
E23-1 We apply Eq. 23-1,

H = kA
∆T
∆x

The rate at which heat flows out is given as a power per area (mW/m2), so the quantity given is
really H/A. Then the temperature difference is

∆T =
H

A

∆x
k

= (0.054 W/m2)
(33, 000 m)

(2.5 W/m ·K)
= 710 K

The heat flow is out, so that the temperature is higher at the base of the crust. The temperature
there is then

710 + 10 = 720 ◦C.

E23-2 We apply Eq. 23-1,

H = kA
∆T
∆x

= (0.74 W/m ·K)(6.2 m)(3.8 m)
(44 C◦)
(0.32 m)

= 2400 W.

E23-3 (a) ∆T/∆x = (136 C◦)/(0.249 m) = 546 C◦/m.
(b) H = kA∆T/∆x = (401 W/m ·K)(1.80 m2)(546 C◦/m) = 3.94×105W.
(c) TH = (−12◦C + 136 C◦) = 124◦C. Then

T = (124◦C)− (546 C◦/m)(0.11 m) = 63.9◦C.

E23-4 (a) H = (0.040 W/m ·K)(1.8 m2)(32 C◦)/(0.012 m) = 190 W.
(b) Since k has increased by a factor of (0.60)/(0.04) = 15 then H should also increase by a

factor of 15.

E23-5 There are three possible arrangements: a sheet of type 1 with a sheet of type 1; a sheet
of type 2 with a sheet of type 2; and a sheet of type 1 with a sheet of type 2. We can look back on
Sample Problem 23-1 to see how to start the problem; the heat flow will be

H12 =
A∆T

(L/k1) + (L/k2)

for substances of different types; and

H11 =
A∆T/L

(L/k1) + (L/k1)
=

1
2
A∆Tk1

L

for a double layer if substance 1. There is a similar expression for a double layer of substance 2.
For configuration (a) we then have

H11 +H22 =
1
2
A∆Tk1

L
+

1
2
A∆Tk2

L
=
A∆T

2L
(k1 + k2),

while for configuration (b) we have

H12 +H21 = 2
A∆T

(L/k1) + (L/k2)
=

2A∆T
L

((1/k1) + (1/k2))−1
.

We want to compare these, so expanding the relevant part of the second configuration

((1/k1) + (1/k2))−1 = ((k1 + k2)/(k2k2))−1 =
k1k2

k1 + k2
.
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Then which is larger

(k1 + k2)/2 or
2k1k2

k1 + k2
?

If k1 � k2 then the expression become

k1/2 and 2k2,

so the first expression is larger, and therefore configuration (b) has the lower heat flow. Notice that
we get the same result if k1 � k2!

E23-6 There’s a typo in the exercise.
H = A∆T/R; since the heat flows through one slab and then through the other, we can write

(T1 − Tx)/R1 = (Tx − T2)/R2. Rearranging,

Tx = (T1R2 + T2R1)/(R1 +R2).

E23-7 Use the results of Exercise 23-6. At the interface between ice and water Tx = 0◦C. Then
R1T2 +R2T1 = 0, or k1T1/L1 + k2T2/L2 = 0. Not only that, L1 + L2 = L, so

k1T1L2 + (L− L2)k2T2 = 0,

so

L2 =
(1.42 m)(1.67 W/m ·K)(−5.20◦C)

(1.67 W/m ·K)(−5.20◦C)− (0.502 W/m ·K)(3.98◦C)
= 1.15 m.

E23-8 ∆T is the same in both cases. So is k. The top configuration has Ht = kA∆T/(2L). The
bottom configuration has Hb = k(2A)∆T/L. The ratio of Hb/Ht = 4, so heat flows through the
bottom configuration at 4 times the rate of the top. For the top configuration Ht = (10 J)/(2 min) =
5 J/min. Then Hb = 20 J/min. It will take

t = (30 J)/(20 J/min) = 1.5 min.

E23-9 (a) This exercise has a distraction: it asks about the heat flow through the window, but
what you need to find first is the heat flow through the air near the window. We are given the
temperature gradient both inside and outside the window. Inside,

∆T
∆x

=
(20◦C)− (5◦C)

(0.08 m)
= 190 C◦/m;

a similar expression exists for outside.
From Eq. 23-1 we find the heat flow through the air;

H = kA
∆T
∆x

= (0.026 W/m ·K)(0.6 m)2(190 C◦/m) = 1.8 W.

The value that we arrived at is the rate that heat flows through the air across an area the size of
the window on either side of the window. This heat flow had to occur through the window as well,
so

H = 1.8 W

answers the window question.
(b) Now that we know the rate that heat flows through the window, we are in a position to find

the temperature difference across the window. Rearranging Eq. 32-1,

∆T =
H∆x
kA

=
(1.8 W)(0.005 m)

(1.0 W/m ·K)(0.6 m)2
= 0.025 C◦,

so we were well justified in our approximation that the temperature drop across the glass is very
small.
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E23-10 (a) W = +214 J, done on means positive.
(b) Q = −293 J, extracted from means negative.
(c) ∆Eint = Q+W = (−293 J) + (+214 J) = −79.0 J.

E23-11 (a) ∆Eint along any path between these two points is

∆Eint = Q+W = (50 J) + (−20 J) = 30 J.

Then along ibf W = (30 J)− (36 J) = −6 J.
(b) Q = (−30 J)− (+13 J) = −43 J.
(c) Eint,f = Eint,i + ∆Eint = (10 J) + (30 J) = 40 J.
(d) ∆Eintib = (22 J) − (10 J) = 12 J; while ∆Eintbf = (40 J) − (22 J) = 18 J. There is no work

done on the path bf , so

Qbf = ∆Eintbf −Wbf = (18 J)− (0) = 18 J,

and Qib = Qibf −Qbf = (36 J)− (18 J) = 18 J.

E23-12 Q = mL = (0.10)(2.1×108 kg)(333×103J/kg) = 7.0×1012J.

E23-13 We don’t need to know the outside temperature because the amount of heat energy
required is explicitly stated: 5.22 GJ. We just need to know how much water is required to transfer
this amount of heat energy. Use Eq. 23-11, and then

m =
Q

c∆T
=

(5.22× 109 J)
(4190 J/kg ·K)(50.0◦C− 22.0◦C)

= 4.45× 104 kg.

This is the mass of the water, we want to know the volume, so we’ll use the density, and then

V =
m

ρ
=

(4.45× 104 kg)
(998 kg/m3)

= 44.5 m3.

E23-14 The heat energy required is Q = mc∆T . The time required is t = Q/P . Then

t =
(0.136 kg)(4190 J/kg ·K)(100◦C− 23.5◦C)

(220 W)
= 198 s.

E23-15 Q = mL, so m = (50.4×103J)/(333×103J/kg) = 0.151 kg is the mount which freezes.
Then (0.258 kg)− (0.151 kg) = 0.107 kg is the amount which does not freeze.

E23-16 (a) W = mg∆y; if |Q| = |W |, then

∆T =
mg∆y
mc

=
(9.81 m/s2)(49.4 m)

(4190 J/kg ·K)
= 0.112 C◦.

E23-17 There are three “things” in this problem: the copper bowl (b), the water (w), and the
copper cylinder (c). The total internal energy changes must add up to zero, so

∆Eint,b + ∆Eint,w + ∆Eint,c = 0.

As in Sample Problem 23-3, no work is done on any object, so

Qb +Qw +Qc = 0.
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The heat transfers for these three objects are

Qb = mbcb(T f,b − T i,b),
Qw = mwcw(T f,w − T i,w) + Lvm2,

Qc = mccc(T f,c − T i,c).

For the most part, this looks exactly like the presentation in Sample Problem 23-3; but there is an
extra term in the second line. This term reflects the extra heat required to vaporize m2 = 4.70 g of
water at 100◦C into steam 100◦C.

Some of the initial temperatures are specified in the exercise: T i,b = T i,w = 21.0◦C and T f,b =
T f,w = T f,c = 100◦C.

(a) The heat transferred to the water, then, is

Qw = (0.223 kg)(4190 J/kg·K) ((100◦C)− (21.0◦C)) ,
+(2.26×106J/kg)(4.70×10−3kg),

= 8.44× 104 J.

This answer differs from the back of the book. I think that they (or was it me) used the latent heat
of fusion when they should have used the latent heat of vaporization!

(b) The heat transfered to the bowl, then, is

Qw = (0.146 kg)(387 J/kg ·K) ((100◦C)− (21.0◦C)) = 4.46× 103 J.

(c) The heat transfered from the cylinder was transfered into the water and bowl, so

Qc = −Qb −Qw = −(4.46× 103 J)− (8.44× 104 J) = −8.89× 104 J.

The initial temperature of the cylinder is then given by

T i,c = T f,c −
Qc

mccc
= (100◦C)− (−8.89× 104 J)

(0.314 kg)(387 J/kg ·K)
= 832◦C.

E23-18 The temperature of the silver must be raised to the melting point and then the heated
silver needs to be melted. The heat required is

Q = mL+mc∆T = (0.130 kg)[(105×103J/kg) + (236 J/kg ·K)(1235 K− 289 K)] = 4.27×104J.

E23-19 (a) Use Q = mc∆T , m = ρV , and t = Q/P . Then

t =
[maca + ρwV wcw]∆T

P
,

=
[(0.56 kg)(900 J/kg·K) + (998 kg/m3)(0.64×10−3m3)(4190 J/kg·K)](100◦C− 12◦C)

(2400 W)
= 117 s.

(b) Use Q = mL, m = ρV , and t = Q/P . Then

t =
ρwV wLw

P
=

(998 kg/m3)(0.640×10−3m3)(2256×103 J/kg)
(2400 W)

= 600 s

is the additional time required.
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E23-20 The heat given off by the steam will be

Qs = msLv +mscw(50 C◦).

The hear taken in by the ice will be

Qi = miLf +micw(50 C◦).

Equating,

ms = mrmi
Lf + cw(50 C◦)
Lv + cw(50 C◦)

,

= (0.150 kg)
(333×103 J/kg) + (4190 J/kg·K)(50 C◦)
(2256×103 J/kg) + (4190 J/kg·K)(50 C◦)

= 0.033 kg.

E23-21 The linear dimensions of the ring and sphere change with the temperature change ac-
cording to

∆dr = αrdr(T f,r − T i,r),
∆ds = αsds(T f,s − T i,s).

When the ring and sphere are at the same (final) temperature the ring and the sphere have the
same diameter. This means that

dr + ∆dr = ds + ∆ds

when T f,s = T f,r. We’ll solve these expansion equations first, and then go back to the heat equations.

dr + ∆dr = ds + ∆ds,

dr (1 + αr(T f,r − T i,r)) = ds (1 + αs(T f,s − T i,s)) ,

which can be rearranged to give

αrdrT f,r − αsdsT f,s = ds (1− αsT i,s)− dr (1− αrT i,r) ,

but since the final temperatures are the same,

T f =
ds (1− αsT i,s)− dr (1− αrT i,r)

αrdr − αsds

Putting in the numbers,

T f =
(2.54533cm)[1−(23×10−6/C◦)(100◦C)]−(2.54000cm)[1−(17×10−6/C◦)(0◦C)]

(2.54000cm)(17×10−6/C◦)−(2.54533cm)(23×10−6/C◦)
,

= 34.1◦C.

No work is done, so we only have the issue of heat flow, then

Qr +Qs = 0.

Where “r” refers to the copper ring and “s” refers to the aluminum sphere. The heat equations are

Qr = mrcr(T f − T i,r),
Qs = mscs(T f − T i,s).

Equating and rearranging,

ms =
mrcr(T i,r − T f)
cs(T f − T i,s)

or

ms =
(21.6 g)(387 J/kg·K)(0◦C− 34.1◦C)

(900 J/kg·K)(34.1◦C− 100◦C)
= 4.81 g.

290



E23-22 The problem is compounded because we don’t know if the final state is only water, only
ice, or a mixture of the two.

Consider first the water. Cooling it to 0◦C would require the removal of

Qw = (0.200 kg)(4190 J/kg ·K)(0◦C− 25◦C) = −2.095×104J.

Consider now the ice. Warming the ice to would require the addition of

Qi = (0.100 kg)(2220 J/kg ·K)(0◦C + 15◦C) = 3.33×103J.

The heat absorbed by the warming ice isn’t enough to cool the water to freezing. However, the ice
can melt; and if it does it will require the addition of

Qim = (0.100 kg)(333×103J/kg) = 3.33×104J.

This is far more than will be liberated by the cooling water, so the final temperature is 0◦C, and
consists of a mixture of ice and water.

(b) Consider now the ice. Warming the ice to would require the addition of

Qi = (0.050 kg)(2220 J/kg ·K)(0◦C + 15◦C) = 1.665×103J.

The heat absorbed by the warming ice isn’t enough to cool the water to freezing. However, the ice
can melt; and if it does it will require the addition of

Qim = (0.050 kg)(333×103J/kg) = 1.665×104J.

This is still not enough to cool the water to freezing. Hence, we need to solve

Qi +Qim +micw(T − 0◦C) +mwcw(T − 25◦C) = 0,

which has solution

T =
(4190 J/kg ·K)(0.200 kg)(25◦C)− (1.665×103J) + (1.665×104J)

(4190 J/kg ·K)(0.250 kg)
= 2.5◦C.

E23-23 (a) c = (320 J)/(0.0371 kg)(42.0◦C− 26.1◦C) = 542 J/kg ·K.
(b) n = m/M = (37.1 g)/(51.4 g/mol) = 0.722 mol.
(c) c = (542 J/kg ·K)(51.4×10−3 kg/mol) = 27.9 J/mol ·K.

E23-24 (1) W = −p∆V = (15 Pa)(4 m3) = −60 J for the horizontal path; no work is done during
the vertical path; the net work done on the gas is −60 J.

(2) It is easiest to consider work as the (negative of) the area under the curve; then W =
−(15 Pa + 5 Pa)(4 m3)/2 = −40 J.

(3) No work is done during the vertical path; W = −p∆V = (5 Pa)(4 m3) = −20 J for the
horizontal path; the net work done on the gas is −20 J.

E23-25 Net work done on the gas is given by Eq. 23-15,

W = −
∫
p dV.

But integrals are just the area under the curve; and that’s the easy way to solve this problem. In the
case of closed paths, it becomes the area inside the curve, with a clockwise sense giving a positive
value for the integral.

The magnitude of the area is the same for either path, since it is a rectangle divided in half by
a square. The area of the rectangle is

(15×103Pa)(6 m3) = 90×103J,

so the area of path 1 (counterclockwise) is -45 kJ; this means the work done on the gas is -(-45 kJ)
or 45 kJ. The work done on the gas for path 2 is the negative of this because the path is clockwise.
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E23-26 During the isothermal expansion,

W1 = −nRT ln
V2

V1
= −p1V1 ln

p1

p2
.

During cooling at constant pressure,

W2 = −p2∆V = −p2(V1 − V2) = −p2V1(1− p1/p2) = V1(p1 − p2).

The work done is the sum, or

−(204×103Pa)(0.142 m3) ln
(204×103Pa)
(101×103Pa)

+ (0.142 m3)(103 Pa) = −5.74×103J.

E23-27 During the isothermal expansion,

W = −nRT ln
V2

V1
= −p1V1 ln

V2

V1
,

so

W = −(1.32)(1.01×105Pa)(0.0224 m3) ln
(0.0153 m3)
(0.0224 m3)

= 1.14×103J.

E23-28 (a) pV γ is a constant, so

p2 = p1(V1/V2)γ = (1.00 atm)[(1 l)/(0.5 l)]1.32 = 2.50 atm;

T2 = T1(p2/p1)(V2/V1), so

T2 = (273 K)
(2.50 atm)
(1.00 atm)

(0.5 l)
(1 l)

= 341 K.

(b) V3 = V2(p2/p1)(T3/T2), so

V3 = (0.5 l)
(273 K)
(341 K)

= 0.40 l.

(c) During the adiabatic process,

W12 =
(1.01×105Pa/atm)(1×10−3m3/l)

(1.32)− 1
[(2.5 atm)(0.5 l)− (1.0 atm)(1 l)] = 78.9 J.

During the cooling process,

W23 = −p∆V = −(1.01×105Pa/atm)(2.50 atm)(1×10−3m3/l)[(0.4 l)− (0.5 l)] = 25.2 J.

The net work done is W123 = 78.9 J + 25.2 J = 104.1 J.

E23-29 (a) According to Eq. 23-20,

pf =
piV i

γ

V f
γ

=
(1.17 atm)(4.33 L)(1.40)

(1.06 L)(1.40)
= 8.39 atm.

(b) The final temperature can be found from the ideal gas law,

T f = T i
pfV f

piV i
= (310 K)

(8.39 atm)(1.06 L)
(1.17 atm)(4.33 L)

= 544 K.

(c) The work done (for an adiabatic process) is given by Eq. 23-22,

W =
1

(1.40)− 1
[
(8.39× 1.01×105Pa)(1.06×10−3m3)

−(1.17× 1.01×105Pa)(4.33×10−3m3)
]
,

= 966 J.
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E23-30 Air is mostly diatomic (N2 and O2), so use γ = 1.4.
(a) pV γ is a constant, so

V2 = V1
γ
√
p1/p2 = V1

1.4
√

(1.0 atm)/(2.3 atm) = 0.552V1.

T2 = T1(p2/p1)(V2/V1), so

T2 = (291 K)
(2.3 atm)
(1.0 atm)

(0.552V1)
V1

= 369 K,

or 96◦C.
(b) The work required for delivering 1 liter of compressed air is

W12 =
(1.01×105Pa/atm)(1×10−3m3/l)

(1.40)− 1
[(2.3 atm)(1.0 l)− (1.0 atm)(1.0 l/0.552)] = 123 J.

The number of liters per second that can be delivered is then

∆V/∆t = (230 W)/(123 J/l) = 1.87 l.

E23-31 Eint,rot = nRT = (1 mol)(8.31 J/mol ·K)(298 K) = 2480 J.

E23-32 Eint,rot = 3
2nRT = (1.5)(1 mol)(8.31 J/mol ·K)(523 K) = 6520 J.

E23-33 (a) Invert Eq. 32-20,

γ =
ln(p1/p2)
ln(V2/V1)

=
ln(122 kPa/1450 kPa)
ln(1.36 m3/10.7 m3)

= 1.20.

(b) The final temperature is found from the ideal gas law,

T f = T i
pfV f

piV i
= (250 K)

(1450×103Pa)(1.36 m3)
(122×103Pa)(10.7 m3)

= 378 K,

which is the same as 105◦C.
(c) Ideal gas law, again:

n = [pV ]/[RT ] = [(1450×103Pa)(1.36 m3)]/[(8.31 J/mol ·K)(378 K)] = 628 mol.

(d) From Eq. 23-24,

Eint =
3
2
nRT =

3
2

(628 mol)(8.31 J/mol ·K)(250 K) = 1.96×106J

before the compression and

Eint =
3
2
nRT =

3
2

(628 mol)(8.31 J/mol ·K)(378 K) = 2.96×106J

after the compression.
(e) The ratio of the rms speeds will be proportional to the square root of the ratio of the internal

energies, √
(1.96×106J)/(2.96×106J) = 0.813;

we can do this because the number of particles is the same before and after, hence the ratio of the
energies per particle is the same as the ratio of the total energies.
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E23-34 We can assume neon is an ideal gas. Then ∆T = 2∆Eint/3nR, or

∆T =
2(1.34×1012eV)(1.6×10−19J/eV)

3(0.120 mol)(8.31 J/mol ·K)
= 1.43×10−7J.

E23-35 At constant pressure, doubling the volume is the same as doubling the temperature. Then

Q = nCp∆T = (1.35 mol)
7
2

(8.31 J/mol ·K)(568 K− 284 K) = 1.12×104J.

E23-36 (a) n = m/M = (12 g)/(28 g/mol) = 0.429 mol.
(b) This is a constant volume process, so

Q = nCV ∆T = (0.429 mol)
5
2

(8.31 J/mol ·K)(125◦C− 25◦C) = 891J.

E23-37 (a) From Eq. 23-37,

Q = ncp∆T = (4.34 mol)(29.1 J/mol ·K)(62.4 K) = 7880 J.

(b) From Eq. 23-28,

Eint =
5
2
nR∆T =

5
2

(4.34 mol)(8.31 J/mol ·K)(62.4 K) = 5630 J.

(c) From Eq. 23-23,

Ktrans =
3
2
nR∆T =

5
2

(4.34 mol)(8.31 J/mol ·K)(62.4 K) = 3380 J.

E23-38 cV = 3
2 (8.31 J/mol ·K)/(4.00 g/mol) = 3120 J/kg ·K.

E23-39 Each species will experience the same temperature change, so

Q = Q1 +Q2 +Q3,

= n1C1∆T + n2C2∆T + n3C3∆T,

Dividing this by n = n1 + n2 + n3 and ∆T will return the specific heat capacity of the mixture, so

C =
n1C1 + n2C2 + n3C3

n1 + n2 + n3
.

E23-40 WAB = 0, since it is a constant volume process, consequently, W = WAB+WABC = −15 J.
But around a closed path Q = −W , so Q = 15 J. Then

QCA = Q−QAB −QBC = (15 J)− (20 J)− (0 J) = −5 J.

Note that this heat is removed from the system!
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E23-41 According to Eq. 23-25 (which is specific to ideal gases),

∆Eint =
3
2
nR∆T,

and for an isothermal process ∆T = 0, so for an ideal gas ∆Eint = 0. Consequently, Q+W = 0 for
an ideal gas which undergoes an isothermal process.

But we know W for an isotherm, Eq. 23-18 shows

W = −nRT ln
V f

V i

Then finally

Q = −W = nRT ln
V f

V i

E23-42 Q is greatest for constant pressure processes and least for adiabatic. W is greatest (in
magnitude, it is negative for increasing volume processes) for constant pressure processes and least
for adiabatic. ∆Eint is greatest for constant pressure (for which it is positive), and least for adiabatic
(for which is is negative).

E23-43 (a) For a monatomic gas, γ = 1.667. Fast process are often adiabatic, so

T2 = T1(V1/V2)γ−1 = (292 K)[(1)(1/10)]1.667−1 = 1360 K.

(b) For a diatomic gas, γ = 1.4. Fast process are often adiabatic, so

T2 = T1(V1/V2)γ−1 = (292 K)[(1)(1/10)]1.4−1 = 733 K.

E23-44 This problem cannot be solved without making some assumptions about the type of pro-
cess occurring on the two curved portions.

E23-45 If the pressure and volume are both doubled along a straight line then the process can
be described by

p =
p1

V1
V

The final point involves the doubling of both the pressure and the volume, so according to the ideal
gas law, pV = nRT , the final temperature T2 will be four times the initial temperature T1.

Now for the exercises.
(a) The work done on the gas is

W = −
∫ 2

1

p dV = −
∫ 2

1

p1

V1
V dV = − p1

V1

(
V 2

2

2
− V 2

1

2

)
We want to express our answer in terms of T1. First we take advantage of the fact that V2 = 2V1,
then

W = − p1

V1

(
4V 2

1

2
− V 2

1

2

)
= −3

2
p1V1 = −3

2
nRT1

(b) The nice thing about ∆Eint is that it is path independent, we care only of the initial and
final points. From Eq. 23-25,

∆Eint =
3
2
nR∆T =

3
2
nR (T2 − T1) =

9
2
nRT1
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(c) Finally we are in a position to find Q by applying the first law,

Q = ∆Eint −W =
9
2
nRT1 +

3
2
nRT1 = 6nRT1.

(d) If we define specific heat as heat divided by temperature change, then

c =
Q

n∆T
=

6RT1

4T1 − T1
= 2R.

E23-46 The work done is the area enclosed by the path. If the pressure is measured in units of
10MPa, then the shape is a semi-circle, and the area is

W = (π/2)(1.5)2(10MPa)(1×10−3m3) = 3.53×104J.

The heat is given by Q = −W = −3.53×104 J.

E23-47 (a) Internal energy changes according to ∆Eint = Q+W , so

∆Eint = (20.9 J)− (1.01×105Pa)(113×10−6m3 − 63×10−6m3) = 15.9 J.

(b) T1 = p1V1/nR and T2 = p2V2/nR, but p is constant, so ∆T = p∆V/nR. Then

CP =
Q

n∆T
=

QR

p∆V
=

(20.9 J)(8.31 J/mol ·K)
(1.01×105Pa)(113×10−6m3 − 63×10−6m3)

= 34.4 J/mol ·K.

(c) CV = CP −R = (34.4 J/mol ·K)− (8.31 J/mol ·K) = 26.1 J/mol ·K.

E23-48 Constant Volume
(a) Q = 3(3.15 mol)(8.31 J/mol ·K)(52.0 K) = 4080 J.
(b) W = 0.
(c) ∆Ermint = 3(3.15 mol)(8.31 J/mol ·K)(52.0 K) = 4080 J.
Constant Pressure
(a) Q = 4(3.15 mol)(8.31 J/mol ·K)(52.0 K) = 5450 J.
(b) W = −p∆V = −nR∆T = −(3.15 mol)(8.31 J/mol ·K)(52.0 K) = −1360 J.
(c) ∆Ermint = 3(3.15 mol)(8.31 J/mol ·K)(52.0 K) = 4080 J.
Adiabatic
(a) Q = 0.
(b) W = (pfV f − piV i)/(γ− 1) = nR∆T/(γ− 1) = 3(3.15 mol)(8.31 J/mol ·K)(52.0 K) = 4080 J.
(c) ∆Ermint = 3(3.15 mol)(8.31 J/mol ·K)(52.0 K) = 4080 J.

P23-1 (a) The temperature difference is

(5 C◦/9 F◦)(72◦F−−20◦F) = 51.1 C◦.

The rate of heat loss is

H = (1.0 W/m ·K)(1.4 m2)(51.1 C◦)/(3.0×10−3m) = 2.4×104W.

(b) Start by finding the R values.

Rg = (3.0×10−3m)/(1.0 W/m ·K) = 3.0×10−3m2 ·K/W,

Ra = (7.5×10−2m)/(0.026W/m ·K) = 2.88m2 ·K/W.

Then use Eq. 23-5,

H =
(1.4 m2)(51.1 C◦)

2(3.0×10−3m2 ·K/W) + (2.88m2 ·K/W)
= 25 W.

Get double pane windows!
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P23-2 (a) H = (428 W/m ·K)(4.76×10−4m2)(100 C◦)/(1.17 m) = 17.4 W.
(b) ∆m/∆t = H/L = (17.4 W)/(333×103J/kg) = 5.23×10−5kg/s, which is the same as 188 g/h.

P23-3 Follow the example in Sample Problem 23-2. We start with Eq. 23-1:

H = kA
dT

dr
,

H = k(4πr2)
dT

dr
,∫ r2

r1

H
dr

4πr2
=

∫ T2

T1

kdT,

H

4pi

(
1
r1
− 1
r2

)
= k(T1 − T2),

H

(
r2 − r1

r1r2

)
= 4πk(T1 − T2),

H =
4πk(T1 − T2)r1r2

r2 − r1
.

P23-4 (a) H = (54×10−3W/m2)4π(6.37×106m)2 = 2.8×1013W.
(b) Using the results of Problem 23-3,

∆T =
(2.8×1013W)(6.37×106m− 3.47×106m)

4π(4.2 W/m ·K)(6.37×106m)(3.47×106m)
= 7.0×104C◦.

Since T2 = 0◦C, we expect T1 = 7.0×104C◦.

P23-5 Since H = −kAdT/dx, then H dx = −aT dT . H is a constant, so integrate both side
according to ∫

H dx = −
∫
aT dT,

HL = −a1
2

(T 2
2 − T 2

1 ),

H =
aA

2L
(T 2

1 − T 2
2 ).

P23-6 Assume the water is all at 0◦C. The heat flow through the ice is then H = kA∆T/x; the
rate of ice formation is ∆m/∆t = H/L. But ∆m = ρA∆x, so

∆x
∆t

=
H

ρAL
=
k∆T
ρLx

,

(1.7 W/m ·K)(10 C◦)
(920 kg/m3)(333×103J/kg)(0.05 m)

= 1.11×10−6m/s.

That’s the same as 0.40 cm/h.

P23-7 (a) Start with the heat equation:

Qt +Qi +Qw = 0,
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where Qt is the heat from the tea, Qi is the heat from the ice when it melts, and Qw is the heat
from the water (which used to be ice). Then

mtct(T f − T t,i) +miLf +mwcw(T f − Tw,i) = 0,

which, since we have assumed all of the ice melts and the masses are all equal, can be solved for Tf
as

Tf =
ctT t,i + cwTw,i − Lf

ct + cw
,

=
(4190J/kg ·K)(90◦C) + (4190J/kg ·K)(0◦C)− (333×103J/kg)

(4190J/kg ·K) + (4190J/kg ·K)
,

= 5.3◦C.

(b) Once again, assume all of the ice melted. Then we can do the same steps, and we get

Tf =
ctT t,i + cwTw,i − Lf

ct + cw
,

=
(4190J/kg ·K)(70◦C) + (4190J/kg ·K)(0◦C)− (333×103J/kg)

(4190J/kg ·K) + (4190J/kg ·K)
,

= −4.7◦C.

So we must have guessed wrong when we assumed that all of the ice melted. The heat equation
then simplifies to

mtct(T f − T t,i) +miLf = 0,

and then

mi =
mtct(T t,i − T f)

Lf
,

=
(0.520 kg)(4190J/kg ·K)(90◦C− 0◦)

(333×103J/kg)
,

= 0.458 kg.

P23-8 c = Q/m∆T = H/(∆m/∆t)∆T . But ∆m/∆t = ρ∆V/∆t. Combining,

c =
H

(∆V/∆t)ρ∆T
=

(250 W)
(8.2×10−6m3/s)(0.85×103kg/m3)(15 C◦)

= 2.4×103J/kg ·K.

P23-9 (a) n = NA/M , so

ε =
(2256×103J/kg)

(6.02×1023/mol)/(0.018 kg/mol)
= 6.75×10−20J.

(b) Eav = 3
2kT , so

ε

Eav
=

2(6.75×10−20J)
3(1.38×10−23J/K)(305 K)

= 10.7.

P23-10 Qw +Qt = 0, so
Ct∆T t +mwcw(T f − T i) = 0,

or

T i =
(0.3 kg)(4190 J/kg ·m)(44.4◦C) + (46.1 J/K)(44.4◦C− 15.0◦C)

(0.3 kg)(4190 J/kg ·m)
= 45.5◦C.
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P23-11 We can use Eq. 23-10, but we will need to approximate c first. If we assume that the
line is straight then we use c = mT + b. I approximate m from

m =
(14 J/mol ·K)− (3 J/mol ·K)

(500 K)− (200 K)
= 3.67×10−2J/mol.

Then I find b from those same data points,

b = (3 J/mol ·K)− (3.67×10−2J/mol)(200 K) = −4.34 J/mol ·K.

Then from Eq. 23-10,

Q = n

∫ T f

T i

c dT,

= n

∫ T f

T i

(mT + b) dT,

= n
[m

2
T 2 + bT

]T f

T i

,

= n
(m

2
(T f

2 − T i
2) + b(T f − T i)

)
,

= (0.45mol)
(

(3.67×10−2J/mol)
2

((500 K)2 − (200 K)2)

+ (−4.34 J/mol ·K)(500 K− 200 K)) ,
= 1.15×103J.

P23-12 δQ = nCδT , so

Q = n

∫
C dT,

= n
[
(0.318 J/mol ·K2)T 2/2− (0.00109 J/mol ·K3)T 3/3− (0.628 J/mol ·K)T

]90 K

50 K
,

= n(645.8 J/mol).

Finally,
Q = (645.8 J/mol)(316 g)/(107.87 g/mol) = 189 J.

P23-13 TV γ−1 is a constant, so

T2 = (292 K)(1/1.28)(1.40)−1 = 265 K

P23-14 W = −
∫
p dV , so

W = −
∫ [

nRT

V − nb
− an2

V 2

]
dV,

= − nRT ln(V − nb)− an2

V

∣∣∣∣f
i

,

= −nRT ln
V f − nb
V i − nb

− an2

(
1
V f
− 1
V i

)
.
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P23-15 When the tube is horizontal there are two regions filled with gas, one at p1,i, V 1,i; the
other at p2,i, V 2,i. Originally p1,i = p2,i = 1.01×105Pa and V 1,i = V 2,i = (0.45 m)A, where A is the
cross sectional area of the tube.

When the tube is held so that region 1 is on top then the mercury has three forces on it: the
force of gravity, mg; the force from the gas above pushing down p2,fA; and the force from the gas
below pushing up p1,fA. The balanced force expression is

p1,fA = p2,fA+mg.

If we write m = ρlmA where lm = 0.10 m, then

p1,f = p2,f + ρglm.

Finally, since the tube has uniform cross section, we can write V = Al everywhere.
(a) For an isothermal process pili = pf lf , where we have used V = Al, and then

p1,i
l1,i
l1,f
− p2,i

l2,i
l2,f

= ρglm.

But we can factor out p1,i = p2,i and l1,i = l2,i, and we can apply l1,f + l2,f = 0.90 m. Then

1
l1,f
− 1

0.90 m− l1,f
=
ρglm
pili

.

Put in some numbers and rearrange,

0.90 m− 2l1,f = (0.294 m−1)l1,f(0.90 m− l1,f),

which can be written as an ordinary quadratic,

(0.294 m−1)l1,f 2 − (2.265)l1,f + (0.90 m) = 0

The solutions are l1,f = 7.284 m and 0.421 m. Only one of these solutions is reasonable, so the
mercury shifted down 0.450− 0.421 = 0.029 m.

(b) The math is a wee bit uglier here, but we can start with pili
γ = pf lf

γ , and this means that
everywhere we had a l1,f in the previous derivation we need to replace it with l1,f

γ . Then we have

1
l1,fγ

− 1
(0.90 m− l1,f)γ

=
ρglm
piliγ

.

This can be written as

(0.90 m− l1,f)γ − l1,fγ− = (0.404 m−γ)l1,fγ(0.90 m− l(0.1,f)γ ,

which looks nasty to me! I’ll use Maple to get the answer, and find l1,f = 0.429, so the mercury
shifted down 0.450− 0.429 = 0.021 m.

Which is more likely? Turn the tube fast, and the adiabatic approximation works. Eventually
the system will return to room temperature, and then the isothermal approximation is valid.

P23-16 Internal energy for an ideal diatomic gas can be written as

Eint =
5
2
nRT =

5
2
pV,

simply by applying the ideal gas law. The room, however, has a fixed pressure and volume, so the
internal energy is independent of the temperature. As such, any energy supplied by the furnace
leaves the room, either as heat or as expanding gas doing work on the outside.
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P23-17 The speed of sound in the iodine gas is

v = fλ = (1000 Hz)(2× 0.0677 m) = 135 m/s.

Then

γ =
Mv2

RT
=
n(0.127 kg/mol)(135 m/s)2

(8.31 J/mol ·K)(400 K)
= n(0.696).

Since γ is greater than one, n ≥ 2. If n = 2 then γ = 1.39, which is consistent; if n = 3 then
γ = 2.08, which is not consistent.

Consequently, iodine gas is diatomic.

P23-18 W = −Q = mL = (333×103J/kg)(0.122 kg) = 4.06×104J.

P23-19 (a)
Process AB
Q = 3

2 (1.0 mol)(8.31 J/mol ·K)(300 K) = 3740 J.
W = 0.
∆Eint = Q+W = 3740 J.
Process BC
Q = 0.
W = (pfV f − piV i)/(γ − 1) = nR∆T/(γ − 1) = (1.0 mol)(8.31 J/mol ·K)(−145 K)/(1.67− 1) =

−1800 J
∆Eint = Q+W = −1800 J.
Process AB
Q = 5

2 (1.0 mol)(8.31 J/mol ·K)(−155 K) = −3220 J.
W = −p∆V = −nR∆T = −(1.0 mol)(8.31 J/mol ·K)(−155 K) = 1290 J.
∆Eint = Q+W = 1930 J.
Cycle
Q = 520 J; W = −510 J (rounding error!); ∆Eint = 10 J (rounding error!)

P23-20

P23-21 pf = (16.0 atm)(50/250)1.40 = 1.68 atm. The work done by the gas during the expansion
is

W = [piV i − pfV f ]/(γ − 1),

=
(16.0 atm)(50×10−6m3)− (1.68 atm)(250×10−6m3)

(1.40)− 1
(1.01×105Pa/atm),

= 96.0 J.

This process happens 4000 times per minute, but the actual time to complete the process is half of
the cycle, or 1/8000 of a minute. Then P = (96 J)(8000)/(60 s) = 12.8×103W.
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