
E22-1 (a) n = (2.56 g)/(197 g/mol) = 1.30×10−2mol.
(b) N = (6.02×1023mol−1)(1.30×10−2mol) = 7.83×1021.

E22-2 (a) N = pV/kT = (1.01×105Pa)(1.00 m3)/(1.38×10−23J/K)(293 K) = 2.50×1025.
(b) n = (2.50×1025)/(6.02×1023mol−1) = 41.5 mol. Then

m = (41.5 mol)[75%(28 g/mol) + 25%(32 g/mol)] = 1.20 kg.

E22-3 (a) We first need to calculate the molar mass of ammonia. This is

M = M(N) + 3M(H) = (14.0 g/mol) + 3(1.01 g/mol) = 17.0 g/mol

The number of moles of nitrogen present is

n = m/M r = (315 g)/(17.0 g/mol) = 18.5 mol.

The volume of the tank is

V = nRT/p = (18.5 mol)(8.31 J/mol ·K)(350 K)/(1.35×106Pa) = 3.99×10−2m3.

(b) After the tank is checked the number of moles of gas in the tank is

n = pV/(RT ) = (8.68×105Pa)(3.99×10−2m3)/[(8.31 J/mol ·K)(295 K)] = 14.1 mol.

In that case, 4.4 mol must have escaped; that corresponds to a mass of

m = nM r = (4.4 mol)(17.0 g/mol) = 74.8 g.

E22-4 (a) The volume per particle is V/N = kT/P , so

V/N = (1.38×10−23J/K)(285 K)/(1.01×105Pa) = 3.89×10−26m3.

The edge length is the cube root of this, or 3.39×10−9m. The ratio is 11.3.
(b) The volume per particle is V/NA, so

V/NA = (18×10−6m3)/(6.02×1023) = 2.99×10−29m3.

The edge length is the cube root of this, or 3.10×10−10m. The ratio is 1.03.

E22-5 The volume per particle is V/N = kT/P , so

V/N = (1.38×10−23J/K)(308 K)/(1.22)(1.01×105Pa) = 3.45×10−26m3.

The fraction actually occupied by the particle is

4π(0.710×10−10m)3/3)
(3.45×10−26m3)

= 4.34×10−5.

E22-6 The component of the momentum normal to the wall is

py = (3.3×10−27kg)(1.0×103m/s) cos(55◦) = 1.89×10−24kg ·m/s.

The pressure exerted on the wall is

p =
F

A
=

(1.6×1023/s)2(1.89×10−24kg ·m/s)
(2.0×10−4m2)

= 3.0×103Pa.
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E22-7 (a) From Eq. 22-9,

vrms =
√

3p
ρ
.

Then

p = 1.23× 10−3 atm
(

1.01× 105 Pa
1 atm

)
= 124 Pa

and

ρ = 1.32× 10−5 g/cm3

(
1kg

1000 g

)(
100 cm

1 m

)3

= 1.32× 10−2 kg/m3.

Finally,

vrms =

√
3(1240 Pa)

(1.32× 10−2 kg/m3)
= 531 m/s.

(b) The molar density of the gas is just n/V ; but this can be found quickly from the ideal gas
law as

n

V
=

p

RT
=

(1240 Pa)
(8.31 J/mol ·K)(317 K)

= 4.71× 10−1 mol/m3.

(c) We were given the density, which is mass per volume, so we could find the molar mass from

ρ

n/V
=

(1.32× 10−2 kg/m3)
(4.71× 10−1 mol/m3)

= 28.0 g/mol.

But what gas is it? It could contain any atom lighter than silicon; trial and error is the way to go.
Some of my guesses include C2H4 (ethene), CO (carbon monoxide), and N2. There’s no way to tell
which is correct at this point, in fact, the gas could be a mixture of all three.

E22-8 The density is ρ = m/V = nMr/V , or

ρ = (0.350 mol)(0.0280 kg/mol)/π(0.125 m/2)2(0.560 m) = 1.43 kg/m3.

The rms speed is

vrms =

√
3(2.05)(1.01×105Pa)

(1.43 kg/m3)
= 659 m/s.

E22-9 (a) N/V = p/kT = (1.01×105Pa)/(1.38×10−23J/K)(273 K) = 2.68×1025/m3.
(b) Note that Eq. 22-11 is wrong; for the explanation read the last two paragraphs in the first

column on page 502. We need an extra factor of
√

2, so πd2 = V/
√

2Nλ, so

d =
√

1/
√

2π(2.68×1025/m3)(285×10−9m) = 1.72×10−10m.

E22-10 (a) λ = V/
√

2Nπd2, so

λ =
1√

2(1.0×106/m3)π(2.0×10−10m)2
= 5.6×1012m.

(b) Particles effectively follow ballistic trajectories.
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E22-11 We have v = fλ, where λ is the wavelength (which we will set equal to the mean free
path), and v is the speed of sound. The mean free path is, from Eq. 22-13,

λ =
kT√
2πd2p

so

f =
√

2πd2pv

kT
=
√

2π(315×10−12m)2(1.02× 1.01×105Pa)(343 m/s)
(1.38×10−23J/K)(291 K)

= 3.88×109Hz.

E22-12 (a) p = (1.10×10−6 mm Hg)(133 Pa/mm Hg) = 1.46×10−4Pa. The particle density is

N/V = (1.46×10−4Pa)/(1.38×10−23J/K)(295 K) = 3.59×1016/m3.

(b) The mean free path is

λ = 1/
√

(2)(3.59×1016/m3)π(2.20×10−10m)2 = 130 m.

E22-13 Note that vav ∝
√
T , while λ ∝ T . Then the collision rate is proportional to 1/

√
T . Then

T = (300 K)
(5.1×109/s)2

(6.0×109/s)2
= 216 K.

E22-14 (a) vav = (65 km/s)/(10) = 6.5 km/s.
(b) vrms =

√
(505 km/s)/(10) = 7.1 km/s.

E22-15 (a) The average is

4(200 s) + 2(500 m/s) + 4(600 m/s)
4 + 2 + 4

= 420 m/s.

The mean-square value is

4(200 s)2 + 2(500 m/s)2 + 4(600 m/s)2

4 + 2 + 4
= 2.1× 105 m2/s2.

The root-mean-square value is the square root of this, or 458 m/s.
(b) I’ll be lazy. Nine particles are not moving, and the tenth has a speed of 10 m/s. Then the

average speed is 1 m/s, and the root-mean-square speed is 3.16 m/s. Look, vrms is larger than vav!
(c) Can vrms=vav? Assume that the speeds are not all the same. Transform to a frame of

reference where vav = 0, then some of the individual speeds must be greater than zero, and some
will be less than zero. Squaring these speeds will result in positive, non-zero, numbers; the mean
square will necessarily be greater than zero, so vrms > 0.

Only if all of the particles have the same speed will vrms=vav.

E22-16 Use Eq. 22-20:

vrms =

√
3(1.38×10−23J/K)(329 K)

(2.33×10−26kg + 3× 1.67×10−27kg)
= 694 m/s.

E22-17 Use Eq. 22-20:

vrms =

√
3(1.38×10−23J/K)(2.7 K)

(2× 1.67×10−27kg)
= 180 m/s.
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E22-18 Eq. 22-14 is in the form N = Av2e−Bv
2
. Taking the derivative,

dN

dv
= 2Ave−Bv

2
− 2ABv3e−Bv

2
,

and setting this equal to zero,
v2 = 1/B = 2kT/m.

E22-19 We want to integrate

vav =
1
N

∫ ∞
0

N(v)v dv,

=
1
N

∫ ∞
0

4πN
( m

2πkT

)3/2

v2e−mv
2/2kT v dv,

= 4π
( m

2πkT

)3/2
∫ ∞

0

v2e−mv
2/2kT v dv.

The easiest way to attack this is first with a change of variables— let x = mv2/2kT , then kT dx =
mv dv. The limits of integration don’t change, since

√
∞ =∞. Then

vav = 4π
( m

2πkT

)3/2
∫ ∞

0

2kT
m

xe−x
kT

m
dx,

= 2
(

2kT
πm

)1/2 ∫ ∞
0

xe−αxdx

The factor of α that was introduced in the last line is a Feynman trick; we’ll set it equal to one when
we are finished, so it won’t change the result.

Feynman’s trick looks like

d

dα

∫
e−αxdx =

∫
∂

∂α
e−αxdx =

∫
(−x)e−αxdx.

Applying this to our original problem,

vav = 2
(

2kT
πm

)1/2 ∫ ∞
0

xe−αxdx,

= − d

dα
2
(

2kT
πm

)1/2 ∫ ∞
0

e−αxdx,

= −2
(

2kT
πm

)1/2
d

dα

(
−1
α
e−αx

∣∣∣∣∞
0

)
,

= −2
(

2kT
πm

)1/2
d

dα

(
1
α

)
,

= −2
(

2kT
πm

)1/2 −1
α2

.

We promised, however, that we would set α = 1 in the end, so this last line is

vav = 2
(

2kT
πm

)1/2

,

=

√
8kT
πm

.
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E22-20 We want to integrate

(v2)av =
1
N

∫ ∞
0

N(v)v2 dv,

=
1
N

∫ ∞
0

4πN
( m

2πkT

)3/2

v2e−mv
2/2kT v2 dv,

= 4π
( m

2πkT

)3/2
∫ ∞

0

v2e−mv
2/2kT v2 dv.

The easiest way to attack this is first with a change of variables— let x2 = mv2/2kT , then√
2kT/mdx = dv. The limits of integration don’t change. Then

(v2)av = 4π
( m

2πkT

)3/2
∫ ∞

0

(
2kT
m

)5/2

x4e−x
2
dx,

=
8kT√
πm

∫ ∞
0

x4e−x
2
dx

Look up the integral; although you can solve it by first applying a Feynman trick (see solution to
Exercise 22-21) and then squaring the integral and changing to polar coordinates. I looked it up. I
found 3

√
π/8, so

(v2)av =
8kT√
πm

3
√
π/8 = 3kT/m.

E22-21 Apply Eq. 22-20:

vrms =
√

3(1.38×10−23J/K)(287 K)/(5.2×10−17kg) = 1.5×10−2m/s.

E22-22 Since vrms ∝
√
T/m, we have

T = (299 K)(4/2) = 598 K,

or 325◦C.

E22-23 (a) The escape speed is found on page 310; v = 11.2×103m/s. For hydrogen,

T = (2)(1.67×10−27kg)(11.2×103m/s)2/3(1.38×10−23J/K) = 1.0×104K.

For oxygen,

T = (32)(1.67×10−27kg)(11.2×103m/s)2/3(1.38×10−23J/K) = 1.6×105K.

(b) The escape speed is found on page 310; v = 2.38×103m/s. For hydrogen,

T = (2)(1.67×10−27kg)(2.38×103m/s)2/3(1.38×10−23J/K) = 460K.

For oxygen,

T = (32)(1.67×10−27kg)(2.38×103m/s)2/3(1.38×10−23J/K) = 7300K.

(c) There should be more oxygen than hydrogen.

E22-24 (a) vav = (70 km/s)/(22) = 3.18 km/s.

(b) vrms =
√

(250 km2/s2)/(22) = 3.37 km/s.
(c) 3.0 km/s.
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E22-25 According to the equation directly beneath Fig. 22-8,

ω = vφ/L = (212 m/s)(0.0841 rad)/(0.204 m) = 87.3 rad/s.

E22-26 If vp = vrms then 2T2 = 3T1, or T2/T1 = 3/2.

E22-27 Read the last paragraph on the first column of page 505. The distribution of speeds is
proportional to

v3e−mv
2/2kT = v3e−Bv

2
,

taking the derivative dN/dv and setting equal to zero yields

dN

dv
= 3v2e−Bv

2
− 2Bv4e−Bv

2
,

and setting this equal to zero,
v2 = 3/2B = 3kT/m.

E22-28 (a) v =
√

3(8.31 J/mol ·K)(4220 K)/(0.07261 kg/mol) = 1200 m/s.
(b) Half of the sum of the diameters, or 273 pm.
(c) The mean free path of the germanium in the argon is

λ = 1/
√

2(4.13×1025/m3)π(273×10−12m)2 = 7.31×10−8m.

The collision rate is
(1200 m/s)/(7.31×10−8m) = 1.64×1010/s.

E22-29 The fraction of particles that interests us is

2√
π

1
(kT )3/2

∫ 0.03kT

0.01kT

E1/2e−E/kT dE.

Change variables according to E/kT = x, so that dE = kT dx. The integral is then

2√
π

∫ 0.03

0.01

x1/2e−x dx.

Since the value of x is so small compared to 1 throughout the range of integration, we can expand
according to

e−x ≈ 1− x for x� 1.

The integral then simplifies to

2√
π

∫ 0.03

0.01

x1/2(1− x) dx =
2√
π

[
2
3
x3/2 − 2

5
x5/2

]0.03

0.01

= 3.09×10−3.

E22-30 Write N(E) = N(Ep + ε). Then

N(Ep + ε) ≈ N(Ep) + ε
dN(E)
dE

∣∣∣∣
Ep

+ ...

But the very definition of Ep implies that the first derivative is zero. Then the fraction of [particles
with energies in the range Ep ± 0.02kT is

2√
π

1
(kT )3/2

(kT/2)1/2e−1/2(0.02kT ),

or 0.04
√

1/2eπ = 9.68×10−3.
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E22-31 The volume correction is on page 508; we need first to find d. If we assume that the
particles in water are arranged in a cubic lattice (a bad guess, but we’ll use it anyway), then 18
grams of water has a volume of 18×10−6m3, and

d3 =
(18×10−6 m3)
(6.02×1023)

= 3.0×10−29m3

is the volume allocated to each water molecule. In this case d = 3.1×10−10m. Then

b =
1
2

(6.02×1023)(
4
3
π(3.1×10−10m)3) = 3.8 m3/mol.

E22-32 d3 = 3b/2πNA, or

d = 3

√
3(32×10−6m3/mol)
2π(6.02×1023/mol)

= 2.9×10−10m.

E22-33 a has units of energy volume per square mole, which is the same as energy per mole times
volume per mole.

P22-1 Solve (1− x)(1.429) + x(1.250) = 1.293 for x. The result is x = 0.7598.

P22-2

P22-3 The only thing that matters is the total number of moles of gas (2.5) and the number of
moles of the second gas (0.5). Since 1/5 of the total number of moles of gas is associated with the
second gas, then 1/5 of the total pressure is associated with the second gas.

P22-4 Use Eq. 22-11 with the appropriate
√

2 inserted.

λ =
(1.0×10−3m3)√

2(35)π(1.0×10−2m)2
= 6.4×10−2m.

P22-5 (a) Since λ ∝ 1/d2, we have

da

dn
=
√
λn

λa
=

√
(27.5×10−8m)
(9.90×10−8m)

= 1.67.

(b) Since λ ∝ 1/p, we have

λ2 = λ1
p1

p2
= (9.90×10−8m)

(75.0 cm Hg)
(15.0 cm Hg)

= 49.5×10−8m.

(c) Since λ ∝ T , we have

λ2 = λ1
T2

T1
= (9.90×10−8m)

(233 K)
(293 K)

= 7.87×10−8 m.
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P22-6 We can assume the molecule will collide with something. Then

1 =
∫ ∞

0

Ae−crdr = A/c,

so A = c. If the molecule has a mean free path of λ, then

λ =
∫ ∞

0

rce−crdr = 1/c,

so A = c = 1/λ.

P22-7 What is important here is the temperature; since the temperatures are the same then the
average kinetic energies per particle are the same. Then

1
2
m1(vrms,1)2 =

1
2
m2(vrms,2)2.

We are given in the problem that vav,2 = 2vrms,1. According to Eqs. 22-18 and 22-20 we have

vrms =

√
3RT
M

=

√
3π
8

√
8RT
πM

=

√
3π
8
vav.

Combining this with the kinetic energy expression above,

m1

m2
=
(
vrms,2

vrms,1

)2

=

(
2

√
3π
8

)2

= 4.71.

P22-8 (a) Assume that the speeds are not all the same. Transform to a frame of reference where
vav = 0, then some of the individual speeds must be greater than zero, and some will be less
than zero. Squaring these speeds will result in positive, non-zero, numbers; the mean square will
necessarily be greater than zero, so vrms > 0.

(b) Only if all of the particles have the same speed will vrms=vav.

P22-9 (a) We need to first find the number of particles by integrating

N =
∫ ∞

0

N(v) dv,

=
∫ v0

0

Cv2 dv +
∫ ∞
v0

(0) dv = C

∫ v0

0

v2 dv =
C

3
v3

0 .

Invert, then C = 3N/v3
0 .

(b) The average velocity is found from

vav =
1
N

∫ ∞
0

N(v)v dv.

Using our result from above,

vav =
1
N

∫ v0

0

(
3N
v3

0

v2

)
v dv,

=
3
v3

0

∫ v0

0

v3 dv =
3
v3

0

v4
0

4
=

3
4
v0.
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As expected, the average speed is less than the maximum speed. We can make a prediction about
the root mean square speed; it will be larger than the average speed (see Exercise 22-15 above) but
smaller than the maximum speed.

(c) The root-mean-square velocity is found from

v2
rms =

1
N

∫ ∞
0

N(v)v2 dv.

Using our results from above,

v2
rms =

1
N

∫ v0

0

(
3N
v3

0

v2

)
v2 dv,

=
3
v3

0

∫ v0

0

v4 dv =
3
v3

0

v5
0

5
=

3
5
v2

0 .

Then, taking the square root,

v2
rms =

√
3
5
v0

Is
√

3/5 > 3/4? It had better be.

P22-10

P22-11

P22-12

P22-13

P22-14

P22-15 The mass of air displaced by 2180 m3 is m = (1.22 kg/m3)(2180 m3) = 2660 kg. The mass
of the balloon and basket is 249 kg and we want to lift 272 kg; this leaves a remainder of 2140 kg for
the mass of the air inside the balloon. This corresponds to (2140 kg)/(0.0289 kg/mol) = 7.4×104mol.

The temperature of the gas inside the balloon is then

T = (pV )/(nR) = [(1.01×105Pa)(2180 m3)]/[(7.4×104mol)(8.31 J/mol ·K) = 358 K.

That’s 85◦C.

P22-16

P22-17
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