
E24-1 For isothermal processes the entropy expression is almost trivial, ∆S = Q/T, where if Q
is positive (heat flow into system) the entropy increases.

Then Q = T∆S = (405 K)(46.2 J/K) = 1.87×104J.

E24-2 Entropy is a state variable and is path independent, so
(a) ∆Sab,2 = ∆Sab,1 = +0.60 J/K,
(b) ∆Sba,2 = −∆Sab,2 = −0.60 J/K,

E24-3 (a) Heat only enters along the top path, so

Qin = T∆S = (400 K)(0.6 J/K− 0.1 J/K) = 200 J.

(b) Heat leaves only bottom path, so

Qout = T∆S = (250 K)(0.1 J/K− 0.6 J/K) = −125 J.

Since Q+W = 0 for a cyclic path,

W = −Q = −[(200 J) + (−125 J)] = −75 J.

E24-4 (a) The work done for isothermal expansion is given by Eq. 23-18,

W = −(4.00 mol)(8.31 J/mol ·K)(410 K) ln
3.45V1

V1
= −1.69×104J.

(b) For isothermal process, Q = −W , then

∆S = Q/T = (1.69×104J)/(410 K) = 41.2 J/K.

(c) Entropy change is zero for reversible adiabatic processes.

E24-5 (a) We want to find the heat absorbed, so

Q = mc∆T = (1.22 kg)(387 J/mol ·K) ((105◦C)− (25.0◦C)) = 3.77×104J.

(b) We want to find the entropy change, so, according to Eq. 24-1,

∆S =
∫ T f

T i

dQ

T
,

=
∫ T f

T i

mcdT

T
,

= mc ln
T f

T i
.

The entropy change of the copper block is then

∆S = mc ln
T f

T i
= (1.22 kg)(387 J/mol ·K) ln

(378 K)
(298 K)

= 112 J/K.

E24-6 ∆S = Q/T = mL/T , so

∆S = (0.001 kg)(−333×103J/kg)/(263 K) = −1.27J/K.
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E24-7 Use the first equation on page 551.

n =
∆S

R ln(V f/V i)
=

(24 J/K)
(8.31 J/mol ·K) ln(3.4/1.3)

= 3.00 mol.

E24-8 ∆S = Q/T c −Q/T h.
(a) ∆S = (260 J)(1/100 K− 1/400 K) = 1.95 J/K.
(b) ∆S = (260 J)(1/200 K− 1/400 K) = 0.65 J/K.
(c) ∆S = (260 J)(1/300 K− 1/400 K) = 0.217 J/K.
(d) ∆S = (260 J)(1/360 K− 1/400 K) = 0.0722 J/K.

E24-9 (a) If the rod is in a steady state we wouldn’t expect the entropy of the rod to change.
Heat energy is flowing out of the hot reservoir into the rod, but this process happens at a fixed
temperature, so the entropy change in the hot reservoir is

∆SH =
QH

TH
=

(−1200 J)
(403 K)

= −2.98 J/K.

The heat energy flows into the cold reservoir, so

∆SC =
QH

TH
=

(1200 J)
(297 K)

= 4.04 J/K.

The total change in entropy of the system is the sum of these two terms

∆S = ∆SH + ∆SC = 1.06 J/K.

(b) Since the rod is in a steady state, nothing is changing, not even the entropy.

E24-10 (a) Qc +Ql = 0, so

mccc(T − T c) +mlcl(T − T l) = 0,

which can be solved for T to give

T =
(0.05 kg)(387 J/kg ·K)(400 K) + (0.10 kg)(129 J/kg ·K)(200 K)

(0.05 kg)(387 J/kg ·K) + (0.10 kg)(129 J/kg ·K)
= 320 K.

(b) Zero.
(c) ∆S = mc lnT f/T i, so

∆S = (0.05 kg)(387 J/kg ·K) ln
(320 K)
(400 K)

+ (0.10 kg)(129 J/kg ·K) ln
(320 K)
(200 K)

= 1.75 J/K.

E24-11 The total mass of ice and water is 2.04 kg. If eventually the ice and water have the same
mass, then the final state will have 1.02 kg of each. This means that 1.78 kg − 1.02 kg = 0.76 kg of
water changed into ice.

(a) The change of water at 0◦C to ice at 0◦C is isothermal, so the entropy change is

∆S =
Q

T
=
−mL
T

=
(0.76 kg)(333×103J/kg)

(273 K)
= −927 J/K.

(b) The entropy change is now +927 J/K.
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E24-12 (a) Qa +Qw = 0, so

maca(T − T a) +mwcw(T − Tw) = 0,

which can be solved for T to give

T =
(0.196 kg)(900 J/kg ·K)(380 K) + (0.0523 kg)(4190 J/kg ·K)(292 K)

(0.196 kg)(900 J/kg ·K) + (0.0523 kg)(4190 J/kg ·K)
= 331 K.

That’s the same as 58◦C.
(b) ∆S = mc lnT f/T i, so

∆Sa = (0.196 kg)(900 J/kg ·K) ln
(331 K)
(380 K)

= −24.4 J/K.

(c) For the water,

(0.0523 kg)(4190 J/kg ·K) ln
(331 K)
(292 K)

= 27.5 J/K.

(d) ∆S = (27.5 J/K) + (−24.4 J/K) = 3.1 J/K.

E24-13 (a) e = 1− (36.2 J/52.4 J) = 0.309.
(b) W = Qh −Qc = (52.4 J)− (36.2 J) = 16.2 J.

E24-14 (a) Qh = (8.18 kJ)/(0.25) = 32.7 kJ, Qc = Qh −W = (32.7 kJ)− (8.18 kJ) = 24.5 kJ.
(b) Qh = (8.18 kJ)/(0.31) = 26.4 kJ, Qc = Qh −W = (26.4 kJ)− (8.18 kJ) = 18.2 kJ.

E24-15 One hour’s worth of coal, when burned, will provide energy equal to

(382×103kg)(28.0×106J/kg) = 1.07×1013J.

In this hour, however, the plant only generates

(755×106 W)(3600 s) = 2.72×1012J.

The efficiency is then
e = (2.72×1012J)/(1.07×1013J) = 25.4%.

E24-16 We use the convention that all quantities are positive, regardless of direction. WA = 5WB;
Qi,A = 3Qi,B; and Qo,A = 2Qo,B. But WA = Qi,A −Qo,A, so

5WB = 3Qi,B − 2Qo,B,

or, applying WB = Qi,B −Qo,B,

5WB = 3Qi,B − 2(Qi,B −WB),
3WB = Qi,B,

WB/Qi,B = 1/3 = eB.

Then
eA =

WA

Qi,A
=

5WB

3Qi,B
=

5
3

1
3

=
5
9
.
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E24-17 (a) During an isothermal process W = −Q = −2090 J. The negative indicates that the
gas did work on the environment.

(b) The efficiency is e = 1− (297 K)/(412 K) = 0.279. Then

Qo = Qi(1− e) = (2090 J)[1− (0.279)] = 1510 J.

Since this is rejected heat it should actually be negative.
(c) During an isothermal process W = −Q = 1510 J. Positive indicates that the gas did work on

the environment.

E24-18 1− e = T c/T h, or T c = T h(1− e). The difference is

∆T = T h − T c = T he,

so T h = (75 C◦)/(0.22) = 341 K, and

T c = (341 K)[(1− (0.22)] = 266 K.

E24-19 The BC and DA processes are both adiabatic; so if we could find an expression for work
done during an adiabatic process we might be almost done. But what is an adiabatic process? It is
a process for which Q = 0, so according to the first law

∆Eint = W.

But for an ideal gas
∆Eint = nCV ∆T,

as was pointed out in Table 23-5. So we have

|W | = nCV |∆T |

and since the adiabatic paths BC and DA operate between the same two isotherms, we can conclude
that the magnitude of the work is the same for both paths.

E24-20 (a) To save typing, assume that all quantities are positive. Then

e1 = 1− T2/T1,

W1 = e1Q1, and Q2 = Q1 −W1. Not only that, but

e2 = 1− T3/T2,

and W2 = e2Q2. Combining,

e =
W1 +W2

Q1
=
e1Q1 + e2(Q1 −W1)

Q1
= e1 + e2(1− e1) = e1 + e2 − e1e2,

or
e = 1− T2

T1
+ 1− T3

T2
− 1 +

T2

T1
+
T3

T2
− T3

T1
= 1−−T3

T1
.

(b) e = 1− (311 K)/(742 K) = 0.581.

E24-21 (a) p2 = (16.0 atm)(1/5.6)(1.33) = 1.62 atm.
(b) T2 = T1(1/5.6)(1.33)−1 = (0.567)T1, so

e = 1− (0.567) = 0.433.
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E24-22 (a) The area of the cycle is ∆V∆p = p0V0, so the work done by the gas is

W = (1.01×105Pa)(0.0225 m3) = 2270 J.

(b) Let the temperature at a be Ta. Then

Tb = Ta(Vb/Va)(pb/pa) = 2Ta.

Let the temperature at c be Tc. Then

Tc = Ta(Vc/Va)(pc/pa) = 4Ta.

Consequently, ∆Tab = Ta and ∆Tbc = 2Ta. Putting this information into the constant volume and
constant pressure heat expressions,

Qab =
3
2
nR∆Tab =

3
2
nRTa =

3
2
paVa,

and
Qbc =

5
2
nR∆Tbc =

5
2
nR2Ta = 5paVa,

so that Qac = 13
2 p0V0, or

Qac =
13
2

(1.01×105Pa)(0.0225 m3) = 1.48×104J.

(c) e = (2270 J)/(14800 J) = 0.153.
(d) ec = 1− (Ta/4Ta) = 0.75.

E24-23 According to Eq. 24-15,

K =
TL

TH − TL
=

(261 K)
(299 K)− (261 K)

= 6.87

Now we solve the question out of order.
(b) The work required to run the freezer is

|W | = |QL|/K = (185 kJ)/(5.70) = 32.5 kJ.

(a) The freezer will discharge heat into the room equal to

|QL|+ |W | = (185 kJ) + (32.5 kJ) = 218 kJ.

E24-24 (a) K = |QL|/|W | = (568 J)/(153 J) = 3.71.
(b) |QH | = |QL|+ |W | = (568 J) + (153 J) = 721 J.

E24-25 K = TL/(TH − TL); |W | = |QL|/K = |QL|(TH/TL − 1).
(a) |W | = (10.0 J)(300 K/280K− 1) = 0.714 J.
(b) |W | = (10.0 J)(300 K/200K− 1) = 5.00 J.
(c) |W | = (10.0 J)(300 K/100K− 1) = 20.0 J.
(d) |W | = (10.0 J)(300 K/50K− 1) = 50.0 J.

E24-26 K = TL/(TH − TL); |W | = |QL|/K = |QL|(TH/TL − 1). Then

|QH | = |QL|+ |W | = |QL|(TH/TL) = (0.150 J)(296 K/4.0 K) = 11 J.
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E24-27 We will start with the assumption that the air conditioner is a Carnot refrigerator.
K = TL/(TH − TL); |W | = |QL|/K = |QL|(TH/TL − 1). For fun, I’ll convert temperature to the
absolute Rankine scale! Then

|QL| = (1.0 J)/(555◦R/530◦R− 1) = 21 J.

E24-28 The best coefficient of performance is

Kc = (276 K)/(308 K− 276 K) = 8.62.

The inventor claims they have a machine with

K = (20 kW− 1.9kW)/(1.9 kW) = 9.53.

Can’t be done.

E24-29 (a) e = 1− (258 K/322 K) = 0.199. |W | = (568 J)(0.199) = 113 J.
(b) K = (258 K)/(322 K− 258 K) = 4.03. |W | = (1230 J)/(4.03) = 305 J.

E24-30 The temperatures are distractors!

|W | = |QH | − |QL| = |QH | −K|W |,

so
|W | = |QH |/(1 +K) = (7.6 MJ)/(1 + 3.8) = 1.58 MJ.

Then P = (1.58 MJ)/(3600 s) = 440 W.

E24-31 K = (260 K)/(298 K− 260 K) = 6.8.

E24-32 K = (0.85)(270K)/(299K−270K) = 7.91. In 15 minutes the motor can do (210 W)(900 s) =
1.89×105J of work. Then

|QL| = K|W | = (7.91)(1.89×105J) = 1.50×106J.

E24-33 The Carnot engine has an efficiency

ε = 1− T2

T1
=
|W |
|Q1|

.

The Carnot refrigerator has a coefficient of performance

K =
T4

T3 − T4
=
|Q4|
|W |

.

Lastly, |Q4| = |Q3| − |W |. We just need to combine these three expressions into one. Starting with
the first, and solving for |W |,

|W | = |Q1|
T1 − T2

T1
.

Then we combine the last two expressions, and

T4

T3 − T4
=
|Q3| − |W |
|W |

=
|Q3|
|W |

− 1.
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Finally, combine them all,
T4

T3 − T4
=
|Q3|
|Q1|

T1

T1 − T2
− 1.

Now, we rearrange,

|Q3|
|Q1|

=
(

T4

T3 − T4
+ 1
)
T1 − T2

T1
,

=
(

T3

T3 − T4

)
T1 − T2

T1
,

= (1− T2/T1)/(1− T4/T3).

E24-34 (a) Integrate:

lnN ! ≈
∫ N

1

lnx dx = N lnN −N + 1 ≈ N lnN −N.

(b) 91, 752, and about 615,000. You will need to use the Stirling approximation extended to a
double inequality to do the last two:

√
2πnn+1/2e−n+1/(12n+1) < n! <

√
2πnn+1/2e−n+1/(12n).

E24-35 (a) For this problem we don’t care how the particles are arranged inside a section, we
only care how they are divided up between the two sides.

Consequently, there is only one way to arrange the particles: you put them all on one side, and
you have no other choices. So the multiplicity in this case is one, or w1 = 1.

(b) Once the particles are allowed to mix we have more work in computing the multiplicity.
Using Eq. 24-19, we have

w2 =
N !

(N/2)!(N/2)!
=

N !
((N/2)!)2

(c) The entropy of a state of multiplicity w is given by Eq. 24-20,

S = k lnw

For part (a), with a multiplicity of 1, S1 = 0. Now for part (b),

S2 = k ln

(
N !

((N/2)!)2

)
= k lnN !− 2k ln(N/2)!

and we need to expand each of those terms with Stirling’s approximation.
Combining,

S2 = = k (N lnN −N)− 2k ((N/2) ln(N/2)− (N/2)) ,
= kNlnN − kN − kN lnN + kN ln 2 + kN,

= kN ln 2

Finally, ∆S = S2 − S1 = kN ln 2.
(d) The answer should be the same; it is a free expansion problem in both cases!
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P24-1 We want to evaluate

∆S =
∫ T f

T i

nCV dT

T
,

=
∫ T f

T i

nAT 3 dT

T
,

=
∫ T f

T i

nAT 2 dT ,

=
nA

3
(
T f

3 − T i
3
)
.

Into this last expression, which is true for many substances at sufficiently low temperatures, we
substitute the given numbers.

∆S =
(4.8 mol)(3.15×10−5J/mol ·K4)

3
(
(10 K)3 − (5.0 K)3

)
= 4.41×10−2J/K.

P24-2

P24-3 (a) Work is only done along path ab, where Wab = −p∆V = −3p0∆V0. So Wabc = −3p0V0.
(b) ∆E∫ bc = 3

2nR∆Tbc, with a little algebra,

∆Eintbc =
3
2

(nRTc − nRTb) =
3
2

(pcVc − pbVb) =
3
2

(8− 4)p0V0 = 6p0V0.

∆Sbc = 3
2nR ln(Tc/Tb), with a little algebra,

∆Sbc =
3
2
nR ln(pc/pb) =

3
2
nR ln 2.

(c) Both are zero for a cyclic process.

P24-4 (a) For an isothermal process,

p2 = p1(V1/V2) = p1/3.

For an adiabatic process,

p3 = p1(V1/V2)γ = p1(1/3)1.4 = 0.215p1.

For a constant volume process,

T3 = T2(p3/p2) = T1(0.215/0.333) = 0.646T1.

(b) The easiest ones first: ∆Eint12 = 0, W23 = 0, Q31 = 0, ∆S31 = 0. The next easier ones:

∆Eint23 =
5
2
nR∆T23 =

5
2
nR(0.646T1 − T1) = −0.885p1V1,

Q23 = ∆Eint23 −W23 = −0.885p1V1,

∆Eint31 = −∆Eint23 −∆Eint12 = 0.885p1V1,

W31 = ∆Eint31 −Q31 = 0.885p1V1.
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Finally, some harder ones:

W12 = −nRT1 ln(V2/V1) = −p1V1 ln(3) = −1.10p1V1,

Q12 = ∆Eint12 −W12 = 1.10p1V1.

And now, the hardest:
∆S12 = Q12/T1 = 1.10nR,

∆S23 = −∆S12 −∆S31 = −1.10nR.

P24-5 Note that TA = TB = TC/4 = TD.
Process I: ABC
(a) QAB = −WAB = nRT0 ln(VB/VA) = p0V0 ln 2. QBC = 3

2nR(TC −TB) = 3
2 (pCVC − pBVB) =

3
2 (4p0V0 − p0V0) = 4.5p0V0.

(b) WAB = −nRT0 ln(VB/VA) = −p0V0 ln 2. WBC = 0.
(c) Eint = 3

2nR(TC − TA) = 3
2 (pCVC − pAVA) = 3

2 (4p0V0 − p0V0) = 4.5p0V0.
(d) ∆SAB = nR ln(VB/VA) = nR ln 2; ∆SBC = 3

2nR ln(TC/TB) = 3
2nR ln 4 = 3nR ln 2. Then

∆SAC = 4nR.
Process II: ADC
(a) QAD = −WAD = nRT0 ln(VD/VA) = −p0V0 ln 2. QDC = 5

2nR(TC − TD) = 5
2 (pCVC −

pDVD) = 5
2 (4p0V0 − p0V0) = 10p0V0.

(b) WAB = −nRT0 ln(VD/VA) = p0V0 ln 2. WDC = −p∆V = −p0(2V0 − V0/2) = − 3
2p0V0.

(c) Eint = 3
2nR(TC − TA) = 3

2 (pCVC − pAVA) = 3
2 (4p0V0 − p0V0) = 4.5p0V0.

(d) ∆SAD = nR ln(VD/VA) = −nR ln 2; ∆SDC = 5
2nR ln(TC/TD) = 5

2nR ln 4 = 5nR ln 2. Then
∆SAC = 4nR.

P24-6 The heat required to melt the ice is

Q = m(cw∆T23 + L+ ci∆T12),
= (0.0126 kg)[(4190 J/kg ·K)(15 C◦) + (333×103J/kg) + (2220 J/kg ·K)(10 C◦)],
= 5270 J.

The change in entropy of the ice is

∆Si = m[cw ln(T3/T2) + L/T2 + ci ln(T2/T1)],
= (0.0126kg)[(4190J/kg·K) ln(288/273) + (333×103J/kg)/(273K),

+(2220J/kg·K) ln(273/263)],
= 19.24 J/K

The change in entropy of the lake is ∆Sl = (−5270 J)/(288 K) = 18.29 J/K. The change in entropy
of the system is 0.95 J/kg.

P24-7 (a) This is a problem where the total internal energy of the two objects doesn’t change,
but since no work is done during the process, we can start with the simpler expression Q1 +Q2 = 0.
The heat transfers by the two objects are

Q1 = m1c1(T 1 − T 1,i),
Q2 = m2c2(T 2 − T 2,i).

Note that we don’t call the final temperature T f here, because we are not assuming that the two
objects are at equilibrium.
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We combine these three equations,

m2c2(T 2 − T 2,i) = −m1c1(T 1 − T 1,i),
m2c2T2 = m2c2T 2,i +m1c1(T 1,i − T 1),

T2 = T 2,i +
m1c1
m2c2

(T 1,i − T 1)

As object 1 “cools down”, object 2 “heats up”, as expected.
(b) The entropy change of one object is given by

∆S =
∫ T f

T i

mcdT

T
= mc ln

T f

T i
,

and the total entropy change for the system will be the sum of the changes for each object, so

∆S = m1c1 ln
T 1

T i,1
+m2c2 ln

T 2

T i,2
.

Into the this last equation we need to substitute the expression for T2 in as a function of T1. There’s
no new physics in doing this, just a mess of algebra.

(c) We want to evaluate d(∆S)/dT1. To save on algebra we will work with the last expression,
remembering that T2 is a function, not a variable. Then

d(∆S)
dT1

=
m1c1
T1

+
m2c2
T2

dT2

dT1
.

We’ve saved on algebra, but now we need to evaluate dT2/dT1. Starting with the results from part
(a),

dT2

dT1
=

d

dT1

(
T 2,i +

m1c1
m2c2

(T 1,i − T 1)
)
,

= −m1c1
m2c2

.

Now we collect the two results and write

d(∆S)
dT1

=
m1c1
T1

+
m2c2
T2

(
−m1c1
m2c2

)
,

= m1c1

(
1
T1
− 1
T2

)
.

We could consider writing T2 out in all of its glory, but what would it gain us? Nothing. There is
actually considerably more physics in the expression as written, because...

(d) ...we get a maximum for ∆S when d(∆S)/dT1 = 0, and this can only occur when T1 = T2

according to the expression.

P24-8 Tb = (10.4 × 1.01×105Pa)(1.22 m3)/(2 mol)(8.31 J/mol · K) = 7.71×104K. Maybe not so
realistic? Ta can be found after finding

pc = pb(Vb/Vc)γ = (10.4× 1.01×105Pa)(1.22/9.13)1.67 = 3.64×104Pa,

Then
Ta = Tb(pa/pb) = (7.71×104K)(3.64×104/1.05×106) = 2.67×103K.
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Similarly,
Tc = Ta(Vc/Va) = (2.67×103K)(9.13/1.22) = 2.00×104K.

(a) Heat is added during process ab only;

Qab =
3
2
nR(Tb − Ta) =

3
2

(2 mol)(8.31 J/mol ·K)(7.71×104K− 2.67×103K) = 1.85×106J.

(b) Heat is removed during process ca only;

Qca =
5
2
nR(Ta − Tc) =

5
2

(2 mol)(8.31 J/mol ·K)(2.67×103K− 2.00×104K) = −0.721×106J.

(c) W = |Qab| − |Qca| = (1.85×106J)− (0.721×106J) = 1.13×106J.
(d) e = W/Qab = (1.13×106)/(1.85×106) = 0.611.

P24-9 The pV diagram for this process is Figure 23-21, except the cycle goes clockwise.
(a) Heat is input during the constant volume heating and the isothermal expansion. During

heating,

Q1 =
3
2
nR∆T =

3
2

(1 mol)(8.31 J/mol ·K)(600 K− 300 K) = 3740 J;

During isothermal expansion,

Q2 = −W2 = nRT ln(V f/V i) = (1 mol)(8.31 J/mol ·K)(600 K) ln(2) = 3460 J;

so Qin = 7200 J.
(b) Work is only done during the second and third processes; we’ve already solved the second,

W2 = −3460 J;

W3 = −p∆V = paVc − paVa = nR(Tc − Ta) = (1 mol)(8.31 J/mol ·K)(600 K− 300 K) = 2490 J;

So W = −970 J.
(c) e = |W |/|Qin| = (970 J)/(7200 J) = 0.13.

P24-10 (a) Tb = Ta(pb/pa) = 3Ta;

Tc = Tb(Vb/Vc)γ−1 = 3Ta(1/4)0.4 = 1.72Ta;

pc = pb(Vb/Vc)γ = 3pa(1/4)1.4 = 0.430pa;

Td = Ta(Va/Vd)γ−1 = Ta(1/4)0.4 = 0.574Ta;

pd = pa(Va/Vd)γ = pa(1/4)1.4 = 0.144pa.

(b) Heat in occurs during process ab, so Qi = 5
2nR∆Tab = 5nRTa; Heat out occurs during

process cd, so Qo = 5
2nR∆Tcd = 2.87nRTa. Then

e = 1− (2.87nRTa/5nRTa) = 0.426.

P24-11 (c) (VB/VA) = (pA/pB) = (0/0.5) = 2. The work done on the gas during the isothermal
compression is

W = −nRT ln(VB/VA) = −(1 mol)(8.31 J/mol ·K)(300 K) ln(2) = −1730 J.

Since ∆Eint = 0 along an isotherm Qh = 1730 J.
The cycle has an efficiency of e = 1− (100/300) = 2/3. Then for the cycle,

W = eQh = (2/3)(1730 J) = 1150 J.
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