E22-1 (a) $n=(2.56 \mathrm{~g}) /(197 \mathrm{~g} / \mathrm{mol})=1.30 \times 10^{-2} \mathrm{~mol}$.
(b) $N=\left(6.02 \times 10^{23} \mathrm{~mol}^{-1}\right)\left(1.30 \times 10^{-2} \mathrm{~mol}\right)=7.83 \times 10^{21}$.

E22-2 (a) $N=p V / k T=\left(1.01 \times 10^{5} \mathrm{~Pa}\right)\left(1.00 \mathrm{~m}^{3}\right) /\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)(293 \mathrm{~K})=2.50 \times 10^{25}$.
(b) $n=\left(2.50 \times 10^{25}\right) /\left(6.02 \times 10^{23} \mathrm{~mol}^{-1}\right)=41.5 \mathrm{~mol}$. Then

$$
m=(41.5 \mathrm{~mol})[75 \%(28 \mathrm{~g} / \mathrm{mol})+25 \%(32 \mathrm{~g} / \mathrm{mol})]=1.20 \mathrm{~kg} .
$$

E22-3 (a) We first need to calculate the molar mass of ammonia. This is

$$
M=M(\mathrm{~N})+3 M(\mathrm{H})=(14.0 \mathrm{~g} / \mathrm{mol})+3(1.01 \mathrm{~g} / \mathrm{mol})=17.0 \mathrm{~g} / \mathrm{mol}
$$

The number of moles of nitrogen present is

$$
n=m / M_{\mathrm{r}}=(315 \mathrm{~g}) /(17.0 \mathrm{~g} / \mathrm{mol})=18.5 \mathrm{~mol}
$$

The volume of the tank is

$$
V=n R T / p=(18.5 \mathrm{~mol})(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(350 \mathrm{~K}) /\left(1.35 \times 10^{6} \mathrm{~Pa}\right)=3.99 \times 10^{-2} \mathrm{~m}^{3}
$$

(b) After the tank is checked the number of moles of gas in the tank is

$$
n=p V /(R T)=\left(8.68 \times 10^{5} \mathrm{~Pa}\right)\left(3.99 \times 10^{-2} \mathrm{~m}^{3}\right) /[(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(295 \mathrm{~K})]=14.1 \mathrm{~mol}
$$

In that case, 4.4 mol must have escaped; that corresponds to a mass of

$$
m=n M_{\mathrm{r}}=(4.4 \mathrm{~mol})(17.0 \mathrm{~g} / \mathrm{mol})=74.8 \mathrm{~g}
$$

E22-4 (a) The volume per particle is $V / N=k T / P$, so

$$
V / N=\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)(285 \mathrm{~K}) /\left(1.01 \times 10^{5} \mathrm{~Pa}\right)=3.89 \times 10^{-26} \mathrm{~m}^{3}
$$

The edge length is the cube root of this, or $3.39 \times 10^{-9} \mathrm{~m}$. The ratio is 11.3 .
(b) The volume per particle is V / N_{A}, so

$$
V / N_{A}=\left(18 \times 10^{-6} \mathrm{~m}^{3}\right) /\left(6.02 \times 10^{23}\right)=2.99 \times 10^{-29} \mathrm{~m}^{3}
$$

The edge length is the cube root of this, or $3.10 \times 10^{-10} \mathrm{~m}$. The ratio is 1.03 .
E22-5 The volume per particle is $V / N=k T / P$, so

$$
V / N=\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)(308 \mathrm{~K}) /(1.22)\left(1.01 \times 10^{5} \mathrm{~Pa}\right)=3.45 \times 10^{-26} \mathrm{~m}^{3}
$$

The fraction actually occupied by the particle is

$$
\frac{\left.4 \pi\left(0.710 \times 10^{-10} \mathrm{~m}\right)^{3} / 3\right)}{\left(3.45 \times 10^{-26} \mathrm{~m}^{3}\right)}=4.34 \times 10^{-5}
$$

E22-6 The component of the momentum normal to the wall is

$$
p_{y}=\left(3.3 \times 10^{-27} \mathrm{~kg}\right)\left(1.0 \times 10^{3} \mathrm{~m} / \mathrm{s}\right) \cos \left(55^{\circ}\right)=1.89 \times 10^{-24} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}
$$

The pressure exerted on the wall is

$$
p=\frac{F}{A}=\frac{\left(1.6 \times 10^{23} / \mathrm{s}\right) 2\left(1.89 \times 10^{-24} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}\right)}{\left(2.0 \times 10^{-4} \mathrm{~m}^{2}\right)}=3.0 \times 10^{3} \mathrm{~Pa}
$$

E22-7 (a) From Eq. 22-9,

$$
v_{\mathrm{rms}}=\sqrt{\frac{3 p}{\rho}}
$$

Then

$$
p=1.23 \times 10^{-3} \mathrm{~atm}\left(\frac{1.01 \times 10^{5} \mathrm{~Pa}}{1 \mathrm{~atm}}\right)=124 \mathrm{~Pa}
$$

and

$$
\rho=1.32 \times 10^{-5} \mathrm{~g} / \mathrm{cm}^{3}\left(\frac{1 \mathrm{~kg}}{1000 \mathrm{~g}}\right)\left(\frac{100 \mathrm{~cm}}{1 \mathrm{~m}}\right)^{3}=1.32 \times 10^{-2} \mathrm{~kg} / \mathrm{m}^{3}
$$

Finally,

$$
v_{\mathrm{rms}}=\sqrt{\frac{3(1240 \mathrm{~Pa})}{\left(1.32 \times 10^{-2} \mathrm{~kg} / \mathrm{m}^{3}\right)}}=531 \mathrm{~m} / \mathrm{s}
$$

(b) The molar density of the gas is just n / V; but this can be found quickly from the ideal gas law as

$$
\frac{n}{V}=\frac{p}{R T}=\frac{(1240 \mathrm{~Pa})}{(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})(317 \mathrm{~K})}=4.71 \times 10^{-1} \mathrm{~mol} / \mathrm{m}^{3}
$$

(c) We were given the density, which is mass per volume, so we could find the molar mass from

$$
\frac{\rho}{n / V}=\frac{\left(1.32 \times 10^{-2} \mathrm{~kg} / \mathrm{m}^{3}\right)}{\left(4.71 \times 10^{-1} \mathrm{~mol} / \mathrm{m}^{3}\right)}=28.0 \mathrm{~g} / \mathrm{mol}
$$

But what gas is it? It could contain any atom lighter than silicon; trial and error is the way to go. Some of my guesses include $\mathrm{C}_{2} \mathrm{H}_{4}$ (ethene), CO (carbon monoxide), and N_{2}. There's no way to tell which is correct at this point, in fact, the gas could be a mixture of all three.

E22-8 The density is $\rho=m / V=n M_{r} / V$, or

$$
\rho=(0.350 \mathrm{~mol})(0.0280 \mathrm{~kg} / \mathrm{mol}) / \pi(0.125 \mathrm{~m} / 2)^{2}(0.560 \mathrm{~m})=1.43 \mathrm{~kg} / \mathrm{m}^{3} .
$$

The rms speed is

$$
v_{\mathrm{rms}}=\sqrt{\frac{3(2.05)\left(1.01 \times 10^{5} \mathrm{~Pa}\right)}{\left(1.43 \mathrm{~kg} / \mathrm{m}^{3}\right)}}=659 \mathrm{~m} / \mathrm{s}
$$

E22-9 (a) $N / V=p / k T=\left(1.01 \times 10^{5} \mathrm{~Pa}\right) /\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)(273 \mathrm{~K})=2.68 \times 10^{25} / \mathrm{m}^{3}$.
(b) Note that Eq. 22-11 is wrong; for the explanation read the last two paragraphs in the first column on page 502 . We need an extra factor of $\sqrt{2}$, so $\pi d^{2}=V / \sqrt{2} N \lambda$, so

$$
d=\sqrt{1 / \sqrt{2} \pi\left(2.68 \times 10^{25} / \mathrm{m}^{3}\right)\left(285 \times 10^{-9} \mathrm{~m}\right)}=1.72 \times 10^{-10} \mathrm{~m}
$$

$\mathbf{E 2 2 - 1 0}$ (a) $\lambda=V / \sqrt{2} N \pi d^{2}$, so

$$
\lambda=\frac{1}{\sqrt{2}\left(1.0 \times 10^{6} / \mathrm{m}^{3}\right) \pi\left(2.0 \times 10^{-10} \mathrm{~m}\right)^{2}}=5.6 \times 10^{12} \mathrm{~m}
$$

(b) Particles effectively follow ballistic trajectories.

E22-11 We have $v=f \lambda$, where λ is the wavelength (which we will set equal to the mean free path), and v is the speed of sound. The mean free path is, from Eq. 22-13,

$$
\lambda=\frac{k T}{\sqrt{2} \pi d^{2} p}
$$

so

$$
f=\frac{\sqrt{2} \pi d^{2} p v}{k T}=\frac{\sqrt{2} \pi\left(315 \times 10^{-12} \mathrm{~m}\right)^{2}\left(1.02 \times 1.01 \times 10^{5} \mathrm{~Pa}\right)(343 \mathrm{~m} / \mathrm{s})}{\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)(291 \mathrm{~K})}=3.88 \times 10^{9} \mathrm{~Hz}
$$

E22-12 (a) $p=\left(1.10 \times 10^{-6} \mathrm{~mm} \mathrm{Hg}\right)(133 \mathrm{~Pa} / \mathrm{mm} \mathrm{Hg})=1.46 \times 10^{-4} \mathrm{~Pa}$. The particle density is

$$
N / V=\left(1.46 \times 10^{-4} \mathrm{~Pa}\right) /\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)(295 \mathrm{~K})=3.59 \times 10^{16} / \mathrm{m}^{3}
$$

(b) The mean free path is

$$
\lambda=1 / \sqrt{(} 2)\left(3.59 \times 10^{16} / \mathrm{m}^{3}\right) \pi\left(2.20 \times 10^{-10} \mathrm{~m}\right)^{2}=130 \mathrm{~m}
$$

E22-13 Note that $v_{\text {av }} \propto \sqrt{T}$, while $\lambda \propto T$. Then the collision rate is proportional to $1 / \sqrt{T}$. Then

$$
T=(300 \mathrm{~K}) \frac{\left(5.1 \times 10^{9} / \mathrm{s}\right)^{2}}{\left(6.0 \times 10^{9} / \mathrm{s}\right)^{2}}=216 \mathrm{~K}
$$

$\mathbf{E 2 2 - 1 4}$ (a) $v_{\mathrm{av}}=(65 \mathrm{~km} / \mathrm{s}) /(10)=6.5 \mathrm{~km} / \mathrm{s}$.
(b) $v_{\mathrm{rms}}=\sqrt{(505 \mathrm{~km} / \mathrm{s}) /(10)}=7.1 \mathrm{~km} / \mathrm{s}$.

E22-15 (a) The average is

$$
\frac{4(200 \mathrm{~s})+2(500 \mathrm{~m} / \mathrm{s})+4(600 \mathrm{~m} / \mathrm{s})}{4+2+4}=420 \mathrm{~m} / \mathrm{s}
$$

The mean-square value is

$$
\frac{4(200 \mathrm{~s})^{2}+2(500 \mathrm{~m} / \mathrm{s})^{2}+4(600 \mathrm{~m} / \mathrm{s})^{2}}{4+2+4}=2.1 \times 10^{5} \mathrm{~m}^{2} / \mathrm{s}^{2}
$$

The root-mean-square value is the square root of this, or $458 \mathrm{~m} / \mathrm{s}$.
(b) I'll be lazy. Nine particles are not moving, and the tenth has a speed of $10 \mathrm{~m} / \mathrm{s}$. Then the average speed is $1 \mathrm{~m} / \mathrm{s}$, and the root-mean-square speed is $3.16 \mathrm{~m} / \mathrm{s}$. Look, v_{rms} is larger than $v_{\text {av }}$!
(c) Can $v_{\mathrm{rms}}=v_{\mathrm{av}}$? Assume that the speeds are not all the same. Transform to a frame of reference where $v_{\mathrm{av}}=0$, then some of the individual speeds must be greater than zero, and some will be less than zero. Squaring these speeds will result in positive, non-zero, numbers; the mean square will necessarily be greater than zero, so $v_{\text {rms }}>0$.

Only if all of the particles have the same speed will $v_{\mathrm{rms}}=v_{\mathrm{av}}$.
E22-16 Use Eq. 22-20:

$$
v_{\mathrm{rms}}=\sqrt{\frac{3\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)(329 \mathrm{~K})}{\left(2.33 \times 10^{-26} \mathrm{~kg}+3 \times 1.67 \times 10^{-27} \mathrm{~kg}\right)}}=694 \mathrm{~m} / \mathrm{s}
$$

E22-17 Use Eq. 22-20:

$$
v_{\mathrm{rms}}=\sqrt{\frac{3\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)(2.7 \mathrm{~K})}{\left(2 \times 1.67 \times 10^{-27} \mathrm{~kg}\right)}}=180 \mathrm{~m} / \mathrm{s}
$$

E22-18 Eq. 22-14 is in the form $N=A v^{2} e^{-B v^{2}}$. Taking the derivative,

$$
\frac{d N}{d v}=2 A v e^{-B v^{2}}-2 A B v^{3} e^{-B v^{2}}
$$

and setting this equal to zero,

$$
v^{2}=1 / B=2 k T / m
$$

E22-19 We want to integrate

$$
\begin{aligned}
v_{\mathrm{av}} & =\frac{1}{N} \int_{0}^{\infty} N(v) v d v \\
& =\frac{1}{N} \int_{0}^{\infty} 4 \pi N\left(\frac{m}{2 \pi k T}\right)^{3 / 2} v^{2} e^{-m v^{2} / 2 k T} v d v \\
& =4 \pi\left(\frac{m}{2 \pi k T}\right)^{3 / 2} \int_{0}^{\infty} v^{2} e^{-m v^{2} / 2 k T} v d v
\end{aligned}
$$

The easiest way to attack this is first with a change of variables- let $x=m v^{2} / 2 k T$, then $k T d x=$ $m v d v$. The limits of integration don't change, since $\sqrt{\infty}=\infty$. Then

$$
\begin{aligned}
v_{\mathrm{av}} & =4 \pi\left(\frac{m}{2 \pi k T}\right)^{3 / 2} \int_{0}^{\infty} \frac{2 k T}{m} x e^{-x} \frac{k T}{m} d x \\
& =2\left(\frac{2 k T}{\pi m}\right)^{1 / 2} \int_{0}^{\infty} x e^{-\alpha x} d x
\end{aligned}
$$

The factor of α that was introduced in the last line is a Feynman trick; we'll set it equal to one when we are finished, so it won't change the result.

Feynman's trick looks like

$$
\frac{d}{d \alpha} \int e^{-\alpha x} d x=\int \frac{\partial}{\partial \alpha} e^{-\alpha x} d x=\int(-x) e^{-\alpha x} d x
$$

Applying this to our original problem,

$$
\begin{aligned}
v_{\mathrm{av}} & =2\left(\frac{2 k T}{\pi m}\right)^{1 / 2} \int_{0}^{\infty} x e^{-\alpha x} d x \\
& =-\frac{d}{d \alpha} 2\left(\frac{2 k T}{\pi m}\right)^{1 / 2} \int_{0}^{\infty} e^{-\alpha x} d x \\
& =-2\left(\frac{2 k T}{\pi m}\right)^{1 / 2} \frac{d}{d \alpha}\left(\left.\frac{-1}{\alpha} e^{-\alpha x}\right|_{0} ^{\infty}\right) \\
& =-2\left(\frac{2 k T}{\pi m}\right)^{1 / 2} \frac{d}{d \alpha}\left(\frac{1}{\alpha}\right) \\
& =-2\left(\frac{2 k T}{\pi m}\right)^{1 / 2} \frac{-1}{\alpha^{2}}
\end{aligned}
$$

We promised, however, that we would set $\alpha=1$ in the end, so this last line is

$$
\begin{aligned}
v_{\mathrm{av}} & =2\left(\frac{2 k T}{\pi m}\right)^{1 / 2} \\
& =\sqrt{\frac{8 k T}{\pi m}}
\end{aligned}
$$

E22-20 We want to integrate

$$
\begin{aligned}
\left(v^{2}\right)_{\mathrm{av}} & =\frac{1}{N} \int_{0}^{\infty} N(v) v^{2} d v \\
& =\frac{1}{N} \int_{0}^{\infty} 4 \pi N\left(\frac{m}{2 \pi k T}\right)^{3 / 2} v^{2} e^{-m v^{2} / 2 k T} v^{2} d v \\
& =4 \pi\left(\frac{m}{2 \pi k T}\right)^{3 / 2} \int_{0}^{\infty} v^{2} e^{-m v^{2} / 2 k T} v^{2} d v
\end{aligned}
$$

The easiest way to attack this is first with a change of variables- let $x^{2}=m v^{2} / 2 k T$, then $\sqrt{2 k T / m} d x=d v$. The limits of integration don't change. Then

$$
\begin{aligned}
\left(v^{2}\right)_{\mathrm{av}} & =4 \pi\left(\frac{m}{2 \pi k T}\right)^{3 / 2} \int_{0}^{\infty}\left(\frac{2 k T}{m}\right)^{5 / 2} x^{4} e^{-x^{2}} d x \\
& =\frac{8 k T}{\sqrt{\pi} m} \int_{0}^{\infty} x^{4} e^{-x^{2}} d x
\end{aligned}
$$

Look up the integral; although you can solve it by first applying a Feynman trick (see solution to Exercise 22-21) and then squaring the integral and changing to polar coordinates. I looked it up. I found $3 \sqrt{\pi} / 8$, so

$$
\left(v^{2}\right)_{\mathrm{av}}=\frac{8 k T}{\sqrt{\pi} m} 3 \sqrt{\pi} / 8=3 k T / m
$$

E22-21 Apply Eq. 22-20:

$$
v_{\mathrm{rms}}=\sqrt{3\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)(287 \mathrm{~K}) /\left(5.2 \times 10^{-17} \mathrm{~kg}\right)}=1.5 \times 10^{-2} \mathrm{~m} / \mathrm{s}
$$

E22-22 Since $v_{\mathrm{rms}} \propto \sqrt{T / m}$, we have

$$
T=(299 \mathrm{~K})(4 / 2)=598 \mathrm{~K}
$$

or $325^{\circ} \mathrm{C}$.

E22-23 (a) The escape speed is found on page $310 ; v=11.2 \times 10^{3} \mathrm{~m} / \mathrm{s}$. For hydrogen,

$$
T=(2)\left(1.67 \times 10^{-27} \mathrm{~kg}\right)\left(11.2 \times 10^{3} \mathrm{~m} / \mathrm{s}\right)^{2} / 3\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)=1.0 \times 10^{4} \mathrm{~K}
$$

For oxygen,

$$
T=(32)\left(1.67 \times 10^{-27} \mathrm{~kg}\right)\left(11.2 \times 10^{3} \mathrm{~m} / \mathrm{s}\right)^{2} / 3\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)=1.6 \times 10^{5} \mathrm{~K}
$$

(b) The escape speed is found on page $310 ; v=2.38 \times 10^{3} \mathrm{~m} / \mathrm{s}$. For hydrogen,

$$
T=(2)\left(1.67 \times 10^{-27} \mathrm{~kg}\right)\left(2.38 \times 10^{3} \mathrm{~m} / \mathrm{s}\right)^{2} / 3\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)=460 \mathrm{~K}
$$

For oxygen,

$$
T=(32)\left(1.67 \times 10^{-27} \mathrm{~kg}\right)\left(2.38 \times 10^{3} \mathrm{~m} / \mathrm{s}\right)^{2} / 3\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)=7300 \mathrm{~K}
$$

(c) There should be more oxygen than hydrogen.

E22-24 (a) $v_{\mathrm{av}}=(70 \mathrm{~km} / \mathrm{s}) /(22)=3.18 \mathrm{~km} / \mathrm{s}$.
(b) $v_{\mathrm{rms}}=\sqrt{\left(250 \mathrm{~km}^{2} / \mathrm{s}^{2}\right) /(22)}=3.37 \mathrm{~km} / \mathrm{s}$.
(c) $3.0 \mathrm{~km} / \mathrm{s}$.

E22-25 According to the equation directly beneath Fig. 22-8,

$$
\omega=v \phi / L=(212 \mathrm{~m} / \mathrm{s})(0.0841 \mathrm{rad}) /(0.204 \mathrm{~m})=87.3 \mathrm{rad} / \mathrm{s}
$$

$\mathbf{E 2 2 - 2 6}$ If $v_{\mathrm{p}}=v_{\mathrm{rms}}$ then $2 T_{2}=3 T_{1}$, or $T_{2} / T_{1}=3 / 2$.
E22-27 Read the last paragraph on the first column of page 505. The distribution of speeds is proportional to

$$
v^{3} e^{-m v^{2} / 2 k T}=v^{3} e^{-B v^{2}}
$$

taking the derivative $d N / d v$ and setting equal to zero yields

$$
\frac{d N}{d v}=3 v^{2} e^{-B v^{2}}-2 B v^{4} e^{-B v^{2}}
$$

and setting this equal to zero,

$$
v^{2}=3 / 2 B=3 k T / m
$$

E22-28 (a) $v=\sqrt{3(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K})(4220 \mathrm{~K}) /(0.07261 \mathrm{~kg} / \mathrm{mol})}=1200 \mathrm{~m} / \mathrm{s}$.
(b) Half of the sum of the diameters, or 273 pm .
(c) The mean free path of the germanium in the argon is

$$
\lambda=1 / \sqrt{2}\left(4.13 \times 10^{25} / \mathrm{m}^{3}\right) \pi\left(273 \times 10^{-12} \mathrm{~m}\right)^{2}=7.31 \times 10^{-8} \mathrm{~m}
$$

The collision rate is

$$
(1200 \mathrm{~m} / \mathrm{s}) /\left(7.31 \times 10^{-8} \mathrm{~m}\right)=1.64 \times 10^{10} / \mathrm{s}
$$

E22-29 The fraction of particles that interests us is

$$
\frac{2}{\sqrt{\pi}} \frac{1}{(k T)^{3 / 2}} \int_{0.01 k T}^{0.03 k T} E^{1 / 2} e^{-E / k T} d E
$$

Change variables according to $E / k T=x$, so that $d E=k T d x$. The integral is then

$$
\frac{2}{\sqrt{\pi}} \int_{0.01}^{0.03} x^{1 / 2} e^{-x} d x
$$

Since the value of x is so small compared to 1 throughout the range of integration, we can expand according to

$$
e^{-x} \approx 1-x \text { for } x \ll 1
$$

The integral then simplifies to

$$
\frac{2}{\sqrt{\pi}} \int_{0.01}^{0.03} x^{1 / 2}(1-x) d x=\frac{2}{\sqrt{\pi}}\left[\frac{2}{3} x^{3 / 2}-\frac{2}{5} x^{5 / 2}\right]_{0.01}^{0.03}=3.09 \times 10^{-3}
$$

E22-30 Write $N(E)=N\left(E_{\mathrm{p}}+\epsilon\right)$. Then

$$
N\left(E_{\mathrm{p}}+\epsilon\right) \approx N\left(E_{\mathrm{p}}\right)+\left.\epsilon \frac{d N(E)}{d E}\right|_{E_{\mathrm{p}}}+\ldots
$$

But the very definition of E_{p} implies that the first derivative is zero. Then the fraction of [particles with energies in the range $E_{\mathrm{p}} \pm 0.02 k T$ is

$$
\frac{2}{\sqrt{\pi}} \frac{1}{(k T)^{3 / 2}}(k T / 2)^{1 / 2} e^{-1 / 2}(0.02 k T)
$$

or $0.04 \sqrt{1 / 2 e \pi}=9.68 \times 10^{-3}$.

E22-31 The volume correction is on page 508; we need first to find d. If we assume that the particles in water are arranged in a cubic lattice (a bad guess, but we'll use it anyway), then 18 grams of water has a volume of $18 \times 10^{-6} \mathrm{~m}^{3}$, and

$$
d^{3}=\frac{\left(18 \times 10^{-6} \mathrm{~m}^{3}\right)}{\left(6.02 \times 10^{23}\right)}=3.0 \times 10^{-29} \mathrm{~m}^{3}
$$

is the volume allocated to each water molecule. In this case $d=3.1 \times 10^{-10} \mathrm{~m}$. Then

$$
b=\frac{1}{2}\left(6.02 \times 10^{23}\right)\left(\frac{4}{3} \pi\left(3.1 \times 10^{-10} \mathrm{~m}\right)^{3}\right)=3.8 \mathrm{~m}^{3} / \mathrm{mol}
$$

E22-32 $d^{3}=3 b / 2 \pi N_{A}$, or

$$
d=\sqrt[3]{\frac{3\left(32 \times 10^{-6} \mathrm{~m}^{3} / \mathrm{mol}\right)}{2 \pi\left(6.02 \times 10^{23} / \mathrm{mol}\right)}}=2.9 \times 10^{-10} \mathrm{~m}
$$

E22-33 a has units of energy volume per square mole, which is the same as energy per mole times volume per mole.

P22-1 Solve $(1-x)(1.429)+x(1.250)=1.293$ for x. The result is $x=0.7598$.

P22-2

P22-3 The only thing that matters is the total number of moles of gas (2.5) and the number of moles of the second gas (0.5). Since $1 / 5$ of the total number of moles of gas is associated with the second gas, then $1 / 5$ of the total pressure is associated with the second gas.

P22-4 Use Eq. 22-11 with the appropriate $\sqrt{2}$ inserted.

$$
\lambda=\frac{\left(1.0 \times 10^{-3} \mathrm{~m}^{3}\right)}{\sqrt{2}(35) \pi\left(1.0 \times 10^{-2} \mathrm{~m}\right)^{2}}=6.4 \times 10^{-2} \mathrm{~m}
$$

P22-5 (a) Since $\lambda \propto 1 / d^{2}$, we have

$$
\frac{d_{\mathrm{a}}}{d_{\mathrm{n}}}=\sqrt{\frac{\lambda_{\mathrm{n}}}{\lambda_{\mathrm{a}}}}=\sqrt{\frac{\left(27.5 \times 10^{-8} \mathrm{~m}\right)}{\left(9.90 \times 10^{-8} \mathrm{~m}\right)}}=1.67
$$

(b) Since $\lambda \propto 1 / p$, we have

$$
\lambda_{2}=\lambda_{1} \frac{p_{1}}{p_{2}}=\left(9.90 \times 10^{-8} \mathrm{~m}\right) \frac{(75.0 \mathrm{~cm} \mathrm{Hg})}{(15.0 \mathrm{~cm} \mathrm{Hg})}=49.5 \times 10^{-8} \mathrm{~m}
$$

(c) Since $\lambda \propto T$, we have

$$
\lambda_{2}=\lambda_{1} \frac{T_{2}}{T_{1}}=\left(9.90 \times 10^{-8} \mathrm{~m}\right) \frac{(233 \mathrm{~K})}{(293 \mathrm{~K})}=7.87 \times 10^{-8} \mathrm{~m}
$$

P22-6 We can assume the molecule will collide with something. Then

$$
1=\int_{0}^{\infty} A e^{-c r} d r=A / c
$$

so $A=c$. If the molecule has a mean free path of λ, then

$$
\lambda=\int_{0}^{\infty} r c e^{-c r} d r=1 / c
$$

so $A=c=1 / \lambda$.
$\mathbf{P 2 2 - 7}$ What is important here is the temperature; since the temperatures are the same then the average kinetic energies per particle are the same. Then

$$
\frac{1}{2} m_{1}\left(v_{\mathrm{rms}, 1}\right)^{2}=\frac{1}{2} m_{2}\left(v_{\mathrm{rms}, 2}\right)^{2}
$$

We are given in the problem that $v_{\mathrm{av}, 2}=2 v_{\mathrm{rms}, 1}$. According to Eqs. 22-18 and 22-20 we have

$$
v_{\mathrm{rms}}=\sqrt{\frac{3 R T}{M}}=\sqrt{\frac{3 \pi}{8}} \sqrt{\frac{8 R T}{\pi M}}=\sqrt{\frac{3 \pi}{8}} v_{\mathrm{av}}
$$

Combining this with the kinetic energy expression above,

$$
\frac{m_{1}}{m_{2}}=\left(\frac{v_{\mathrm{rms}, 2}}{v_{\mathrm{rms}, 1}}\right)^{2}=\left(2 \sqrt{\frac{3 \pi}{8}}\right)^{2}=4.71
$$

P22-8 (a) Assume that the speeds are not all the same. Transform to a frame of reference where $v_{\mathrm{av}}=0$, then some of the individual speeds must be greater than zero, and some will be less than zero. Squaring these speeds will result in positive, non-zero, numbers; the mean square will necessarily be greater than zero, so $v_{\mathrm{rms}}>0$.
(b) Only if all of the particles have the same speed will $v_{\mathrm{rms}}=v_{\mathrm{av}}$.

P22-9 (a) We need to first find the number of particles by integrating

$$
\begin{aligned}
N & =\int_{0}^{\infty} N(v) d v \\
& =\int_{0}^{v_{0}} C v^{2} d v+\int_{v_{0}}^{\infty}(0) d v=C \int_{0}^{v_{0}} v^{2} d v=\frac{C}{3} v_{0}^{3}
\end{aligned}
$$

Invert, then $C=3 N / v_{0}^{3}$.
(b) The average velocity is found from

$$
v_{\mathrm{av}}=\frac{1}{N} \int_{0}^{\infty} N(v) v d v
$$

Using our result from above,

$$
\begin{aligned}
v_{\mathrm{av}} & =\frac{1}{N} \int_{0}^{v_{0}}\left(\frac{3 N}{v_{0}^{3}} v^{2}\right) v d v \\
& =\frac{3}{v_{0}^{3}} \int_{0}^{v_{0}} v^{3} d v=\frac{3}{v_{0}^{3}} \frac{v_{0}^{4}}{4}=\frac{3}{4} v_{0} .
\end{aligned}
$$

As expected, the average speed is less than the maximum speed. We can make a prediction about the root mean square speed; it will be larger than the average speed (see Exercise 22-15 above) but smaller than the maximum speed.
(c) The root-mean-square velocity is found from

$$
v_{\mathrm{rms}}^{2}=\frac{1}{N} \int_{0}^{\infty} N(v) v^{2} d v
$$

Using our results from above,

$$
\begin{aligned}
v_{\mathrm{rms}}^{2} & =\frac{1}{N} \int_{0}^{v_{0}}\left(\frac{3 N}{v_{0}^{3}} v^{2}\right) v^{2} d v, \\
& =\frac{3}{v_{0}^{3}} \int_{0}^{v_{0}} v^{4} d v=\frac{3}{v_{0}^{3}} \frac{v_{0}^{5}}{5}=\frac{3}{5} v_{0}^{2} .
\end{aligned}
$$

Then, taking the square root,

$$
v_{\mathrm{rms}}^{2}=\sqrt{\frac{3}{5}} v_{0}
$$

Is $\sqrt{3 / 5}>3 / 4$? It had better be.

P22-10

P22-11

P22-12

P22-13

P22-14

P22-15 The mass of air displaced by $2180 \mathrm{~m}^{3}$ is $m=\left(1.22 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(2180 \mathrm{~m}^{3}\right)=2660 \mathrm{~kg}$. The mass of the balloon and basket is 249 kg and we want to lift 272 kg ; this leaves a remainder of 2140 kg for the mass of the air inside the balloon. This corresponds to $(2140 \mathrm{~kg}) /(0.0289 \mathrm{~kg} / \mathrm{mol})=7.4 \times 10^{4} \mathrm{~mol}$.

The temperature of the gas inside the balloon is then

$$
T=(p V) /(n R)=\left[\left(1.01 \times 10^{5} \mathrm{~Pa}\right)\left(2180 \mathrm{~m}^{3}\right)\right] /\left[\left(7.4 \times 10^{4} \mathrm{~mol}\right)(8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})=358 \mathrm{~K}\right.
$$

That's $85^{\circ} \mathrm{C}$.

P22-16

P22-17

