E24-1 For isothermal processes the entropy expression is almost trivial, $\Delta S=Q / T$, where if Q is positive (heat flow into system) the entropy increases.

Then $Q=T \Delta S=(405 \mathrm{~K})(46.2 \mathrm{~J} / \mathrm{K})=1.87 \times 10^{4} \mathrm{~J}$.
E24-2 Entropy is a state variable and is path independent, so
(a) $\Delta S_{a b, 2}=\Delta S_{a b, 1}=+0.60 \mathrm{~J} / \mathrm{K}$,
(b) $\Delta S_{b a, 2}=-\Delta S_{a b, 2}=-0.60 \mathrm{~J} / \mathrm{K}$,

E24-3 (a) Heat only enters along the top path, so

$$
Q_{\text {in }}=T \Delta S=(400 \mathrm{~K})(0.6 \mathrm{~J} / \mathrm{K}-0.1 \mathrm{~J} / \mathrm{K})=200 \mathrm{~J}
$$

(b) Heat leaves only bottom path, so

$$
Q_{\mathrm{out}}=T \Delta S=(250 \mathrm{~K})(0.1 \mathrm{~J} / \mathrm{K}-0.6 \mathrm{~J} / \mathrm{K})=-125 \mathrm{~J}
$$

Since $Q+W=0$ for a cyclic path,

$$
W=-Q=-[(200 \mathrm{~J})+(-125 \mathrm{~J})]=-75 \mathrm{~J}
$$

E24-4 (a) The work done for isothermal expansion is given by Eq. 23-18,

$$
W=-(4.00 \mathrm{~mol})(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(410 \mathrm{~K}) \ln \frac{3.45 V_{1}}{V_{1}}=-1.69 \times 10^{4} \mathrm{~J}
$$

(b) For isothermal process, $Q=-W$, then

$$
\Delta S=Q / T=\left(1.69 \times 10^{4} \mathrm{~J}\right) /(410 \mathrm{~K})=41.2 \mathrm{~J} / \mathrm{K}
$$

(c) Entropy change is zero for reversible adiabatic processes.

E24-5 (a) We want to find the heat absorbed, so

$$
Q=m c \Delta T=(1.22 \mathrm{~kg})(387 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})\left(\left(105^{\circ} \mathrm{C}\right)-\left(25.0^{\circ} \mathrm{C}\right)\right)=3.77 \times 10^{4} \mathrm{~J}
$$

(b) We want to find the entropy change, so, according to Eq. 24-1,

$$
\begin{aligned}
\Delta S & =\int_{T_{\mathrm{i}}}^{T_{\mathrm{f}}} \frac{d Q}{T} \\
& =\int_{T_{\mathrm{i}}}^{T_{\mathrm{f}}} \frac{m c d T}{T} \\
& =m c \ln \frac{T_{\mathrm{f}}}{T_{\mathrm{i}}}
\end{aligned}
$$

The entropy change of the copper block is then

$$
\Delta S=m c \ln \frac{T_{\mathrm{f}}}{T_{\mathrm{i}}}=(1.22 \mathrm{~kg})(387 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K}) \ln \frac{(378 \mathrm{~K})}{(298 \mathrm{~K})}=112 \mathrm{~J} / \mathrm{K}
$$

E24-6 $\quad \Delta S=Q / T=m L / T$, so

$$
\Delta S=(0.001 \mathrm{~kg})\left(-333 \times 10^{3} \mathrm{~J} / \mathrm{kg}\right) /(263 \mathrm{~K})=-1.27 \mathrm{~J} / \mathrm{K}
$$

E24-7 Use the first equation on page 551.

$$
n=\frac{\Delta S}{R \ln \left(V_{\mathrm{f}} / V_{\mathrm{i}}\right)}=\frac{(24 \mathrm{~J} / \mathrm{K})}{(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K}) \ln (3.4 / 1.3)}=3.00 \mathrm{~mol}
$$

E24-8 $\quad \Delta S=Q / T_{\mathrm{c}}-Q / T_{\mathrm{h}}$.
(a) $\Delta S=(260 \mathrm{~J})(1 / 100 \mathrm{~K}-1 / 400 \mathrm{~K})=1.95 \mathrm{~J} / \mathrm{K}$.
(b) $\Delta S=(260 \mathrm{~J})(1 / 200 \mathrm{~K}-1 / 400 \mathrm{~K})=0.65 \mathrm{~J} / \mathrm{K}$.
(c) $\Delta S=(260 \mathrm{~J})(1 / 300 \mathrm{~K}-1 / 400 \mathrm{~K})=0.217 \mathrm{~J} / \mathrm{K}$.
(d) $\Delta S=(260 \mathrm{~J})(1 / 360 \mathrm{~K}-1 / 400 \mathrm{~K})=0.0722 \mathrm{~J} / \mathrm{K}$.

E24-9 (a) If the rod is in a steady state we wouldn't expect the entropy of the rod to change. Heat energy is flowing out of the hot reservoir into the rod, but this process happens at a fixed temperature, so the entropy change in the hot reservoir is

$$
\Delta S_{\mathrm{H}}=\frac{Q_{\mathrm{H}}}{T_{\mathrm{H}}}=\frac{(-1200 \mathrm{~J})}{(403 \mathrm{~K})}=-2.98 \mathrm{~J} / \mathrm{K}
$$

The heat energy flows into the cold reservoir, so

$$
\Delta S_{\mathrm{C}}=\frac{Q_{\mathrm{H}}}{T_{\mathrm{H}}}=\frac{(1200 \mathrm{~J})}{(297 \mathrm{~K})}=4.04 \mathrm{~J} / \mathrm{K}
$$

The total change in entropy of the system is the sum of these two terms

$$
\Delta S=\Delta S_{\mathrm{H}}+\Delta S_{\mathrm{C}}=1.06 \mathrm{~J} / \mathrm{K}
$$

(b) Since the rod is in a steady state, nothing is changing, not even the entropy.
$\mathbf{E 2 4 - 1 0}$ (a) $Q_{\mathrm{c}}+Q_{\mathrm{l}}=0$, so

$$
m_{\mathrm{c}} c_{\mathrm{c}}\left(T-T_{\mathrm{c}}\right)+m_{1} c_{\mathrm{l}}\left(T-T_{\mathrm{l}}\right)=0
$$

which can be solved for T to give

$$
T=\frac{(0.05 \mathrm{~kg})(387 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K})(400 \mathrm{~K})+(0.10 \mathrm{~kg})(129 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K})(200 \mathrm{~K})}{(0.05 \mathrm{~kg})(387 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K})+(0.10 \mathrm{~kg})(129 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K})}=320 \mathrm{~K} .
$$

(b) Zero.
(c) $\Delta S=m c \ln T_{\mathrm{f}} / T_{\mathrm{i}}$, so

$$
\Delta S=(0.05 \mathrm{~kg})(387 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K}) \ln \frac{(320 \mathrm{~K})}{(400 \mathrm{~K})}+(0.10 \mathrm{~kg})(129 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K}) \ln \frac{(320 \mathrm{~K})}{(200 \mathrm{~K})}=1.75 \mathrm{~J} / \mathrm{K}
$$

E24-11 The total mass of ice and water is 2.04 kg . If eventually the ice and water have the same mass, then the final state will have 1.02 kg of each. This means that $1.78 \mathrm{~kg}-1.02 \mathrm{~kg}=0.76 \mathrm{~kg}$ of water changed into ice.
(a) The change of water at $0^{\circ} \mathrm{C}$ to ice at $0^{\circ} \mathrm{C}$ is isothermal, so the entropy change is

$$
\Delta S=\frac{Q}{T}=\frac{-m L}{T}=\frac{(0.76 \mathrm{~kg})\left(333 \times 10^{3} \mathrm{~J} / \mathrm{kg}\right)}{(273 \mathrm{~K})}=-927 \mathrm{~J} / \mathrm{K}
$$

(b) The entropy change is now $+927 \mathrm{~J} / \mathrm{K}$.

E24-12 (a) $Q_{\mathrm{a}}+Q_{\mathrm{w}}=0$, so

$$
m_{\mathrm{a}} c_{\mathrm{a}}\left(T-T_{\mathrm{a}}\right)+m_{\mathrm{w}} c_{\mathrm{w}}\left(T-T_{\mathrm{w}}\right)=0,
$$

which can be solved for T to give

$$
T=\frac{(0.196 \mathrm{~kg})(900 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K})(380 \mathrm{~K})+(0.0523 \mathrm{~kg})(4190 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K})(292 \mathrm{~K})}{(0.196 \mathrm{~kg})(900 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K})+(0.0523 \mathrm{~kg})(4190 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K})}=331 \mathrm{~K}
$$

That's the same as $58^{\circ} \mathrm{C}$.
(b) $\Delta S=m c \ln T_{\mathrm{f}} / T_{\mathrm{i}}$, so

$$
\Delta S_{\mathrm{a}}=(0.196 \mathrm{~kg})(900 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K}) \ln \frac{(331 \mathrm{~K})}{(380 \mathrm{~K})}=-24.4 \mathrm{~J} / \mathrm{K}
$$

(c) For the water,

$$
(0.0523 \mathrm{~kg})(4190 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K}) \ln \frac{(331 \mathrm{~K})}{(292 \mathrm{~K})}=27.5 \mathrm{~J} / \mathrm{K}
$$

(d) $\Delta S=(27.5 \mathrm{~J} / \mathrm{K})+(-24.4 \mathrm{~J} / \mathrm{K})=3.1 \mathrm{~J} / \mathrm{K}$.

E24-13 (a) $e=1-(36.2 \mathrm{~J} / 52.4 \mathrm{~J})=0.309$.
(b) $W=Q_{\mathrm{h}}-Q_{\mathrm{c}}=(52.4 \mathrm{~J})-(36.2 \mathrm{~J})=16.2 \mathrm{~J}$.

E24-14 (a) $Q_{\mathrm{h}}=(8.18 \mathrm{~kJ}) /(0.25)=32.7 \mathrm{~kJ}, Q_{\mathrm{c}}=Q_{\mathrm{h}}-W=(32.7 \mathrm{~kJ})-(8.18 \mathrm{~kJ})=24.5 \mathrm{~kJ}$.
(b) $Q_{\mathrm{h}}=(8.18 \mathrm{~kJ}) /(0.31)=26.4 \mathrm{~kJ}, Q_{\mathrm{c}}=Q_{\mathrm{h}}-W=(26.4 \mathrm{~kJ})-(8.18 \mathrm{~kJ})=18.2 \mathrm{~kJ}$.

E24-15 One hour's worth of coal, when burned, will provide energy equal to

$$
\left(382 \times 10^{3} \mathrm{~kg}\right)\left(28.0 \times 10^{6} \mathrm{~J} / \mathrm{kg}\right)=1.07 \times 10^{13} \mathrm{~J}
$$

In this hour, however, the plant only generates

$$
\left(755 \times 10^{6} \mathrm{~W}\right)(3600 s)=2.72 \times 10^{12} \mathrm{~J}
$$

The efficiency is then

$$
e=\left(2.72 \times 10^{12} \mathrm{~J}\right) /\left(1.07 \times 10^{13} \mathrm{~J}\right)=25.4 \%
$$

E24-16 We use the convention that all quantities are positive, regardless of direction. $W_{\mathrm{A}}=5 W_{\mathrm{B}}$; $Q_{\mathrm{i}, \mathrm{A}}=3 Q_{\mathrm{i}, \mathrm{B}}$; and $Q_{\mathrm{o}, \mathrm{A}}=2 Q_{\mathrm{o}, \mathrm{B}}$. But $W_{\mathrm{A}}=Q_{\mathrm{i}, \mathrm{A}}-Q_{\mathrm{o}, \mathrm{A}}$, so

$$
5 W_{\mathrm{B}}=3 Q_{\mathrm{i}, \mathrm{~B}}-2 Q_{\mathrm{o}, \mathrm{~B}},
$$

or, applying $W_{\mathrm{B}}=Q_{\mathrm{i}, \mathrm{B}}-Q_{\mathrm{o}, \mathrm{B}}$,

$$
\begin{aligned}
5 W_{\mathrm{B}} & =3 Q_{\mathrm{i}, \mathrm{~B}}-2\left(Q_{\mathrm{i}, \mathrm{~B}}-W_{\mathrm{B}}\right) \\
3 W_{\mathrm{B}} & =Q_{\mathrm{i}, \mathrm{~B}} \\
W_{\mathrm{B}} / Q_{\mathrm{i}, \mathrm{~B}} & =1 / 3=e_{\mathrm{B}}
\end{aligned}
$$

Then

$$
e_{\mathrm{A}}=\frac{W_{\mathrm{A}}}{Q_{\mathrm{i}, \mathrm{~A}}}=\frac{5 W_{\mathrm{B}}}{3 Q_{\mathrm{i}, \mathrm{~B}}}=\frac{5}{3} \frac{1}{3}=\frac{5}{9} .
$$

E24-17 (a) During an isothermal process $W=-Q=-2090 \mathrm{~J}$. The negative indicates that the gas did work on the environment.
(b) The efficiency is $e=1-(297 \mathrm{~K}) /(412 \mathrm{~K})=0.279$. Then

$$
Q_{\mathrm{o}}=Q_{\mathrm{i}}(1-e)=(2090 \mathrm{~J})[1-(0.279)]=1510 \mathrm{~J}
$$

Since this is rejected heat it should actually be negative.
(c) During an isothermal process $W=-Q=1510 \mathrm{~J}$. Positive indicates that the gas did work on the environment.

E24-18 $1-e=T_{\mathrm{c}} / T_{\mathrm{h}}$, or $T_{\mathrm{c}}=T_{\mathrm{h}}(1-e)$. The difference is

$$
\Delta T=T_{\mathrm{h}}-T_{\mathrm{c}}=T_{\mathrm{h}} e
$$

so $T_{\mathrm{h}}=\left(75 \mathrm{C}^{\circ}\right) /(0.22)=341 \mathrm{~K}$, and

$$
T_{\mathrm{c}}=(341 \mathrm{~K})[(1-(0.22)]=266 \mathrm{~K}
$$

E24-19 The $B C$ and $D A$ processes are both adiabatic; so if we could find an expression for work done during an adiabatic process we might be almost done. But what is an adiabatic process? It is a process for which $Q=0$, so according to the first law

$$
\Delta E_{\mathrm{int}}=W
$$

But for an ideal gas

$$
\Delta E_{\mathrm{int}}=n C_{V} \Delta T
$$

as was pointed out in Table 23-5. So we have

$$
|W|=n C_{V}|\Delta T|
$$

and since the adiabatic paths $B C$ and $D A$ operate between the same two isotherms, we can conclude that the magnitude of the work is the same for both paths.

E24-20 (a) To save typing, assume that all quantities are positive. Then

$$
e_{1}=1-T_{2} / T_{1}
$$

$W_{1}=e_{1} Q_{1}$, and $Q_{2}=Q_{1}-W_{1}$. Not only that, but

$$
e_{2}=1-T_{3} / T_{2}
$$

and $W_{2}=e_{2} Q_{2}$. Combining,

$$
e=\frac{W_{1}+W_{2}}{Q_{1}}=\frac{e_{1} Q_{1}+e_{2}\left(Q_{1}-W_{1}\right)}{Q_{1}}=e_{1}+e_{2}\left(1-e_{1}\right)=e_{1}+e_{2}-e_{1} e_{2}
$$

or

$$
e=1-\frac{T_{2}}{T_{1}}+1-\frac{T_{3}}{T_{2}}-1+\frac{T_{2}}{T_{1}}+\frac{T_{3}}{T_{2}}-\frac{T_{3}}{T_{1}}=1--\frac{T_{3}}{T_{1}} .
$$

(b) $e=1-(311 \mathrm{~K}) /(742 \mathrm{~K})=0.581$.

E24-21 (a) $p_{2}=(16.0 \mathrm{~atm})(1 / 5.6)^{(1.33)}=1.62 \mathrm{~atm}$.
(b) $T_{2}=T_{1}(1 / 5.6)^{(1.33)-1}=(0.567) T_{1}$, so

$$
e=1-(0.567)=0.433
$$

E24-22 (a) The area of the cycle is $\Delta V \Delta p=p_{0} V_{0}$, so the work done by the gas is

$$
W=\left(1.01 \times 10^{5} \mathrm{~Pa}\right)\left(0.0225 \mathrm{~m}^{3}\right)=2270 \mathrm{~J}
$$

(b) Let the temperature at a be T_{a}. Then

$$
T_{b}=T_{a}\left(V_{b} / V_{a}\right)\left(p_{b} / p_{a}\right)=2 T_{a}
$$

Let the temperature at c be T_{c}. Then

$$
T_{c}=T_{a}\left(V_{c} / V_{a}\right)\left(p_{c} / p_{a}\right)=4 T_{a}
$$

Consequently, $\Delta T_{a b}=T_{a}$ and $\Delta T_{b c}=2 T_{a}$. Putting this information into the constant volume and constant pressure heat expressions,

$$
Q_{a b}=\frac{3}{2} n R \Delta T_{a b}=\frac{3}{2} n R T_{a}=\frac{3}{2} p_{a} V_{a}
$$

and

$$
Q_{b c}=\frac{5}{2} n R \Delta T_{b c}=\frac{5}{2} n R 2 T_{a}=5 p_{a} V_{a}
$$

so that $Q_{a c}=\frac{13}{2} p_{0} V_{0}$, or

$$
Q_{a c}=\frac{13}{2}\left(1.01 \times 10^{5} \mathrm{~Pa}\right)\left(0.0225 \mathrm{~m}^{3}\right)=1.48 \times 10^{4} \mathrm{~J}
$$

(c) $e=(2270 \mathrm{~J}) /(14800 \mathrm{~J})=0.153$.
(d) $e_{\mathrm{c}}=1-\left(T_{a} / 4 T_{a}\right)=0.75$.

E24-23 According to Eq. 24-15,

$$
K=\frac{T_{L}}{T_{H}-T_{L}}=\frac{(261 \mathrm{~K})}{(299 \mathrm{~K})-(261 \mathrm{~K})}=6.87
$$

Now we solve the question out of order.
(b) The work required to run the freezer is

$$
|W|=\left|Q_{L}\right| / K=(185 \mathrm{~kJ}) /(5.70)=32.5 \mathrm{~kJ}
$$

(a) The freezer will discharge heat into the room equal to

$$
\left|Q_{L}\right|+|W|=(185 \mathrm{~kJ})+(32.5 \mathrm{~kJ})=218 \mathrm{~kJ}
$$

E24-24 (a) $K=\left|Q_{L}\right| /|W|=(568 \mathrm{~J}) /(153 \mathrm{~J})=3.71$.
(b) $\left|Q_{H}\right|=\left|Q_{L}\right|+|W|=(568 \mathrm{~J})+(153 \mathrm{~J})=721 \mathrm{~J}$.

E24-25 $\quad K=T_{L} /\left(T_{H}-T_{L}\right) ;|W|=\left|Q_{L}\right| / K=\left|Q_{L}\right|\left(T_{H} / T_{L}-1\right)$.
(a) $|W|=(10.0 \mathrm{~J})(300 \mathrm{~K} / 280 \mathrm{~K}-1)=0.714 \mathrm{~J}$.
(b) $|W|=(10.0 \mathrm{~J})(300 \mathrm{~K} / 200 \mathrm{~K}-1)=5.00 \mathrm{~J}$.
(c) $|W|=(10.0 \mathrm{~J})(300 \mathrm{~K} / 100 \mathrm{~K}-1)=20.0 \mathrm{~J}$.
(d) $|W|=(10.0 \mathrm{~J})(300 \mathrm{~K} / 50 \mathrm{~K}-1)=50.0 \mathrm{~J}$.

E24-26 $K=T_{L} /\left(T_{H}-T_{L}\right) ;|W|=\left|Q_{L}\right| / K=\left|Q_{L}\right|\left(T_{H} / T_{L}-1\right)$. Then

$$
\left|Q_{H}\right|=\left|Q_{L}\right|+|W|=\left|Q_{L}\right|\left(T_{H} / T_{L}\right)=(0.150 \mathrm{~J})(296 \mathrm{~K} / 4.0 \mathrm{~K})=11 \mathrm{~J}
$$

E24-27 We will start with the assumption that the air conditioner is a Carnot refrigerator. $K=T_{L} /\left(T_{H}-T_{L}\right) ;|W|=\left|Q_{L}\right| / K=\left|Q_{L}\right|\left(T_{H} / T_{L}-1\right)$. For fun, I'll convert temperature to the absolute Rankine scale! Then

$$
\left|Q_{L}\right|=(1.0 \mathrm{~J}) /\left(555^{\circ} \mathrm{R} / 530^{\circ} \mathrm{R}-1\right)=21 \mathrm{~J}
$$

E24-28 The best coefficient of performance is

$$
K_{\mathrm{c}}=(276 \mathrm{~K}) /(308 \mathrm{~K}-276 \mathrm{~K})=8.62
$$

The inventor claims they have a machine with

$$
K=(20 \mathrm{~kW}-1.9 \mathrm{~kW}) /(1.9 \mathrm{~kW})=9.53
$$

Can't be done.
E24-29 (a) $e=1-(258 \mathrm{~K} / 322 \mathrm{~K})=0.199 .|W|=(568 \mathrm{~J})(0.199)=113 \mathrm{~J}$.
(b) $K=(258 \mathrm{~K}) /(322 \mathrm{~K}-258 \mathrm{~K})=4.03 .|W|=(1230 \mathrm{~J}) /(4.03)=305 \mathrm{~J}$.

E24-30 The temperatures are distractors!

$$
|W|=\left|Q_{H}\right|-\left|Q_{L}\right|=\left|Q_{H}\right|-K|W|
$$

so

$$
|W|=\left|Q_{H}\right| /(1+K)=(7.6 \mathrm{MJ}) /(1+3.8)=1.58 \mathrm{MJ}
$$

Then $P=(1.58 \mathrm{MJ}) /(3600 \mathrm{~s})=440 \mathrm{~W}$.
E24-31 $K=(260 \mathrm{~K}) /(298 \mathrm{~K}-260 \mathrm{~K})=6.8$.
E24-32 $K=(0.85)(270 \mathrm{~K}) /(299 \mathrm{~K}-270 \mathrm{~K})=7.91$. In 15 minutes the motor can do $(210 \mathrm{~W})(900 \mathrm{~s})=$ $1.89 \times 10^{5} \mathrm{~J}$ of work. Then

$$
\left|Q_{L}\right|=K|W|=(7.91)\left(1.89 \times 10^{5} \mathrm{~J}\right)=1.50 \times 10^{6} \mathrm{~J}
$$

E24-33 The Carnot engine has an efficiency

$$
\epsilon=1-\frac{T_{2}}{T_{1}}=\frac{|W|}{\left|Q_{1}\right|} .
$$

The Carnot refrigerator has a coefficient of performance

$$
K=\frac{T_{4}}{T_{3}-T_{4}}=\frac{\left|Q_{4}\right|}{|W|}
$$

Lastly, $\left|Q_{4}\right|=\left|Q_{3}\right|-|W|$. We just need to combine these three expressions into one. Starting with the first, and solving for $|W|$,

$$
|W|=\left|Q_{1}\right| \frac{T_{1}-T_{2}}{T_{1}}
$$

Then we combine the last two expressions, and

$$
\frac{T_{4}}{T_{3}-T_{4}}=\frac{\left|Q_{3}\right|-|W|}{|W|}=\frac{\left|Q_{3}\right|}{|W|}-1
$$

Finally, combine them all,

$$
\frac{T_{4}}{T_{3}-T_{4}}=\frac{\left|Q_{3}\right|}{\left|Q_{1}\right|} \frac{T_{1}}{T_{1}-T_{2}}-1
$$

Now, we rearrange,

$$
\begin{aligned}
\frac{\left|Q_{3}\right|}{\left|Q_{1}\right|} & =\left(\frac{T_{4}}{T_{3}-T_{4}}+1\right) \frac{T_{1}-T_{2}}{T_{1}} \\
& =\left(\frac{T_{3}}{T_{3}-T_{4}}\right) \frac{T_{1}-T_{2}}{T_{1}} \\
& =\left(1-T_{2} / T_{1}\right) /\left(1-T_{4} / T_{3}\right)
\end{aligned}
$$

E24-34 (a) Integrate:

$$
\ln N!\approx \int_{1}^{N} \ln x d x=N \ln N-N+1 \approx N \ln N-N
$$

(b) 91, 752, and about 615,000 . You will need to use the Stirling approximation extended to a double inequality to do the last two:

$$
\sqrt{2 \pi} n^{n+1 / 2} e^{-n+1 /(12 n+1)}<n!<\sqrt{2 \pi} n^{n+1 / 2} e^{-n+1 /(12 n)}
$$

E24-35 (a) For this problem we don't care how the particles are arranged inside a section, we only care how they are divided up between the two sides.

Consequently, there is only one way to arrange the particles: you put them all on one side, and you have no other choices. So the multiplicity in this case is one, or $w_{1}=1$.
(b) Once the particles are allowed to mix we have more work in computing the multiplicity. Using Eq. 24-19, we have

$$
w_{2}=\frac{N!}{(N / 2)!(N / 2)!}=\frac{N!}{((N / 2)!)^{2}}
$$

(c) The entropy of a state of multiplicity w is given by Eq. 24-20,

$$
S=k \ln w
$$

For part (a), with a multiplicity of $1, S_{1}=0$. Now for part (b),

$$
S_{2}=k \ln \left(\frac{N!}{((N / 2)!)^{2}}\right)=k \ln N!-2 k \ln (N / 2)!
$$

and we need to expand each of those terms with Stirling's approximation.
Combining,

$$
\begin{aligned}
S_{2} & ==k(N \ln N-N)-2 k((N / 2) \ln (N / 2)-(N / 2)), \\
& =k N \ln N-k N-k N \ln N+k N \ln 2+k N, \\
& =k N \ln 2
\end{aligned}
$$

Finally, $\Delta S=S_{2}-S_{1}=k N \ln 2$.
(d) The answer should be the same; it is a free expansion problem in both cases!

P24-1 We want to evaluate

$$
\begin{aligned}
\Delta S & =\int_{T_{\mathrm{i}}}^{T_{\mathrm{f}}} \frac{n C_{\mathrm{v}} d T}{T} \\
& =\int_{T_{\mathrm{i}}}^{T_{\mathrm{f}}} \frac{n A T^{3} d T}{T} \\
& =\int_{T_{\mathrm{i}}}^{T_{\mathrm{f}}} n A T^{2} d T \\
& =\frac{n A}{3}\left(T_{\mathrm{f}}^{3}-T_{\mathrm{i}}^{3}\right)
\end{aligned}
$$

Into this last expression, which is true for many substances at sufficiently low temperatures, we substitute the given numbers.

$$
\Delta S=\frac{(4.8 \mathrm{~mol})\left(3.15 \times 10^{-5} \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K}^{4}\right)}{3}\left((10 \mathrm{~K})^{3}-(5.0 \mathrm{~K})^{3}\right)=4.41 \times 10^{-2} \mathrm{~J} / \mathrm{K}
$$

P24-2

P24-3 (a) Work is only done along path $a b$, where $W_{a b}=-p \Delta V=-3 p_{0} \Delta V_{0}$. So $W_{a b c}=-3 p_{0} V_{0}$. (b) $\Delta E_{\int b c}=\frac{3}{2} n R \Delta T_{b c}$, with a little algebra,

$$
\Delta E_{\mathrm{int} b c}=\frac{3}{2}\left(n R T_{c}-n R T_{b}\right)=\frac{3}{2}\left(p_{c} V_{c}-p_{b} V_{b}\right)=\frac{3}{2}(8-4) p_{0} V_{0}=6 p_{0} V_{0}
$$

$\Delta S_{b c}=\frac{3}{2} n R \ln \left(T_{c} / T_{b}\right)$, with a little algebra,

$$
\Delta S_{b c}=\frac{3}{2} n R \ln \left(p_{c} / p_{b}\right)=\frac{3}{2} n R \ln 2
$$

(c) Both are zero for a cyclic process.

P24-4 (a) For an isothermal process,

$$
p_{2}=p_{1}\left(V_{1} / V_{2}\right)=p_{1} / 3
$$

For an adiabatic process,

$$
p_{3}=p_{1}\left(V_{1} / V_{2}\right)^{\gamma}=p_{1}(1 / 3)^{1.4}=0.215 p_{1} .
$$

For a constant volume process,

$$
T_{3}=T_{2}\left(p_{3} / p_{2}\right)=T_{1}(0.215 / 0.333)=0.646 T_{1}
$$

(b) The easiest ones first: $\Delta E_{\mathrm{i}} \mathrm{nt}_{12}=0, W_{23}=0, Q_{31}=0, \Delta S_{31}=0$. The next easier ones:

$$
\begin{gathered}
\Delta E_{\mathrm{i}} \mathrm{nt}_{23}=\frac{5}{2} n R \Delta T_{23}=\frac{5}{2} n R\left(0.646 T_{1}-T_{1}\right)=-0.885 p_{1} V_{1} \\
Q_{23}=\Delta E_{\mathrm{int} 23}-W_{23}=-0.885 p_{1} V_{1} \\
\Delta E_{\mathrm{int} 31}=-\Delta E_{\mathrm{int} 23}-\Delta E_{\mathrm{int}}^{12} \\
=0.885 p_{1} V_{1} \\
W_{31}=\Delta E_{\mathrm{int} 31}-Q_{31}=0.885 p_{1} V_{1}
\end{gathered}
$$

Finally, some harder ones:

$$
\begin{gathered}
W_{12}=-n R T_{1} \ln \left(V_{2} / V_{1}\right)=-p_{1} V_{1} \ln (3)=-1.10 p_{1} V_{1} \\
Q_{12}=\Delta E_{\mathrm{int} 12}-W_{12}=1.10 p_{1} V_{1} .
\end{gathered}
$$

And now, the hardest:

$$
\begin{gathered}
\Delta S_{12}=Q_{12} / T_{1}=1.10 n R \\
\Delta S_{23}=-\Delta S_{12}-\Delta S_{31}=-1.10 n R
\end{gathered}
$$

P24-5 Note that $T_{A}=T_{B}=T_{C} / 4=T_{D}$.
Process I: $A B C$
(a) $Q_{A B}=-W_{A B}=n R T_{0} \ln \left(V_{B} / V_{A}\right)=p_{0} V_{0} \ln 2 . Q_{B C}=\frac{3}{2} n R\left(T_{C}-T_{B}\right)=\frac{3}{2}\left(p_{C} V_{C}-p_{B} V_{B}\right)=$ $\frac{3}{2}\left(4 p_{0} V_{0}-p_{0} V_{0}\right)=4.5 p_{0} V_{0}$.
(b) $W_{A B}=-n R T_{0} \ln \left(V_{B} / V_{A}\right)=-p_{0} V_{0} \ln 2 . W_{B C}=0$.
(c) $E_{\text {int }}=\frac{3}{2} n R\left(T_{C}-T_{A}\right)=\frac{3}{2}\left(p_{C} V_{C}-p_{A} V_{A}\right)=\frac{3}{2}\left(4 p_{0} V_{0}-p_{0} V_{0}\right)=4.5 p_{0} V_{0}$.
(d) $\Delta S_{A B}=n R \ln \left(V_{B} / V_{A}\right)=n R \ln 2 ; \Delta S_{B C}=\frac{3}{2} n R \ln \left(T_{C} / T_{B}\right)=\frac{3}{2} n R \ln 4=3 n R \ln 2$. Then $\Delta S_{A C}=4 n R$.

Process II: $A D C$
(a) $Q_{A D}=-W_{A D}=n R T_{0} \ln \left(V_{D} / V_{A}\right)=-p_{0} V_{0} \ln 2 . \quad Q_{D C}=\frac{5}{2} n R\left(T_{C}-T_{D}\right)=\frac{5}{2}\left(p_{C} V_{C}-\right.$ $\left.p_{D} V_{D}\right)=\frac{5}{2}\left(4 p_{0} V_{0}-p_{0} V_{0}\right)=10 p_{0} V_{0}$.
(b) $W_{A B}=-n R T_{0} \ln \left(V_{D} / V_{A}\right)=p_{0} V_{0} \ln 2 . W_{D C}=-p \Delta V=-p_{0}\left(2 V_{0}-V_{0} / 2\right)=-\frac{3}{2} p_{0} V_{0}$.
(c) $E_{\text {int }}=\frac{3}{2} n R\left(T_{C}-T_{A}\right)=\frac{3}{2}\left(p_{C} V_{C}-p_{A} V_{A}\right)=\frac{3}{2}\left(4 p_{0} V_{0}-p_{0} V_{0}\right)=4.5 p_{0} V_{0}$.
(d) $\Delta S_{A D}=n R \ln \left(V_{D} / V_{A}\right)=-n R \ln 2 ; \Delta S_{D C}=\frac{5}{2} n R \ln \left(T_{C} / T_{D}\right)=\frac{5}{2} n R \ln 4=5 n R \ln 2$. Then $\Delta S_{A C}=4 n R$.

P24-6 The heat required to melt the ice is

$$
\begin{aligned}
Q & =m\left(c_{\mathrm{w}} \Delta T_{23}+L+c_{\mathrm{i}} \Delta T_{12}\right) \\
& =(0.0126 \mathrm{~kg})\left[(4190 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K})\left(15 \mathrm{C}^{\circ}\right)+\left(333 \times 10^{3} \mathrm{~J} / \mathrm{kg}\right)+(2220 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K})\left(10 \mathrm{C}^{\circ}\right)\right] \\
& =5270 \mathrm{~J}
\end{aligned}
$$

The change in entropy of the ice is

$$
\begin{aligned}
\Delta S_{\mathrm{i}}= & m\left[c_{\mathrm{w}} \ln \left(T_{3} / T_{2}\right)+L / T_{2}+c_{\mathrm{i}} \ln \left(T_{2} / T_{1}\right)\right] \\
= & (0.0126 \mathrm{~kg})\left[(4190 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K}) \ln (288 / 273)+\left(333 \times 10^{3} \mathrm{~J} / \mathrm{kg}\right) /(273 \mathrm{~K}),\right. \\
& +(2220 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K}) \ln (273 / 263)] \\
= & 19.24 \mathrm{~J} / \mathrm{K}
\end{aligned}
$$

The change in entropy of the lake is $\Delta S_{\mathrm{l}}=(-5270 \mathrm{~J}) /(288 \mathrm{~K})=18.29 \mathrm{~J} / K$. The change in entropy of the system is $0.95 \mathrm{~J} / \mathrm{kg}$.
$\mathbf{P 2 4 - 7}$ (a) This is a problem where the total internal energy of the two objects doesn't change, but since no work is done during the process, we can start with the simpler expression $Q_{1}+Q_{2}=0$. The heat transfers by the two objects are

$$
\begin{aligned}
Q_{1} & =m_{1} c_{1}\left(T_{1}-T_{1, \mathrm{i}}\right) \\
Q_{2} & =m_{2} c_{2}\left(T_{2}-T_{2, \mathrm{i}}\right)
\end{aligned}
$$

Note that we don't call the final temperature T_{f} here, because we are not assuming that the two objects are at equilibrium.

We combine these three equations,

$$
\begin{aligned}
m_{2} c_{2}\left(T_{2}-T_{2, \mathrm{i}}\right) & =-m_{1} c_{1}\left(T_{1}-T_{1, \mathrm{i}}\right) \\
m_{2} c_{2} T_{2} & =m_{2} c_{2} T_{2, \mathrm{i}}+m_{1} c_{1}\left(T_{1, \mathrm{i}}-T_{1}\right) \\
T_{2} & =T_{2, \mathrm{i}}+\frac{m_{1} c_{1}}{m_{2} c_{2}}\left(T_{1, \mathrm{i}}-T_{1}\right)
\end{aligned}
$$

As object 1 "cools down", object 2 "heats up", as expected.
(b) The entropy change of one object is given by

$$
\Delta S=\int_{T_{\mathrm{i}}}^{T_{\mathrm{f}}} \frac{m c d T}{T}=m c \ln \frac{T_{\mathrm{f}}}{T_{\mathrm{i}}}
$$

and the total entropy change for the system will be the sum of the changes for each object, so

$$
\Delta S=m_{1} c_{1} \ln \frac{T_{1}}{T_{\mathrm{i}, 1}}+m_{2} c_{2} \ln \frac{T_{2}}{T_{\mathrm{i}, 2}} .
$$

Into the this last equation we need to substitute the expression for T_{2} in as a function of T_{1}. There's no new physics in doing this, just a mess of algebra.
(c) We want to evaluate $d(\Delta S) / d T_{1}$. To save on algebra we will work with the last expression, remembering that T_{2} is a function, not a variable. Then

$$
\frac{d(\Delta S)}{d T_{1}}=\frac{m_{1} c_{1}}{T_{1}}+\frac{m_{2} c_{2}}{T_{2}} \frac{d T_{2}}{d T_{1}}
$$

We've saved on algebra, but now we need to evaluate $d T_{2} / d T_{1}$. Starting with the results from part (a),

$$
\begin{aligned}
\frac{d T_{2}}{d T_{1}} & =\frac{d}{d T_{1}}\left(T_{2, \mathrm{i}}+\frac{m_{1} c_{1}}{m_{2} c_{2}}\left(T_{1, \mathrm{i}}-T_{1}\right)\right) \\
& =-\frac{m_{1} c_{1}}{m_{2} c_{2}}
\end{aligned}
$$

Now we collect the two results and write

$$
\begin{aligned}
\frac{d(\Delta S)}{d T_{1}} & =\frac{m_{1} c_{1}}{T_{1}}+\frac{m_{2} c_{2}}{T_{2}}\left(-\frac{m_{1} c_{1}}{m_{2} c_{2}}\right) \\
& =m_{1} c_{1}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)
\end{aligned}
$$

We could consider writing T_{2} out in all of its glory, but what would it gain us? Nothing. There is actually considerably more physics in the expression as written, because...
(d) ...we get a maximum for ΔS when $d(\Delta S) / d T_{1}=0$, and this can only occur when $T_{1}=T_{2}$ according to the expression.

P24-8 $T_{b}=\left(10.4 \times 1.01 \times 10^{5} \mathrm{~Pa}\right)\left(1.22 \mathrm{~m}^{3}\right) /(2 \mathrm{~mol})(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K})=7.71 \times 10^{4} \mathrm{~K}$. Maybe not so realistic? T_{a} can be found after finding

$$
p_{c}=p_{b}\left(V_{b} / V_{c}\right)^{\gamma}=\left(10.4 \times 1.01 \times 10^{5} \mathrm{~Pa}\right)(1.22 / 9.13)^{1.67}=3.64 \times 10^{4} \mathrm{~Pa}
$$

Then

$$
T_{a}=T_{b}\left(p_{a} / p_{b}\right)=\left(7.71 \times 10^{4} \mathrm{~K}\right)\left(3.64 \times 10^{4} / 1.05 \times 10^{6}\right)=2.67 \times 10^{3} \mathrm{~K}
$$

Similarly,

$$
T_{c}=T_{a}\left(V_{c} / V_{a}\right)=\left(2.67 \times 10^{3} \mathrm{~K}\right)(9.13 / 1.22)=2.00 \times 10^{4} \mathrm{~K}
$$

(a) Heat is added during process $a b$ only;

$$
Q_{a b}=\frac{3}{2} n R\left(T_{b}-T_{a}\right)=\frac{3}{2}(2 \mathrm{~mol})(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})\left(7.71 \times 10^{4} \mathrm{~K}-2.67 \times 10^{3} \mathrm{~K}\right)=1.85 \times 10^{6} \mathrm{~J}
$$

(b) Heat is removed during process $c a$ only;
$Q_{c a}=\frac{5}{2} n R\left(T_{a}-T_{c}\right)=\frac{5}{2}(2 \mathrm{~mol})(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K})\left(2.67 \times 10^{3} \mathrm{~K}-2.00 \times 10^{4} \mathrm{~K}\right)=-0.721 \times 10^{6} \mathrm{~J}$.
(c) $W=\left|Q_{a b}\right|-\left|Q_{c a}\right|=\left(1.85 \times 10^{6} \mathrm{~J}\right)-\left(0.721 \times 10^{6} \mathrm{~J}\right)=1.13 \times 10^{6} \mathrm{~J}$.
(d) $e=W / Q_{a b}=\left(1.13 \times 10^{6}\right) /\left(1.85 \times 10^{6}\right)=0.611$.

P24-9 The $p V$ diagram for this process is Figure 23-21, except the cycle goes clockwise.
(a) Heat is input during the constant volume heating and the isothermal expansion. During heating,

$$
Q_{1}=\frac{3}{2} n R \Delta T=\frac{3}{2}(1 \mathrm{~mol})(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(600 \mathrm{~K}-300 \mathrm{~K})=3740 \mathrm{~J}
$$

During isothermal expansion,

$$
Q_{2}=-W_{2}=n R T \ln \left(V_{\mathrm{f}} / V_{\mathrm{i}}\right)=(1 \mathrm{~mol})(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(600 \mathrm{~K}) \ln (2)=3460 \mathrm{~J}
$$

so $Q_{\text {in }}=7200 \mathrm{~J}$.
(b) Work is only done during the second and third processes; we've already solved the second, $W_{2}=-3460 \mathrm{~J}$;

$$
W_{3}=-p \Delta V=p_{a} V_{c}-p_{a} V_{a}=n R\left(T_{c}-T_{a}\right)=(1 \mathrm{~mol})(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(600 \mathrm{~K}-300 \mathrm{~K})=2490 \mathrm{~J}
$$

So $W=-970 \mathrm{~J}$.
(c) $e=|W| /\left|Q_{\text {in }}\right|=(970 \mathrm{~J}) /(7200 \mathrm{~J})=0.13$.

P24-10 (a) $T_{b}=T_{a}\left(p_{b} / p_{a}\right)=3 T_{a}$;

$$
\begin{gathered}
T_{c}=T_{b}\left(V_{b} / V_{c}\right)^{\gamma-1}=3 T_{a}(1 / 4)^{0.4}=1.72 T_{a} \\
p_{c}=p_{b}\left(V_{b} / V_{c}\right)^{\gamma}=3 p_{a}(1 / 4)^{1.4}=0.430 p_{a} \\
T_{d}=T_{a}\left(V_{a} / V_{d}\right)^{\gamma-1}=T_{a}(1 / 4)^{0.4}=0.574 T_{a} \\
p_{d}=p_{a}\left(V_{a} / V_{d}\right)^{\gamma}=p_{a}(1 / 4)^{1.4}=0.144 p_{a}
\end{gathered}
$$

(b) Heat in occurs during process $a b$, so $Q_{\mathrm{i}}=\frac{5}{2} n R \Delta T_{a b}=5 n R T_{a}$; Heat out occurs during process $c d$, so $Q_{\mathrm{o}}=\frac{5}{2} n R \Delta T_{c d}=2.87 n R T_{a}$. Then

$$
e=1-\left(2.87 n R T_{a} / 5 n R T_{a}\right)=0.426
$$

P24-11 (c) $\left(V_{B} / V_{A}\right)=\left(p_{A} / p_{B}\right)=(0 / 0.5)=2$. The work done on the gas during the isothermal compression is

$$
W=-n R T \ln \left(V_{B} / V_{A}\right)=-(1 \mathrm{~mol})(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(300 \mathrm{~K}) \ln (2)=-1730 \mathrm{~J}
$$

Since $\Delta E_{\mathrm{int}}=0$ along an isotherm $Q_{\mathrm{h}}=1730 \mathrm{~J}$.
The cycle has an efficiency of $e=1-(100 / 300)=2 / 3$. Then for the cycle,

$$
W=e Q_{\mathrm{h}}=(2 / 3)(1730 \mathrm{~J})=1150 \mathrm{~J}
$$

