
E20-1 (a) t = x/v = (0.20 m)/(0.941)(3.00×108m/s) = 7.1×10−10s.
(b) y = −gt2/2 = −(9.81 m/s2)(7.1×10−10s)2/2 = 2.5×10−18m.

E20-2 L = L0

√
1− u2/c2 = (2.86 m)

√
1− (0.999987)2 = 1.46 cm.

E20-3 L = L0

√
1− u2/c2 = (1.68 m)

√
1− (0.632)2 = 1.30 m.

E20-4 Solve ∆t = ∆t0/
√

1− u2/c2 for u:

u = c

√
1−

(
∆t0
∆t

)2

= (3.00×108m/s)

√
1−

(
(2.20µs)
(16.0µs)

)2

= 2.97×108m/s.

E20-5 We can apply ∆x = v∆t to find the time the particle existed before it decayed. Then

∆t =
x

v

(1.05× 10−3 m)
(0.992)(3.00× 108 m/s)

= 3.53× 10−12 s.

The proper lifetime of the particle is

∆t0 = ∆t
√

1− u2/c2 = (3.53× 10−12 s)
√

1− (0.992)2 = 4.46× 10−13 s.

E20-6 Apply Eq. 20-12:

v =
(0.43c) + (0.587c)

1 + (0.43c)(0.587c)/c2
= 0.812c.

E20-7 (a) L = L0

√
1− u2/c2 = (130 m)

√
1− (0.740)2 = 87.4 m

(b) ∆t = L/v = (87.4 m)/(0.740)(3.00×108m/s) = 3.94×10−7s.

E20-8 ∆t = ∆t0/
√

1− u2/c2 = (26 ns)
√

1− (0.99)2 = 184 ns. Then

L = v∆t = (0.99)(3.00×108m/s)(184×10−9s) = 55 m.

E20-9 (a) vg = 2v = (7.91 + 7.91) km/s = 15.82 km/s.
(b) A relativistic treatment yields vr = 2v/(1 + v2/c2). The fractional error is

vg

vr
− 1 =

(
1 +

v2

c2

)
− 1 =

v2

c2
=

(7.91×103m/s)2

(3.00×108m/s)2
= 6.95×10−10.

E20-10 Invert Eq. 20-15 to get β =
√

1− 1/γ2.

(a) β =
√

1− 1/(1.01)2 = 0.140.
(b) β =

√
1− 1/(10.0)2 = 0.995.

(c) β =
√

1− 1/(100)2 = 0.99995.
(d) β =

√
1− 1/(1000)2 = 0.9999995.
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E20-11 The distance traveled by the particle is (6.0 y)c; the time required for the particle to
travel this distance is 8.0 years. Then the speed of the particle is

v =
∆x
∆t

=
(6.0 y)c
(8.0 y)

=
3
4
c.

The speed parameter β is given by

β =
v

c
=

3
4c

c
=

3
4
.

E20-12 γ = 1/
√

1− (0.950)2 = 3.20. Then

x′ = (3.20)[(1.00×105m)− (0.950)(3.00×108m/s)(2.00×10−4s)] = 1.38×105m,
t′ = (3.20)[(2.00×10−4s)− (1.00×105m)(0.950)/(3.00×108m/s)] = −3.73×10−4s.

E20-13 (a) γ = 1/
√

1− (0.380)2 = 1.081. Then

x′ = (1.081)[(3.20×108m)− (0.380)(3.00×108m/s)(2.50 s)] = 3.78×107m,
t′ = (1.081)[(2.50 s)− (3.20×108m)(0.380)/(3.00×108m/s)] = 2.26 s.

(b) γ = 1/
√

1− (0.380)2 = 1.081. Then

x′ = (1.081)[(3.20×108m)− (−0.380)(3.00×108m/s)(2.50 s)] = 6.54×108m,
t′ = (1.081)[(2.50 s)− (3.20×108m)(−0.380)/(3.00×108m/s)] = 3.14 s.

E20-14

E20-15 (a) v′x = (−u)/(1− 0) and v′y = c
√

1− u2/c2.
(b) (v′x)2 + (v′y)2 = u2 + c2 − u2 = c2.

E20-16 v′ = (0.787c+ 0.612c)/[1 + (0.787)(0.612)] = 0.944c.

E20-17 (a) The first part is easy; we appear to be moving away from A at the same speed as A
appears to be moving away from us: 0.347c.

(b) Using the velocity transformation formula, Eq. 20-18,

v′x =
vx − u

1− uvx/c2
=

(0.347c)− (−0.347c)
1− (−0.347c)(0.347c)/c2

= 0.619c.

The negative sign reflects the fact that these two velocities are in opposite directions.

E20-18 v′ = (0.788c− 0.413c)/[1 + (0.788)(−0.413)] = 0.556c.

E20-19 (a) γ = 1/
√

1− (0.8)2 = 5/3.

v′x =
vx

γ(1− uvy/c2)
=

3(0.8c)
5[1− (0)]

=
12
25
c,

v′y =
vy − u

1− uvy/c2
=

(0)− (0.8c)
1− (0)

= −4
5
c.

Then v′ = c
√

(−4/5)2 + (12/25)2 = 0.933c directed θ = arctan(−12/20) = 31◦ East of South.
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(b) γ = 1/
√

1− (0.8)2 = 5/3.

v′x =
vx − u

1− uvx/c2
=

(0)− (−0.8c)
1− (0)

= +
4
5
c,

v′y =
vy

γ(1− uvx/c2)
=

3(0.8c)
5[1− (0)]

=
12
25
c.

Then v′ = c
√

(4/5)2 + (12/25)2 = 0.933c directed θ = arctan(20/12) = 59◦ West of North.

E20-20 This exercise should occur in Section 20-9.
(a) v = 2π(6.37×106m)c/(1 s)(3.00×108m/s) = 0.133c.
(b) K = (γ − 1)mc2 = (1/

√
1− (0.133)2 − 1)(511 keV) = 4.58 keV.

(c) Kc = mv2/2 = mc2(v2/c2)/2 = (511 keV)(0.133)2/2 = 4.52 keV. The percent error is

(4.52− 4.58)/(4.58) = −1.31%.

E20-21 ∆L = L′ − L0 so

∆L = 2(6.370×106m)(1−
√

1− (29.8×103m/s)2/(3.00×108m/s)2) = 6.29×10−2m.

E20-22 (a) ∆L/L0 = 1− L′/L0 so

∆L = (1−
√

1− (522 m/s)2/(3.00×108m/s)2) = 1.51×10−12.

(b) We want to solve ∆t−∆t′ = 1µs, or

1µs = ∆t(1− 1/
√

1− (522 m/s)2/(3.00×108m/s)2),

which has solution ∆t = 6.61×105s. That’s 7.64 days.

E20-23 The length of the ship as measured in the “certain” reference frame is

L = L0

√
1− v2/c2 = (358 m)

√
1− (0.728)2 = 245 m.

In a time ∆t the ship will move a distance x1 = v1∆t while the micrometeorite will move a distance
x2 = v2∆t; since they are moving toward each other then the micrometeorite will pass then ship
when x1 + x2 = L. Then

∆t = L/(v1 + v2) = (245 m)/[(0.728 + 0.817)(3.00×108m/s)] = 5.29×10−7 s.

This answer is the time measured in the “certain” reference frame. We can use Eq. 20-21 to find
the time as measured on the ship,

∆t =
∆t′ + u∆x′/c2√

1− u2/c2
=

(5.29×10−7 s) + (0.728c)(116 m)/c2√
1− (0.728)2

= 1.23×10−6s.

E20-24 (a) γ = 1/
√

1− (0.622)2 = 1.28.
(b) ∆t = (183 m)/(0.622)(3.00×108m/s) = 9.81×10−7s. On the clock, however,

∆t′ = ∆t/γ = (9.81×10−7s)/(1.28) = 7.66×10−7s.
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E20-25 (a) ∆t = (26.0 ly)/(0.988)(1.00 ly/y) = 26.3 y.
(b) The signal takes 26 years to return, so 26 + 26.3 = 52.3 years.
(c) ∆t′ = (26.3 y)

√
1− (0.988)2 = 4.06 y.

E20-26 (a) γ = (1000 y)(1 y) = 1000;

v = c
√

1− 1/γ2 ≈ c(1− 1/2γ2) = 0.9999995c

(b) No.

E20-27 (5.61×1029 MeV/c2)c/(3.00×108m/s) = 1.87×1021 MeV/c.

E20-28 p2 = m2c2 = m2v2/(1− v2/c2), so 2v2/c2 = 1, or v =
√

2c.

E20-29 The magnitude of the momentum of a relativistic particle in terms of the magnitude of
the velocity is given by Eq. 20-23,

p =
mv√

1− v2/c2
.

The speed parameter, β, is what we are looking for, so we need to rearrange the above expression
for the quantity v/c.

p/c =
mv/c√

1− v2/c2
,

p

c
=

mβ√
1− β2

,

mc

p
=

√
1− β2

β
,

mc

p
=

√
1/β2 − 1.

Rearranging,

mc2

pc
=

√
1/β2 − 1,(

mc2

pc

)2

=
1
β2
− 1,√(

mc2

pc

)2

+ 1 =
1
β
,

pc√
m2c4 + p2c2

= β

(a) For the electron,

β =
(12.5 MeV/c)c√

(0.511 MeV/c2)2c4 + (12.5 MeV/c)2c2
= 0.999.

(b) For the proton,

β =
(12.5 MeV/c)c√

(938 MeV/c2)2c4 + (12.5 MeV/c)2c2
= 0.0133.
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E20-30 K = mc2(γ − 1), so γ = 1 +K/mc2. β =
√

1− 1/γ2.
(a) γ = 1 + (1.0 keV)/(511 keV) = 1.00196. β = 0.0625c.
(b) γ = 1 + (1.0 MeV)/(0.511 MeV) = 2.96. β = 0.941c.
(c) γ = 1 + (1.0 GeV)/(0.511 MeV) = 1960. β = 0.99999987c.

E20-31 The kinetic energy is given by Eq. 20-27,

K =
mc2√

1− v2/c2
−mc2.

We rearrange this to solve for β = v/c,

β =

√
1−

(
mc2

K +mc2

)2

.

It is actually much easier to find γ, since

γ =
1√

1− v2/c2
,

so K = γmc2 −mc2 implies

γ =
K +mc2

mc2

(a) For the electron,

β =

√
1−

(
(0.511 MeV/c2)c2

(10 MeV) + (0.511 MeV/c2)c2

)2

= 0.9988,

and

γ =
(10 MeV) + (0.511 MeV/c2)c2

(0.511 MeV/c2)c2
= 20.6.

(b) For the proton,

β =

√
1−

(
(938 MeV/c2)c2

(10 MeV) + (938 MeV/c2)c2

)2

= 0.0145,

and

γ =
(10 MeV) + (938 MeV/c2)c2

(938 MeV/c2)c2
= 1.01.

(b) For the alpha particle,

β =

√
1−

(
4(938 MeV/c2)c2

(10 MeV) + 4(938 MeV/c2)c2

)2

= 0.73,

and

γ =
(10 MeV) + 4(938 MeV/c2)c2

4(938 MeV/c2)c2
= 1.0027.

E20-32 γ = 1/
√

1− (0.99)2 = 7.089.
(a) E = γmc2 = (7.089)(938.3 MeV) = 6650 MeV. K = E − mc2 = 5710 MeV. p = mvγ =

(938.3 MeV/c2)(0.99c)(7.089) = 6580 MeV/c.
(b) E = γmc2 = (7.089)(0.511 MeV) = 3.62 MeV. K = E − mc2 = 3.11 MeV. p = mvγ =

(0.511 MeV/c2)(0.99c)(7.089) = 3.59 MeV/c.
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E20-33 ∆m/∆t = (1.2×1041W)/(3.0×108m/s)2 = 1.33×1024kg/s, which is

∆m
∆t

=
(1.33×1024kg/s)(3.16×107s/y)

(1.99×1030kg/sun)
= 21.1

E20-34 (a) If K = E −mc2 = 2mc2, then E = 3mc2, so γ = 3, and

v = c
√

1− 1/γ2 = c
√

1− 1/(3)2 = 0.943c.

(b) If E = 2mc2, then γ = 2, and

v = c
√

1− 1/γ2 = c
√

1− 1/(2)2 = 0.866c.

E20-35 (a) The kinetic energy is given by Eq. 20-27,

K =
mc2√

1− v2/c2
−mc2 = mc2

((
1− β2

)−1/2 − 1
)
.

We want to expand the 1− β2 part for small β,(
1− β2

)−1/2
= 1 +

1
2
β2 +

3
8
β4 + · · ·

Inserting this into the kinetic energy expression,

K =
1
2
mc2β2 +

3
8
mc2β4 + · · ·

But β = v/c, so

K =
1
2
mv2 +

3
8
m
v4

c2
+ · · ·

(b) We want to know when the error because of neglecting the second (and higher) terms is 1%;
or

0.01 = (
3
8
m
v4

c2
)/(

1
2
mv2) =

3
4

(v
c

)2

.

This will happen when v/c =
√

(0.01)4/3) = 0.115.

E20-36 Kc = (1000 kg)(20 m/s)2/2 = 2.0×105J. The relativistic calculation is slightly harder:

Kr = (1000 kg)(3×108m/s)2(1/
√

1− (20 m/s)2/(3×108m/s)2 − 1),

≈ (1000 kg)
[

1
2

(20 m/s)2 +
3
8

(20 m/s)4/(3×108m/s)2 + ...

]
,

= 2.0×105J + 6.7×10−10J.

E20-37 Start with Eq. 20-34 in the form

E2 = (pc)2 + (mc2)2

The rest energy is mc2, and if the total energy is three times this then E = 3mc2, so

(3mc2)2 = (pc)2 + (mc2)2,

8(mc2)2 = (pc)2,
√

8mc = p.
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E20-38 The initial kinetic energy is

K i =
1
2
m

(
2v

1 + v2/c2

)
=

2mv2

(1 + v2/c2)2
.

The final kinetic energy is

Kf = 2
1
2
m
(
v
√

2− v2/c2
)2

= mv2(2− v2/c2).

E20-39 This exercise is much more involved than the previous one!
The initial kinetic energy is

K i =
mc2√

1−
(

2v
1+v2/c2

)2

/c2
−mc2,

=
mc2(1 + v2/c2)√

(1 + v2/c2)2 − 4v2/c2
−mc2,

=
m(c2 + v2)
1− v2/c2

− m(c2 − v2)
1− v2/c2

,

=
2mv2

1− v2/c2
.

The final kinetic energy is

Kf = 2
mc2√

1−
(
v
√

2− v2/c2
)2

/c2
− 2mc2,

= 2
mc2√

1− (v2/c2)(2− v2/c2)
− 2mc2,

= 2
mc2

1− v2/c2
− 2mc2,

= 2
mc2

1− v2/c2
− 2

m(c2 − v2)
1− v2/c2

,

=
2mv2

1− v2/c2
.

E20-40 For a particle with mass, γ = K/mc2 + 1. For the electron, γ = (0.40)/(0.511) + 1 = 1.78.
For the proton, γ = (10)/(938) + 1 = 1.066.

For the photon, pc = E. For a particle with mass, pc =
√

(K +mc2)2 −m2c4. For the electron,

pc =
√

[(0.40 MeV) + (0.511 MeV)]2 − (0.511 MeV)2 = 0.754 MeV.

For the proton,

pc =
√

[(10 MeV) + (938 MeV)]2 − (938 MeV)2 = 137 MeV.

(a) Only photons move at the speed of light, so it is moving the fastest.
(b) The proton, since it has smallest value for γ.
(c) The proton has the greatest momentum.
(d) The photon has the least.
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E20-41 Work is change in energy, so

W = mc2/
√

1− (vf/c)2 −mc2/
√

1− (vi/c)2.

(a) Plug in the numbers,

W = (0.511 MeV)(1/
√

1− (0.19)2 − 1/
√

1− (0.18)2) = 0.996 keV.

(b) Plug in the numbers,

W = (0.511 MeV)(1/
√

1− (0.99)2 − 1/
√

1− (0.98)2) = 1.05 MeV.

E20-42 E = 2γm0c
2 = mc2, so

m = 2γm0 = 2(1.30 mg)/
√

1− (0.580)2 = 3.19 mg.

E20-43 (a) Energy conservation requires Ek = 2Eπ, or mkc
2 = 2γmπc

2. Then

γ = (498 MeV)/2(140 MeV) = 1.78

This corresponds to a speed of v = c
√

1− 1/(1.78)2 = 0.827c.
(b) γ = (498 MeV + 325 MeV)/(498 MeV) = 1.65, so v = c

√
1− 1/(1.65)2 = 0.795c.

(c) The lab frame velocities are then

v′1 =
(0.795) + (−0.827)
1 + (0.795)(−0.827)

c = −0.0934c,

and

v′2 =
(0.795) + (0.827)
1 + (0.795)(0.827)

c = 0.979c,

The corresponding kinetic energies are

K1 = (140 MeV)(1/
√

1− (−0.0934)2 − 1) = 0.614 MeV

and
K1 = (140 MeV)(1/

√
1− (0.979)2 − 1) = 548 MeV

E20-44

P20-1 (a) γ = 2, so v =
√

1− 1/(2)2 = 0.866c.
(b) γ = 2.

P20-2 (a) Classically, v′ = (0.620c) + (0.470c) = 1.09c. Relativistically,

v′ =
(0.620c) + (0.470c)
1 + (0.620)(0.470)

= 0.844c.

(b) Classically, v′ = (0.620c) + (−0.470c) = 0.150c. Relativistically,

v′ =
(0.620c) + (−0.470c)
1 + (0.620)(−0.470)

= 0.211c.
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P20-3 (a) γ = 1/
√

1− (0.247)2 = 1.032. Use the equations from Table 20-2.

∆t = (1.032)[(0)− (0.247)(30.4×103m)/(3.00×108m/s)] = −2.58×10−5s.

(b) The red flash appears to go first.

P20-4 Once again, the “pico” should have been a µ.
γ = 1/

√
1− (0.60)2 = 1.25. Use the equations from Table 20-2.

∆t = (1.25)[(4.0×10−6s)− (0.60)(3.0×103m)/(3.00×108m/s)] = −2.5×10−6s.

P20-5 We can choose our coordinate system so that u is directed along the x axis without any
loss of generality. Then, according to Table 20-2,

∆x′ = γ(∆x− u∆t),
∆y′ = ∆y,
∆z′ = ∆z,
c∆t′ = γ(c∆t− u∆x/c).

Square these expressions,

(∆x′)2 = γ2(∆x− u∆t)2 = γ2
(
(∆x)2 − 2u(∆x)(∆t) + (∆t)2

)
,

(∆y′)2 = (∆y)2,

(∆z′)2 = (∆z)2,

c2(∆t′)2 = γ2(c∆t− u∆x/c)2 = γ2
(
c2(∆t)2 − 2u(∆t)(∆x) + u2(∆x)2/c2

)
.

We’ll add the first three equations and then subtract the fourth. The left hand side is the equal to

(∆x′)2 + (∆y′)2 + (∆z′)2 − c2(∆t′)2,

while the right hand side will equal

γ2
(
(∆x)2 + u2(∆t)2 − c2(∆t)2 − u2/c2(∆x)2

)
+ (∆y)2 + (∆z)2,

which can be rearranged as

γ2
(
1− u2/c2

)
(∆x)2 + γ2

(
u2 − c2

)
(∆t)2 + (∆y)2 + (∆z)2,

γ2
(
1− u2/c2

)
(∆x)2 + (∆y)2 + (∆z)2 − c2γ2

(
1− u2/c2

)
(∆t)2.

But
γ2 =

1
1− u2/c2

,

so the previous expression will simplify to

(∆x)2 + (∆y)2 + (∆z)2 − c2(∆t)2.

P20-6 (a) vx = [(0.780c) + (0.240c)]/[1 + (0.240)(0.780)] = 0.859c.
(b) vx = [(0) + (0.240c)]/[1 + (0)] = 0.240c, while

vy = (0.780c)
√

1− (0.240)2/[1 + (0)] = 0.757c.

Then v =
√

(0.240c)2 + (0.757c)2 = 0.794c.
(b) v′x = [(0)− (0.240c)]/[1 + (0)] = −0.240c, while

v′y = (0.780c)
√

1− (0.240)2/[1 + (0)] = 0.757c.

Then v′ =
√

(−0.240c)2 + (0.757c)2 = 0.794c.
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P20-7 If we look back at the boost equation we might notice that it looks very similar to the
rule for the tangent of the sum of two angles. It is exactly the same as the rule for the hyperbolic
tangent,

tanh(α1 + α2) =
tanhα1 + tanhα2

1 + tanhα1 tanhα2
.

This means that each boost of β = 0.5 is the same as a “hyperbolic” rotation of αr where tanhαr =
0.5. We need only add these rotations together until we get to αf , where tanhαf = 0.999.

αf = 3.800, and αR = 0.5493. We can fit (3.800)/(0.5493) = 6.92 boosts, but we need an integral
number, so there are seven boosts required. The final speed after these seven boosts will be 0.9991c.

P20-8 (a) If ∆x′ = 0, then ∆x = u∆t, or

u = (730 m)/(4.96×10−6s) = 1.472×108m/s = 0.491c.

(b) γ = 1/
√

1− (0.491)2 = 1.148,

∆t′ = (1.148)[(4.96×10−6s)− (0.491)(730 m)/(3×108)] = 4.32×10−6s.

P20-9 Since the maximum value for u is c, then the minimum ∆t is

∆t ≥ (730 m)/(3.00×108m/s) = 2.43×10−6s.

P20-10 (a) Yes.
(b) The speed will be very close to the speed of light, consequently γ ≈ (23, 000)/(30) = 766.7.

Then
v =

√
1− 1/γ2 ≈ 1− 1/2γ2 = 1− 1/2(766.7)2 = 0.99999915c.

P20-11 (a) ∆t′ = (5.00µs)
√

1− (0.6)2 = 4.00µs.
(b) Note: it takes time for the reading on the S′ clock to be seen by the S clock. In this case,

∆t1 + ∆t2 = 5.00µs, where ∆t1 = x/u and ∆t2 = x/c. Solving for ∆t1,

∆t1 =
(5.00µs)/(0.6c)
1/(0.6c) + 1/c

= 3.125 s,

and
∆t′1 = (3.125µs)

√
1− (0.6)2 = 2.50µs.

P20-12 The only change in the components of ∆r occur parallel to the boost. Then we can choose
the boost to be parallel to ∆r and then

∆r′ = γ[∆r − u(0)] = γ∆r ≥ ∆r,

since γ ≥ 1.

P20-13 (a) Start with Eq. 20-34,

E2 = (pc)2 + (mc2)2,

and substitute into this E = K +mc2,

K2 + 2Kmc2 + (mc2)2 = (pc)2 + (mc2)2.
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We can rearrange this, and then

K2 + 2Kmc2 = (pc)2,

m =
(pc)2 −K2

2Kc2

(b) As v/c→ 0 we have K → 1
2mv

2 and p→ mv, the classical limits. Then the above expression
becomes

m =
m2v2c2 − 1

4m
2v4

mv2c2
,

= m
v2c2 − 1

4v
4

v2c2
,

= m

(
1− 1

4
v2

c2

)
But v/c→ 0, so this expression reduces to m = m in the classical limit, which is a good thing.

(c) We get

m =
(121 MeV)2 − (55.0 MeV)2

2(55.0 MeV)c2
= 1.06 MeV/c2,

which is (1.06 MeV/c2)/(0.511 MeV/c2) = 207me. A muon.

P20-14 Since E � mc2 the particle is ultra-relativistic and v ≈ c. γ = (135)/(0.1396) = 967.
Then the particle has a lab-life of ∆t′ = (967)(35.0×10−9s) = 3.385×10−5s. The distance traveled
is

x = (3.00×108m/s)(3.385×10−5s) = 1.016×104m,

so the pion decays 110 km above the Earth.

P20-15 (a) A completely inelastic collision means the two particles, each of mass m1, stick
together after the collision, in effect becoming a new particle of mass m2. We’ll use the subscript 1
for moving particle of mass m1, the subscript 0 for the particle which is originally at rest, and the
subscript 2 for the new particle after the collision. We need to conserve momentum,

p1 + p0 = p2,

γ1m1u1 + (0) = γ2m2u2,

and we need to conserve total energy,

E1 + E0 = E2,

γ1m1c
2 +m1c

2 = γ2m2c
2,

Divide the momentum equation by the energy equation and then

γ1u1

γ1 + 1
= u2.

But u1 = c
√

1− 1/γ2
1 , so

u2 = c
γ1

√
1− 1/γ2

1

γ1 + 1
,

= c

√
γ2

1 − 1
γ1 + 1

,
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= c

√
(γ1 + 1)(γ1 − 1)

γ1 + 1
,

= c

√
γ1 − 1
γ1 + 1

.

(b) Using the momentum equation,

m2 = m1
γ1u1

γ2u2
,

= m1
cγ1

√
1− 1/γ2

1

u2/
√

1− (u2/c)2
,

= m1

√
γ2

1 − 1
1/
√

(c/u2)2 − 1
,

= m1

√
γ2

1 − 1
1/
√

(γ1 + 1)/(γ1 − 1)− 1
,

= m1

√
(γ1 + 1)(γ1 − 1)√

(γ1 − 1)/2
,

= m1

√
2(γ1 + 1).

P20-16 (a) K = W =
∫
F dx =

∫
(dp/dt)dx =

∫
(dx/dt)dp =

∫
v dp.

(b) dp = mγ dv +mv(dγ/dv)dv. Now use Maple or Mathematica to save time, and get

dp =
mdv

(1− v2/c2)1/2
+

mv2 dv

c2(1− v2/c2)3/2
.

Now integrate:

K =
∫
v

(
m

(1− v2/c2)1/2
+

mv2

c2(1− v2/c2)3/2

)
dv,

=
mv2√

1− v2/c2
.

P20-17 (a) Since E = K +mc2, then

Enew = 2E = 2mc2 + 2K = 2mc2(1 +K/mc2).

(b) Enew = 2(0.938 GeV) + 2(100 GeV) = 202 GeV.
(c) K = (100 GeV)/2− (0.938 GeV) = 49.1 GeV.

P20-18 (a) Assume only one particle is formed. That particle can later decay, but it sets the
standard on energy and momentum conservation. The momentum of this one particle must equal
that of the incident proton, or

p2c2 = [(mc2 +K)2 −m2c4].

The initial energy was K + 2mc2, so the mass of the “one” particle is given by

M2c4 = [(K + 2mc2)2 − p2c2] = 2Kmc2 + 4m2c4.

This is a measure of the available energy; the remaining energy is required to conserve momentum.
Then

Enew =
√
M2c4 = 2mc2

√
1 +K/2mc2.
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P20-19 The initial momentum is mγivi. The final momentum is (M −m)γfvf . Manipulating the
momentum conservation equation,

mγivi = (M −m)γfvf ,

1
mγiβi

=

√
1− βf

2

(M −m)βf
,

M −m
mγiβi

=
(

1
βf

2
− 1
)
,

M −m
mγiβi

+ 1 =
1
βf

2
,
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