parallel component of the weight is W|| = W sin θ =
2.03×105N = ma, where a is the acceleration from part (a). Then

θ = arcsin(a/g) = arcsin[(0.182 m/s2)/(9.81 m/s2)] = 1.06◦.

E4-34 (a) a = v2/r = (2.18×106m/s)2/(5.29×10−11m) = 8.98×1022m/s2.
(b) F = ma = (9.11×10−31kg)(8.98×1022m/s2) = 8.18×10−8N, toward the center.

E4-35 (a) v =
√
rac =

√
(5.2 m)(6.8)(9.8 m/s2) = 19 m/s.

(b) Use the fact that one revolution corresponds to a length of 2πr:

19
m
s

(
1 rev

2π(5.2 m)

)(
60 s

1 min

)
= 35

rev
min

.

E4-36 (a) v = 2πr/T = 2π(15 m)/(12 s) = 7.85 m/s. Then a = v2/r = (7.85 m/s)2/(15 m) =
4.11 m/s2, directed toward center, which is down.

(b) Same arithmetic as in (a); direction is still toward center, which is now up.
(c) The magnitude of the net force in both (a) and (b) is F = ma = (75 kg)(4.11 m/s2) = 310 N.

The weight of the person is the same in both parts: W = mg = (75 kg)(9.81 m/s2) = 740 N. At
the top the net force is down, the weight is down, so the Ferris wheel is pushing up with a force of
P = W − F = (740 N)− (310 N) = 430 N. At the bottom the net force is up, the weight is down, so
the Ferris wheel is pushing up with a force of P = W + F = (740 N) + (310 N) = 1050 N.

E4-37 (a) v = 2πr/T = 2π(20×103m)/(1.0 s) = 1.26×105m/s.
(b) a = v2/r = (1.26×105m/s)2/(20×103m) = 7.9×105m/s2.

E4-38 (a) v = 2πr/T = 2π(6.37×106m)/(86400 s) = 463 m/s. a = v2/r = (463 m/s)2/(6.37×
106m) = 0.034 m/s2.

(b) The net force on the object is F = ma = (25.0 kg)(0.034 m/s2) = 0.85 N. There are two forces
on the object: a force up from the scale (S), and the weight down, W = mg = (25.0 kg)(9.80 m/s2) =
245 N. Then S = F +W = 245 N + 0.85 N = 246 N.

E4-39 Let ∆x = 15 m be the length; tw = 90 s, the time to walk the stalled Escalator; ts = 60
s, the time to ride the moving Escalator; and tm, the time to walk up the moving Escalator.

The walking speed of the person relative to a fixed Escalator is vwe = ∆x/tw; the speed of the
Escalator relative to the ground is veg = ∆x/ts; and the speed of the walking person relative to the
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ground on a moving Escalator is vwg = ∆x/tm. But these three speeds are related by vwg = vwe+veg.
Combine all the above:

vwg = vwe + veg,

∆x
tm

=
∆x
tw

+
∆x
ts
,

1
tm

=
1
tw

+
1
ts
.

Putting in the numbers, tm = 36 s.

E4-40 Let vw be the walking speed, vs be the sidewalk speed, and vm = vw + vs be Mary’s speed
while walking on the moving sidewalk. All three cover the same distance x, so vi = x/ti, where i is
one of w, s, or m. Put this into the Mary equation, and

1/tm = 1/tw + 1/ts = 1/(150 s) + 1/(70 s) = 1/48 s.

E4-41 If it takes longer to fly westward then the speed of the plane (relative to the ground)
westward must be less than the speed of the plane eastward. We conclude that the jet-stream must
be blowing east. The speed of the plane relative to the ground is ve = vp + vj when going east and
vw = vp − vj when going west. In either case the distance is the same, so x = viti, where i is e or
w. Since tw − te is given, we can write

tw − te =
x

vp − vj
− x

vp + vj
= x

2vj

vp
2 − vj

2
.

Solve the quadratic if you want, but since vj � vp we can neglect it in the denominator and

vj = vp
2(0.83 h)/(2x) = (600 mi/h)2(0.417 h)/(2700 mi) = 56 mi/hr.

E4-42 The horizontal component of the rain drop’s velocity is 28 m/s. Since vx = v sin θ, v =
(28 m/s)/ sin(64◦) = 31 m/s.

E4-43 (a) The position of the bolt relative to the elevator is ybe, the position of the bolt relative
to the shaft is ybs, and the position of the elevator relative to the shaft is yes. Zero all three positions
at t = 0; at this time v0,bs = v0,es = 8.0 ft/s.

The three equations describing the positions are

ybs = v0,bst−
1
2
gt2,

yes = v0,est+
1
2
at2,

ybe + res = rbs,

where a = 4.0 m/s2 is the upward acceleration of the elevator. Rearrange the last equation and
solve for ybe; get ybe = − 1

2 (g+ a)t2, where advantage was taken of the fact that the initial velocities
are the same.

Then
t =

√
−2ybe/(g + a) =

√
−2(−9.0 ft)/(32 ft/s2 + 4 ft/s2) = 0.71 s

(b) Use the expression for ybs to find how the bolt moved relative to the shaft:

ybs = v0,bst−
1
2
gt2 = (8.0 ft)(0.71 s)− 1

2
(32 ft/s2)(0.71 s)2 = −2.4 ft.
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E4-44 The speed of the plane relative to the ground is vpg = (810 km)/(1.9 h) = 426 km/h. The
velocity components of the plane relative to the air are vN = (480 km/h) cos(21◦) = 448 km/h and
vE = (480 km/h) sin(21◦) = 172 km/h. The wind must be blowing with a component of 172 km/h
to the west and a component of 448− 426 = 22 km/h to the south.

E4-45 (a) Let î point east and ĵ point north. The velocity of the torpedo is ~v = (50 km/h)̂i sin θ+
(50 km/h)̂j cos θ. The initial coordinates of the battleship are then ~r0 = (4.0 km)̂i sin(20◦) +
(4.0 km)̂j cos(20◦) = (1.37 km)̂i + (3.76 km)̂j. The final position of the battleship is ~r = (1.37 km +
24 km/ht)̂i + (3.76 km)̂j, where t is the time of impact. The final position of the torpedo is the
same, so

[(50 km/h)̂i sin θ + (50 km/h)̂j cos θ]t = (1.37 km + 24 km/ht)̂i + (3.76 km)̂j,

or
[(50 km/h) sin θ]t− 24 km/ht = 1.37 km

and
[(50 km/h) cos θ]t = 3.76 km.

Dividing the top equation by the bottom and rearranging,

50 sin θ − 24 = 18.2 cos θ.

Use any trick you want to solve this. I used Maple and found θ = 46.8◦.
(b) The time to impact is then t = 3.76 km/[(50 km/h) cos(46.8◦)] = 0.110 h, or 6.6 minutes.

P4-1 Let ~rA be the position of particle of particle A, and ~rB be the position of particle B. The
equations for the motion of the two particles are then

~rA = ~r0,A + ~vt,

= dĵ + vt̂i;

~rB =
1
2
~at2,

=
1
2
a(sin θî + cos θĵ)t2.

A collision will occur if there is a time when ~rA = ~rB . Then

dĵ + vt̂i =
1
2
a(sin θî + cos θĵ)t2,

but this is really two equations: d = 1
2at

2 cos θ and vt = 1
2at

2 sin θ.
Solve the second one for t and get t = 2v/(a sin θ). Substitute that into the first equation, and

then rearrange,

d =
1
2
at2 cos θ,

d =
1
2
a

(
2v

a sin θ

)2

cos θ,

sin2 θ =
2v
ad

cos θ,

1− cos2 θ =
2v2

ad
cos θ,

0 = cos2 θ +
2v2

ad
cos θ − 1.
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This last expression is quadratic in cos θ. It simplifies the solution if we define b = 2v/(ad) = 2(3.0
m/s)2/([0.4 m/s2][30 m]) = 1.5, then

cos θ =
−b±

√
b2 + 4

2
= −0.75± 1.25.

Then cos θ = 0.5 and θ = 60◦.

P4-2 (a) The acceleration of the ball is ~a = (1.20 m/s2)̂i − (9.81 m/s2)̂j. Since ~a is constant the
trajectory is given by ~r = ~at2/2, since ~v0 = 0 and we choose ~r0 = 0. This is a straight line trajectory,
with a direction given by ~a. Then

θ = arctan(9.81/1.20) = 83.0◦.

and R = (39.0 m)/ tan(83.0◦) = 4.79 m. It will be useful to find H = (39.0 m)/ sin(83.0◦) = 39.3 m.
(b) The magnitude of the acceleration of the ball is a =

√
9.812 + 1.202(m/s2) = 9.88 m/s2. The

time for the ball to travel down the hypotenuse of the figure is then t =
√

2(39.3 m)/(9.88 m/s2) =
2.82 s.

(c) The magnitude of the speed of the ball at the bottom will then be

v = at = (9.88 m/s2)(2.82 s) = 27.9 m/s.

P4-3 (a) The rocket thrust is ~T = (61.2 kN) cos(58.0◦)̂i + (61.2 kN) sin(58.0◦)̂i = 32.4 kNî +
51.9 kNĵ. The net force on the rocket is the ~F = ~T + ~W, or

~F = 32.4 kNî + 51.9 kNĵ− (3030 kg)(9.81 m/s2)̂j = 32.4 kNî + 22.2 kNĵ.

The acceleration (until rocket cut-off) is this net force divided by the mass, or

~a = 10.7m/s2 î + 7.33m/s2ĵ.

The position at rocket cut-off is given by

~r = ~at2/2 = (10.7m/s2 î + 7.33m/s2ĵ)(48.0 s)2/2,

= 1.23×104mî + 8.44×103mĵ.

The altitude at rocket cut-off is then 8.44 km.
(b) The velocity at rocket cut-off is

~v = ~at = (10.7m/s2 î + 7.33m/s2ĵ)(48.0 s) = 514 m/ŝi + 352 m/ŝj,

this becomes the initial velocity for the “free fall” part of the journey. The rocket will hit the ground
after t seconds, where t is the solution to

0 = −(9.81 m/s2)t2/2 + (352 m/s)t+ 8.44×103 m.

The solution is t = 90.7 s. The rocket lands a horizontal distance of x = vxt = (514 m/s)(90.7 s) =
4.66×104 m beyond the rocket cut-off; the total horizontal distance covered by the rocket is 46.6 km+
12.3 km = 58.9 km.

49



P4-4 (a) The horizontal speed of the ball is vx = 135 ft/s. It takes

t = x/vx = (30.0 ft)/(135 ft/s) = 0.222 s

to travel the 30 feet horizontally, whether the first 30 feet, the last 30 feet, or 30 feet somewhere in
the middle.

(b) The ball “falls” y = −gt2/2 = −(32 ft/s2)(0.222 s)2/2 = −0.789 ft while traveling the first
30 feet.

(c) The ball “falls” a total of y = −gt2/2 = −(32 ft/s2)(0.444 s)2/2 = −3.15 ft while traveling
the first 60 feet, so during the last 30 feet it must have fallen (−3.15 ft)− (−0.789 ft) = −2.36 ft.

(d) The distance fallen because of acceleration is not linear in time; the distance moved horizon-
tally is linear in time.

P4-5 (a) The initial velocity of the ball has components

vx,0 = (25.3 m/s) cos(42.0◦) = 18.8 m/s

and
vy,0 = (25.3 m/s) sin(42.0◦) = 16.9 m/s.

The ball is in the air for t = x/vx = (21.8 m)/(18.8 m/s) = 1.16 s before it hits the wall.
(b) y = −gt2/2 + vy,0t = −(4.91 m/s2)(1.16 s)2 + (16.9 m/s)(1.16 s) = 13.0 m.
(c) vx = vx,0 = 18.8 m/s. vy = −gt+ vy,0 = −(9.81 m/s2)(1.16 s) + (16.9 m/s) = 5.52 m/s.
(d) Since vy > 0 the ball is still heading up.

P4-6 (a) The initial vertical velocity is vy,0 = v0 sinφ0. The time to the highest point is t = vy,0/g.
The highest point is H = gt2/2. Combining,

H = g(v0 sinφ0/g)2/2 = v2
0 sin2 φ0/(2g).

The range is R = (v2
0/g) sin 2φ0 = 2(v2

0/g) sinφ0 cosφ0. Since tan θ = H/(R/2), we have

tan θ =
2H
R

=
v2

0 sin2 φ0/g

2(v2
0/g) sinφ0 cosφ0

=
1
2

tanφ0.

(b) θ = arctan(0.5 tan 45◦) = 26.6◦.

P4-7 The components of the initial velocity are given by v0x = v0 cos θ = 56 ft/s and v0y =
v0 sin θ = 106 ft/s where we used v0 = 120 ft/s and θ = 62◦.

(a) To find h we need only find out the vertical position of the stone when t = 5.5 s.

y = v0yt−
1
2
gt2 = (106 ft/s)(5.5 s)− 1

2
(32 ft/s2)(5.5 s)2 = 99 ft.

(b) Look at this as a vector problem:

~v = ~v0 + ~at,

=
(
v0x î + v0y ĵ

)
− gĵt,

= v0x î + (v0y − gt) ĵ,

= (56 ft/s)̂i +
(

(106 ft/s− (32 ft/s2)(5.5 s)
)

ĵ,

= (56 ft/s)̂i + (−70.0 ft/s)̂j.
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The magnitude of this vector gives the speed when t = 5.5 s; v =
√

562 + (−70)2 ft/s= 90 ft/s.
(c) Highest point occurs when vy = 0. Solving Eq. 4-9(b) for time; vy = 0 = v0y − gt =

(106 ft/s)− (32 ft/s2)t; t = 3.31 s. Use this time in Eq. 4-10(b),

y = v0yt−
1
2
gt2 = (106 ft/s)(3.31 s)− 1

2
(32 ft/s2)(3.31 s)2 = 176 ft.

P4-8 (a) Since R = (v2
0/g) sin 2φ0, it is sufficient to prove that sin 2φ0 is the same for both

sin 2(45◦ + α) and sin 2(45◦ − α).

sin 2(45◦ ± α) = sin(90◦ ± 2α) = cos(±2α) = cos(2α).

Since the ± dropped out, the two quantities are equal.
(b) φ0 = (1/2) arcsin(Rg/v2

0) = (1/2) arcsin((20.0 m)(9.81 m/s2)/(30.0 m/s)2) = 6.3◦. The other
choice is 90◦ − 6.3◦ = 83.7◦.

P4-9 To score the ball must pass the horizontal distance of 50 m with an altitude of no less than
3.44 m. The initial velocity components are v0x = v0 cos θ and v0y = v0 sin θ where v0 = 25 m/s,
and θ is the unknown.

The time to the goal post is t = x/v0x = x/(v0 cos θ).
The vertical motion is given by

y = v0yt−
1
2
gt2 = (v0 sin θ)

(
x

v0 cos θ

)
− 1

2
g

(
x

v0 cos θ

)2

,

= x
sin θ
cos θ

− gx2

2v2
0

1
cos2 θ

.

In this last expression y needs to be greater than 3.44 m. In this last expression use

1
cos2 θ

− 1 + 1 =
1

cos2 θ
− cos2 θ

cos2 θ
+ 1 =

1− cos2 θ

cos2 θ
+ 1 =

sin2 θ

cos2 θ
+ 1 = tan2 θ + 1.

This gives for our y expression

y = x tan θ − gx2

2v0

(
tan2 θ + 1

)
,

which can be combined with numbers and constraints to give

(3.44 m) ≤ (50 m) tan θ − (9.8 m/s2)(50 m)2

2(25 m/s)2

(
tan2 θ + 1

)
,

3.44 ≤ 50 tan θ − 20
(
tan2 θ + 1

)
,

0 ≤ −20 tan2 θ + 50 tan θ − 23

Solve, and tan θ = 1.25± 0.65, so the allowed kicking angles are between θ = 31◦ and θ = 62◦.

P4-10 (a) The height of the projectile at the highest point is H = L sin θ. The amount of time
before the projectile hits the ground is t =

√
2H/g =

√
2L sin θ/g. The horizontal distance covered

by the projectile in this time is x = vxt = v
√

2L sin θ/g. The horizontal distance to the projectile
when it is at the highest point is x′ = L cos θ. The projectile lands at

D = x− x′ = v
√

2L sin θ/g − L cos θ.

(b) The projectile will pass overhead if D > 0.
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P4-11 v2 = v2
x+ v2

y. For a projectile vx is constant, so we need only evaluate d2(v2
y)/dt2. The first

derivative is 2vy dvy/dt = −2vyg. The derivative of this (the second derivative) is −2g dvy/dt = 2g2.

P4-12 |~r| is a maximum when r2 is a maximum. r2 = x2 + y2, or

r2 = (vx,0t)2 + (−gt2/2 + vy,0t)2,

= (v0t cosφ0)2 +
(
v0t sinφ0 − gt2/2

)2
,

= v2
0t

2 − v0gt
3 sinφ0 + g2t4/4.

We want to look for the condition which will allow dr2/dt to vanish. Since

dr2/dt = 2v2
0t− 3v0gt

2 sinφ0 + g2t3

we can focus on the quadratic discriminant, b2 − 4ac, which is

9v2
0g

2 sin2 φ0 − 8v2
0g

2,

a quantity which will only be greater than zero if 9 sin2 φ0 > 8. The critical angle is then

φc = arcsin(
√

8/9) = 70.5◦.

P4-13 There is a downward force on the balloon of 10.8 kN from gravity and an upward force
of 10.3 kN from the buoyant force of the air. The resultant of these two forces is 500 N down, but
since the balloon is descending at constant speed so the net force on the balloon must be zero. This
is possible because there is a drag force on the balloon of D = bv2, this force is directed upward.
The magnitude must be 500 N, so the constant b is

b =
(500 N)

(1.88 m/s)2
= 141 kg/m.

If the crew drops 26.5 kg of ballast they are “lightening” the balloon by

(26.5 kg)(9.81 m/s2) = 260 N.

This reduced the weight, but not the buoyant force, so the drag force at constant speed will now be
500 N− 260 N = 240 N.

The new constant downward speed will be

v =
√
D/b =

√
(240 N)/(141 kg/m) = 1.30 m/s.

P4-14 The constant b is
b = (500 N)/(1.88 m/s) = 266 N · s/m.

The drag force after “lightening” the load will still be 240 N. The new downward speed will be

v = D/b = (240 N)/(266 N · s/m) = 0.902 m/s.

P4-15 (a) Initially v0 = 0, so D = 0, the only force is the weight, so a = −g.
(b) After some time the acceleration is zero, then W = D, or bvT

2 = mg, or vT =
√
mg/b.

(c) When v = vT/2 the drag force is D = bvT
2/4 = mg/4, so the net force is F = D −W =

−3mg/4. The acceleration is the a = −3g/4.
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P4-16 (a) The net force on the barge is F = −D = −bv, this results in a differential equation
mdv/dt = −bv, which can be written as

dv/v = −(b/m)dt,∫
dv/v = −(b/m)

∫
dt,

ln(vf/vi) = −bt/m.

Then t = (m/b) ln(vi/vf).
(b) t = [(970 kg)/(68 N · s/m)] ln(32/8.3) = 19 s.

P4-17 (a) The acceleration is the time derivative of the velocity,

ay =
dvy
dt

=
d

dt

(mg
b

(
1− e−bt/m

))
=
mg

b

b

m
e−bt/m,

which can be simplified as ay = ge−bt/m. For large t this expression approaches 0; for small t the
exponent can be expanded to give

ay ≈ g
(

1− bt

m

)
= g − vTt,

where in the last line we made use of Eq. 4-24.
(b) The position is the integral of the velocity,∫ t

0

vy dt =
∫ t

0

(mg
b

(
1− e−bt/m

))
dt,∫ t

0

dy

dt
dt =

mg

b

(
t− (−m/b)e−bt/m

)∣∣∣t
0
,∫ y

0

dy = vT

(
t+

vT

g

(
e−vTt/g − 1

))
,

y = vT

(
t+

vT

g

(
e−vTt/g − 1

))
.

P4-18 (a) We have vy = vT(1 − e−bt/m) from Eq. 4-22; this can be substituted into the last line
of the solution for P4-17 to give

y95 = vT

(
t− vy

g

)
.

We can also rearrange Eq. 4-22 to get t = −(m/b) ln(1− vy/vT), so

y95 = vT
2/g

(
− ln(1− vy/vT)− vy

vT

)
.

But vy/vT = 0.95, so

y95 = vT
2/g (− ln(0.05)− 0.95) = vT

2/g (ln 20− 19/20) .

(b) y95 = (42 m/s)2/(9.81 m/s2)(2.05) = 370 m.

P4-19 (a) Convert units first. v = 86.1 m/s, a = 0.05(9.81 m/s2) = 0.491 m/s2. The minimum
radius is r = v2/a = (86.1 m/s)/(0.491 m/s2) = 15 km.

(b) v =
√
ar =

√
(0.491 m/s2)(940 m) = 21.5 m/s. That’s 77 km/hr.
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P4-20 (a) The position is given by ~r = R sinωt î+R(1−cosωt)̂j, where ω = 2π/(20 s) = 0.314 s−1

and R = 3.0 m. When t = 5.0 s ~r = (3.0 m)̂i + (3.0 m)̂j; when t = 7.5 s ~r = (2.1 m)̂i + (5.1 m)̂j;
when t = 10 s ~r = (6.0 m)̂j. These vectors have magnitude 4.3 m, 5.5 m and 6.0 m, respectively. The
vectors have direction 45◦, 68◦ and 90◦ respectively.

(b) ∆~r = (−3.0 m)̂i + (3.0 m)̂j, which has magnitude 4.3 m and direction 135◦.
(c) vav = ∆r/∆t = (4.3 m)/(5.0 s) = 0.86 m/s. The direction is the same as ∆~r.
(d) The velocity is given by ~v = Rω cosωt î+Rω sinωt ĵ. At t = 5.0 s ~v = (0.94 m/s)̂j; at t = 10 s

~v = (−0.94 m/s)̂i.
(e) The acceleration is given by ~a = −Rω2 sinωt î +Rω2 cosωt ĵ. At t = 5.0 s ~a = (−0.30 m/s2)̂i;

at t = 10 s ~a = (−0.30 m/s2)̂j.

P4-21 Start from where the stone lands; in order to get there the stone fell through a vertical
distance of 1.9 m while moving 11 m horizontally. Then

y = −1
2
gt2 which can be written as t =

√
−2y
g
.

Putting in the numbers, t = 0.62 s is the time of flight from the moment the string breaks. From
this time find the horizontal velocity,

vx =
x

t
=

(11 m)
(0.62 s)

= 18 m/s.

Then the centripetal acceleration is

ac =
v2

r
=

(18 m/s)2

(1.4 m)
= 230 m/s2.

P4-22 (a) The path traced out by her feet has circumference c1 = 2πr cos 50◦, where r is the
radius of the earth; the path traced out by her head has circumference c2 = 2π(r+h) cos 50◦, where
h is her height. The difference is ∆c = 2πh cos 50◦ = 2π(1.6 m) cos 50◦ = 6.46 m.

(b) a = v2/r = (2πr/T )2/r = 4π2r/T 2. Then ∆a = 4π2∆r/T 2. Note that ∆r = h cos θ! Then

∆a = 4π2(1.6 m) cos 50◦/(86400 s)2 = 5.44×10−9m/s2.

P4-23 (a) A cycloid looks something like this:

(b) The position of the particle is given by

~r = (R sinωt+ ωRt)̂i + (R cosωt+R)̂j.

The maximum value of y occurs whenever cosωt = 1. The minimum value of y occurs whenever
cosωt = −1. At either of those times sinωt = 0.

The velocity is the derivative of the displacement vector,

~v = (Rω cosωt+ ωR)̂i + (−Rω sinωt)̂j.

When y is a maximum the velocity simplifies to

~v = (2ωR)̂i + (0)̂j.
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When y is a minimum the velocity simplifies to

~v = (0)̂i + (0)̂j.

The acceleration is the derivative of the velocity vector,

~a = (−Rω2 sinωt)̂i + (−Rω2 cosωt)̂j.

When y is a maximum the acceleration simplifies to

~a = (0)̂i + (−Rω2)̂j.

When y is a minimum the acceleration simplifies to

~a = (0)̂i + (Rω2)̂j.

P4-24 (a) The speed of the car is vc = 15.3 m/s. The snow appears to fall with an angle θ =
arctan(15.3/7.8) = 63◦.

(b) The apparent speed is
√

(15.3)2 + (7.8)2(m/s) = 17.2 m/s.

P4-25 (a) The decimal angles are 89.994250◦ and 89.994278◦. The earth moves in the orbit
around the sun with a speed of v = 2.98×104m/s (Appendix C). The speed of light is then between
c = (2.98×104m/s) tan(89.994250◦) = 2.97×108m/s and c = (2.98×104m/s) tan(89.994278◦) =
2.98×108m/s. This method is highly sensitive to rounding. Calculating the orbital speed from the
radius and period of the Earth’s orbit will likely result in different answers!

P4-26 (a) Total distance is 2l, so t0 = 2l/v.
(b) Assume wind blows east. Time to travel out is t1 = l/(v + u), time to travel back is

t2 = l/(v − u). Total time is sum, or

tE =
l

v + u
+

l

v − u
=

2lv
v2 − u2

=
t0

1− u2/v2
.

If wind blows west the times reverse, but the result is otherwise the same.
(c) Assume wind blows north. The airplane will still have a speed of v relative to the wind, but

it will need to fly with a heading away from east. The speed of the plane relative to the ground will
be
√
v2 − u2. This will be the speed even when it flies west, so

tN =
2l√

v2 − u2
=

t0√
1− u2/v2

.

(d) If u > v the wind sweeps the plane along in one general direction only; it can never fly back.
Sort of like a black hole event horizon.

P4-27 The velocity of the police car with respect to the ground is ~vpg = −76km/ĥi. The velocity
of the motorist with respect the ground is ~vmg = −62 km/hĵ.

The velocity of the motorist with respect to the police car is given by solving

~vmg = ~vmp + ~vpg,

so ~vmp = 76km/ĥi− 62 km/hĵ. This velocity has magnitude

vmp =
√

(76km/h)2 + (−62 km/h)2 = 98 km/h.
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The direction is
θ = arctan(−62 km/h)/(76km/h) = −39◦,

but that is relative to î. We want to know the direction relative to the line of sight. The line of sight
is

α = arctan(57 m)/(41 m) = −54◦

relative to î, so the answer must be 15◦.

P4-28 (a) The velocity of the plane with respect to the air is ~vpa; the velocity of the air with
respect to the ground is ~vag, the velocity of the plane with respect to the ground is ~vpg. Then
~vpg = ~vpa + ~vag. This can be represented by a triangle; since the sides are given we can find the
angle between ~vag and ~vpg (points north) using the cosine law

θ = arccos
(

(135)2 − (135)2 − (70)2

−2(135)(70)

)
= 75◦.

(b) The direction of ~vpa can also be found using the cosine law,

θ = arccos
(

(70)2 − (135)2 − (135)2

−2(135)(135)

)
= 30◦.

56


