
E19-1 (a) v = fλ = (25 Hz)(0.24 m) = 6.0 m/s.
(b) k = (2π rad)/(0.24 m) = 26 rad/m; ω = (2π rad)(25 Hz) = 160 rad/s. The wave equation is

s = (3.0×10−3m) sin[(26 rad/m)x+ (160 rad/s)t]

E19-2 (a) [∆P ]m = 1.48 Pa.
(b) f = (334π rad/s)/(2π rad) = 167 Hz.
(c) λ = (2π rad)/(1.07π rad/m) = 1.87 m.
(d) v = (167 Hz)(1.87 m) = 312 m/s.

E19-3 (a) The wavelength is given by λ = v/f = (343 m/s)/(4.50×106Hz = 7.62×10−5m.
(b) The wavelength is given by λ = v/f = (1500 m/s)/(4.50×106Hz = 3.33×10−4m.

E19-4 Note: There is a typo; the mean free path should have been measured in “µm” instead of
“pm”.

λmin = 1.0×10−6m; fmax = (343 m/s)/(1.0×10−6m) = 3.4×108Hz.

E19-5 (a) λ = (240 m/s)/(4.2×109Hz) = 5.7×10−8m.

E19-6 (a) The speed of sound is

v = (331 m/s)(6.21×10−4 mi/m) = 0.206 mi/s.

In five seconds the sound travels (0.206 mi/s)(5.0 s) = 1.03 mi, which is 3% too large.
(b) Count seconds and divide by 3.

E19-7 Marching at 120 paces per minute means that you move a foot every half a second. The
soldiers in the back are moving the wrong foot, which means they are moving the correct foot half
a second later than they should. If the speed of sound is 343 m/s, then the column of soldiers must
be (343 m/s)(0.5 s) = 172 m long.

E19-8 It takes (300 m)/(343 m/s) = 0.87 s for the concert goer to hear the music after it has passed
the microphone. It takes (5.0×106m)/(3.0×108m/s) = 0.017 s for the radio listener to hear the music
after it has passed the microphone. The radio listener hears the music first, 0.85 s before the concert
goer.

E19-9 x/vP = tP and x/vS = tS; subtracting and rearranging,

x = ∆t/[1/vS − 1/vP] = (180 s)/[1/(4.5 km/s)− 1/(8.2 km/s)] = 1800 km.

E19-10 Use Eq. 19-8, sm = [∆p]m/kB, and Eq. 19-14, v =
√
B/ρ0. Then

[∆p]m = kBsm = kv2ρ0sm = 2πfvρ0sm.

Insert into Eq. 19-18, and
I = 2π2ρvf2sm

2.

E19-11 If the source emits equally in all directions the intensity at a distance r is given by the
average power divided by the surface area of a sphere of radius r centered on the source.

The power output of the source can then be found from

P = IA = I(4πr2) = (197×10−6W/m2)4π(42.5 m)2 = 4.47 W.
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E19-12 Use the results of Exercise 19-10.

sm =

√
(1.13×10−6W/m2)

2π2(1.21 kg/m3)(343 m/s)(313 Hz)2
= 3.75×10−8m.

E19-13 U = IAt = (1.60×10−2W/m2)(4.70×10−4m2)(3600 s) = 2.71×10−2W.

E19-14 Invert Eq. 19-21:
I1/I2 = 10(1.00dB)/10 = 1.26.

E19-15 (a) Relative sound level is given by Eq. 19-21,

SL1 − SL2 = 10 log
I1
I2

or
I1
I2

= 10(SL1−SL2)/10,

so if ∆SL = 30 then I1/I2 = 1030/10 = 1000.
(b) Intensity is proportional to pressure amplitude squared according to Eq. 19-19; so

∆pm,1/∆pm,2 =
√
I1/I2 =

√
1000 = 32.

E19-16 We know where her ears hurt, so we know the intensity at that point. The power output
is then

P = 4π(1.3 m)2(1.0 W/m2) = 21 W.

This is less than the advertised power.

E19-17 Use the results of Exercise 18-18, I = uv. The intensity is

I = (5200 W)/4π(4820 m)2 = 1.78×10−5W/m2,

so the energy density is

u = I/v = (1.78×10−5W/m2)/(343 m/s) = 5.19×10−8J/m3.

E19-18 I2 = 2I1, since I ∝ 1/r2 then r2
1 = 2r2

2. Then

D =
√

2(D − 51.4 m),

D(
√

2− 1) =
√

2(51.4 m),
D = 176 m.

E19-19 The sound level is given by Eq. 19-20,

SL = 10 log
I

I0

where I0 is the threshold intensity of 10−12 W/m2. Intensity is given by Eq. 19-19,

I =
(∆pm)2

2ρv

If we assume the maximum possible pressure amplitude is equal to one atmosphere, then

I =
(∆pm)2

2ρv
=

(1.01×105Pa)2

2(1.21 kg/m3)(343 m/s)
= 1.22×107W/m2.

241



The sound level would then be

SL = 10 log
I

I0
= 10 log

1.22×107W/m2

(10−12 W/m2)
= 191 dB

E19-20 Let one person speak with an intensity I1. N people would have an intensity NI1. The
ratio is N , so by inverting Eq. 19-21,

N = 10(15dB)/10 = 31.6,

so 32 people would be required.

E19-21 Let one leaf rustle with an intensity I1. N leaves would have an intensity NI1. The ratio
is N , so by Eq. 19-21,

SLN = (8.4 dB) + 10 log(2.71×105) = 63 dB.

E19-22 Ignoring the finite time means that we can assume the sound waves travels vertically,
which considerably simplifies the algebra.

The intensity ratio can be found by inverting Eq. 19-21,

I1/I2 = 10(30dB)/10 = 1000.

But intensity is proportional to the inverse distance squared, so I1/I2 = (r2/r1)2, or

r2 = (115 m)
√

(1000) = 3640 m.

E19-23 A minimum will be heard at the detector if the path length difference between the
straight path and the path through the curved tube is half of a wavelength. Both paths involve a
straight section from the source to the start of the curved tube, and then from the end of the curved
tube to the detector. Since it is the path difference that matters, we’ll only focus on the part of
the path between the start of the curved tube and the end of the curved tube. The length of the
straight path is one diameter, or 2r. The length of the curved tube is half a circumference, or πr.
The difference is (π − 2)r. This difference is equal to half a wavelength, so

(π − 2)r = λ/2,

r =
λ

2π − 4
=

(42.0 cm)
2π − 4

= 18.4 cm.

E19-24 The path length difference here is√
(3.75 m)2 + (2.12 m)2 − (3.75 m) = 0.5578 m.

(a) A minimum will occur if this is equal to a half integer number of wavelengths, or (n−1/2)λ =
0.5578 m. This will occur when

f = (n− 1/2)
(343 m/s)
(0.5578 m)

= (n− 1/2)(615 Hz).

(b) A maximum will occur if this is equal to an integer number of wavelengths, or nλ = 0.5578 m.
This will occur when

f = n
(343 m/s)
(0.5578 m)

= n(615 Hz).
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E19-25 The path length difference here is√
(24.4 m + 6.10 m)2 + (15.2 m)2 −

√
(24.4 m)2 + (15.2 m)2 = 5.33 m.

A maximum will occur if this is equal to an integer number of wavelengths, or nλ = 5.33 m. This
will occur when

f = n(343 m/s)/(5.33 m) = n(64.4 Hz)

The two lowest frequencies are then 64.4 Hz and 129 Hz.

E19-26 The wavelength is λ = (343 m/s)/(300 Hz) = 1.143 m. This means that the sound maxima
will be half of this, or 0.572 m apart. Directly in the center the path length difference is zero, but
since the waves are out of phase, this will be a minimum. The maxima should be located on either
side of this, a distance (0.572 m)/2 = 0.286 m from the center. There will then be maxima located
each 0.572 m farther along.

E19-27 (a) f1 = v/2L and f2 = v/2(L−∆L). Then

1
r

=
f1

f2
=
L−∆L

L
= 1− ∆L

L
,

or ∆L = L(1− 1/r).
(b) The answers are ∆L = (0.80 m)(1 − 5/6) = 0.133 m; ∆L = (0.80 m)(1 − 4/5) = 0.160 m;

∆L = (0.80 m)(1− 3/4) = 0.200 m; and ∆L = (0.80 m)(1− 2/3) = 0.267 m.

E19-28 The wavelength is twice the distance between the nodes in this case, so λ = 7.68 cm. The
frequency is

f = (1520 m/s)/(7.68×10−2m) = 1.98×104Hz.

E19-29 The well is a tube open at one end and closed at the other; Eq. 19-28 describes the
allowed frequencies of the resonant modes. The lowest frequency is when n = 1, so f1 = v/4L. We
know f1; to find the depth of the well, L, we need to know the speed of sound.

We should use the information provided, instead of looking up the speed of sound, because maybe
the well is filled with some kind of strange gas.

Then, from Eq. 19-14,

v =

√
B

ρ
=

√
(1.41× 105 Pa)

(1.21 kg/m3)
= 341 m/s.

The depth of the well is then

L = v/(4f1) = (341 m/s)/[4(7.20 Hz)] = 11.8 m.

E19-30 (a) The resonant frequencies of the pipe are given by fn = nv/2L, or

fn = n(343 m/s)/2(0.457 m) = n(375 Hz).

The lowest frequency in the specified range is f3 = 1130 Hz; the other allowed frequencies in the
specified range are f4 = 1500 Hz, and f5 = 1880 Hz.
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E19-31 The maximum reflected frequencies will be the ones that undergo constructive inter-
ference, which means the path length difference will be an integer multiple of a wavelength. A
wavefront will strike a terrace wall and part will reflect, the other part will travel on to the next
terrace, and then reflect. Since part of the wave had to travel to the next terrace and back, the path
length difference will be 2× 0.914 m = 1.83 m.

If the speed of sound is v = 343 m/s, the lowest frequency wave which undergoes constructive
interference will be

f =
v

λ
=

(343 m/s)
(1.83 m)

= 187 Hz

Any integer multiple of this frequency will also undergo constructive interference, and will also be
heard. The ear and brain, however, will most likely interpret the complex mix of frequencies as a
single tone of frequency 187 Hz.

E19-32 Assume there is no frequency between these two that is amplified. Then one of these
frequencies is fn = nv/2L, and the other is fn+1 = (n + 1)v/2L. Subtracting the larger from the
smaller, ∆f = v/2L, or

L = v/2∆f = (343 m/s)/2(138 Hz− 135 Hz) = 57.2 m.

E19-33 (a) v = 2Lf = 2(0.22 m)(920 Hz) = 405 m/s.
(b) F = v2µ = (405 m/s)2(820×10−6kg)/(0.220 m) = 611 N.

E19-34 f ∝ v, and v ∝
√
F , so f ∝

√
F . Doubling f requires F increase by a factor of 4.

E19-35 The speed of a wave on the string is the same, regardless of where you put your finger,
so fλ is a constant. The string will vibrate (mostly) in the lowest harmonic, so that λ = 2L, where
L is the length of the part of the string that is allowed to vibrate. Then

f2λ2 = f1λ1,

2f2L2 = 2f1L1,

L2 = L1
f1

f2
= (30 cm)

(440 Hz)
(528 Hz)

= 25 cm.

So you need to place your finger 5 cm from the end.

E19-36 The open organ pipe has a length

Lo = v/2f1 = (343 m/s)/2(291 Hz) = 0.589 m.

The second harmonic of the open pipe has frequency 2f1; this is the first overtone of the closed pipe,
so the closed pipe has a length

Lc = (3)v/4(2f1) = (3)(343 m/s)/4(2)(291 Hz) = 0.442 m.

E19-37 The unknown frequency is either 3 Hz higher or lower than the standard fork. A small
piece of wax placed on the fork of this unknown frequency tuning fork will result in a lower frequency
because f ∝

√
k/m. If the beat frequency decreases then the two tuning forks are getting closer

in frequency, so the frequency of the first tuning fork must be above the frequency of the standard
fork. Hence, 387 Hz.
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E19-38 If the string is too taut then the frequency is too high, or f = (440 + 4)Hz. Then
T = 1/f = 1/(444 Hz) = 2.25×10−3s.

E19-39 One of the tuning forks need to have a frequency 1 Hz different from another. Assume
then one is at 501 Hz. The next fork can be played against the first or the second, so it could have
a frequency of 503 Hz to pick up the 2 and 3 Hz beats. The next one needs to pick up the 5, 7, and
8 Hz beats, and 508 Hz will do the trick. There are other choices.

E19-40 f = v/λ = (5.5 m/s)/(2.3 m) = 2.39 Hz. Then

f ′ = f(v + vO)/v = (2.39 Hz)(5.5 m/s + 3.3 m/s)/(5.5 m/s) = 3.8 Hz.

E19-41 We’ll use Eq. 19-44, since both the observer and the source are in motion. Then

f ′ = f
v ± vO
v ∓ vS

= (15.8 kHz)
(343 m/s) + (246 m/s)
(343 m/s) + (193 m/s)

= 17.4 kHzr

E19-42 Solve Eq. 19-44 for vS ;

vS = (v + vO)f/f ′ − v = (343 m/s + 2.63 m/s)(1602 Hz)/(1590 Hz)− (343 m/s) = 5.24 m/s.

E19-43 vS = (14.7 Rad/s)(0.712 m) = 10.5 m/s.
(a) The low frequency heard is

f ′ = (538 Hz)(343 m/s)/(343 m/s + 10.5 m/s) = 522 Hz.

(a) The high frequency heard is

f ′ = (538 Hz)(343 m/s)/(343 m/s− 10.5 m/s) = 555 Hz.

E19-44 Solve Eq. 19-44 for vS ;

vS = v − vf/f ′ = (343 m/s)− (343 m/s)(440 Hz)/(444 Hz) = 3.1 m/s.

E19-45

E19-46 The approaching car “hears”

f ′ = f
v + vO
v − vS

= (148 Hz)
(343 m/s) + (44.7 m/s)

(343 m/s)− (0)
= 167 Hz

This sound is reflected back at the same frequency, so the police car “hears”

f ′ = f
v + vO
v − vS

= (167 Hz)
(343 m/s) + (0)

(343 m/s)− (44.7 m/s)
= 192 Hz

E19-47 The departing intruder “hears”

f ′ = f
v − vO
v + vS

= (28.3 kHz)
(343 m/s)− (0.95 m/s)

(343 m/s)− (0)
= 28.22 kHz

This sound is reflected back at the same frequency, so the alarm “hears”

f ′ = f
v − vO
v + vS

= (28.22 kHz)
(343 m/s) + (0)

(343 m/s) + (0.95 m/s)
= 28.14 kHz

The beat frequency is 28.3 kHz− 28.14 kHz = 160 Hz.
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E19-48 (a) f ′ = (1000 Hz)(330 m/s)(330 m/s + 10.0 m/s) = 971 Hz.
(b) f ′ = (1000 Hz)(330 m/s)(330 m/s− 10.0 m/s) = 1030 Hz.
(c) 1030 Hz− 971 Hz = 59 Hz.

E19-49 (a) The frequency “heard” by the wall is

f ′ = f
v + vO
v − vS

= (438 Hz)
(343 m/s) + (0)

(343 m/s)− (19.3 m/s)
= 464 Hz

(b) The wall then reflects a frequency of 464 Hz back to the trumpet player. Sticking with Eq.
19-44, the source is now at rest while the observer moving,

f ′ = f
v + vO
v − vS

= (464 Hz)
(343 m/s) + (19.3 m/s)

(343 m/s)− (0)
= 490 Hz

E19-50 The body part “hears”

f ′ = f
v + vb
v

.

This sound is reflected back to the detector which then “hears”

f ′′ = f ′
v

v − vb
= f

v + vb
v − vb

.

Rearranging,

vb/v =
f ′′ − f
f ′′ + f

≈ 1
2

∆f
f
,

so v ≈ 2(1×10−3m/s)/(1.3×10−6) ≈ 1500 m/s.

E19-51 The wall “hears”

f ′ = f
v + vO
v − vS

= (39.2 kHz)
(343 m/s) + (0)

(343 m/s)− (8.58 m/s)
= 40.21 kHz

This sound is reflected back at the same frequency, so the bat “hears”

f ′ = f
v + vO
v − vS

= (40.21 kHz)
(343 m/s) + (8.58 m/s)

(343 m/s)− (0)
= 41.2 kHz.

P19-1 (a) tair = L/vair and tm = L/v, so the difference is

∆t = L(1/vair − 1/v)

(b) Rearrange the above result, and

L = (0.120 s)/[1/(343 m/s)− 1/(6420 m/s)] = 43.5 m.

P19-2 The stone falls for a time t1 where y = gt21/2 is the depth of the well. Note y is positive in
this equation. The sound travels back in a time t2 where v = y/t2 is the speed of sound in the well.
t1 + t2 = 3.00 s, so

2y = g(3.00 s− t2)2 = g[(9.00 s2)− (6.00 s)y/v + y2/v2],

or, using g = 9.81 m/s2 and v = 343 m/s,

y2 − (2.555×105 m)y + (1.039×107 m2) = 0,

which has a positive solution y = 40.7 m.
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P19-3 (a) The intensity at 28.5 m is found from the 1/r2 dependence;

I2 = I1(r1/r2)2 = (962µW/m2)(6.11 m/28.5 m)2 = 44.2µW/m2.

(c) We’ll do this part first. The pressure amplitude is found from Eq. 19-19,

∆pm =
√

2ρvI =
√

2(1.21 kg/m3)(343 m/s)(962×10−6W/m2) = 0.894 Pa.

(b) The displacement amplitude is found from Eq. 19-8,

sm = ∆pm/(kB),

where k = 2πf/v is the wave number. From Eq. 19-14 w know that B = ρv2, so

sm =
∆pm

2πfρv
=

(0.894 Pa)
2π(2090 Hz)(1.21 kg/m3)(343 m/s)

= 1.64×10−7m.

P19-4 (a) If the intensities are equal, then ∆pm ∝
√
ρv, so

[∆pm]water

[∆pm]air
=

√
(998 kg/m3)(1482 m/s)
(1.2 kg/m3)(343 m/s)

= 59.9.

(b) If the pressure amplitudes are equal, then I ∝∝ 1/ρv, so

Iwater

Iair
=

(1.2 kg/m3)(343 m/s)
(998 kg/m3)(1482 m/s)

= 2.78×10−4.

P19-5 The energy is dissipated on a cylindrical surface which grows in area as r, so the intensity is
proportional to 1/r. The amplitude is proportional to the square root of the intensity, so sm ∝ 1/

√
r.

P19-6 (a) The first position corresponds to maximum destructive interference, so the waves are half
a wavelength out of phase; the second position corresponds to maximum constructive interference, so
the waves are in phase. Shifting the tube has in effect added half a wavelength to the path through
B. But each segment is added, so

λ = (2)(2)(1.65 cm) = 6.60 cm,

and f = (343 m/s)/(6.60 cm) = 5200 Hz.
(b) Imin ∝ (s1−s2)2, Imax ∝ (s1+s2)2, then dividing one expression by the other and rearranging

we find
s1

s2
=
√
Imax +

√
Imin√

Imax −
√
Imin

=
√

90 +
√

10√
90−

√
10

= 2

P19-7 (a) I = P/4πr2 = (31.6 W)/4π(194 m)2 = 6.68×10−5W/m2.
(b) P = IA = (6.68×10−5W/m2)(75.2×10−6m2) = 5.02×10−9W.
(c) U = Pt = (5.02×10−9W)(25.0 min)(60.0 s/min) = 7.53µJ.

P19-8 Note that the reverberation time is logarithmically related to the intensity, but linearly
related to the sound level. As such, the reverberation time is the amount of time for the sound level
to decrease by

∆SL = 10 log(10−6) = 60 dB.

Then
t = (87 dB)(2.6 s)/(60 dB) = 3.8 s
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P19-9 What the device is doing is taking all of the energy which strikes a large surface area and
concentrating it into a small surface area. It doesn’t succeed; only 12% of the energy is concentrated.
We can think, however, in terms of power: 12% of the average power which strikes the parabolic
reflector is transmitted into the tube.

If the sound intensity on the reflector is I1, then the average power is P1 = I1A1 = I1πr
2
1, where

r1 is the radius of the reflector. The average power in the tube will be P2 = 0.12P1, so the intensity
in the tube will be

I2 =
P2

A2
=

0.12I1πr2
1

πr2
2

= 0.12I1
r2
1

r2
2

Since the lowest audible sound has an intensity of I0 = 10−12 W/m2, we can set I2 = I0 as the
condition for “hearing” the whisperer through the apparatus. The minimum sound intensity at the
parabolic reflector is

I1 =
I0

0.12
r2
2

r2
1

.

Now for the whisperers. Intensity falls off as 1/d2, where d is the distance from the source. We
are told that when d = 1.0 m the sound level is 20 dB; this sound level has an intensity of

I = I01020/10 = 100I0

Then at a distance d from the source the intensity must be

I1 = 100I0
(1 m)2

d2
.

This would be the intensity “picked-up” by the parabolic reflector. Combining this with the condition
for being able to hear the whisperers through the apparatus, we have

I0
0.12

r2
2

r2
1

= 100I0
(1 m)2

d2

or, upon some rearranging,

d = (
√

12 m)
r1

r2
= (
√

12 m)
(0.50 m)
(0.005 m)

= 346 m.

P19-10 (a) A displacement node; at the center the particles have nowhere to go.
(b) This systems acts like a pipe which is closed at one end.
(c) v

√
B/ρ, so

T = 4(0.009)(6.96×108m)
√

(1.0×1010kg/m3)/(1.33×1022Pa) = 22 s.

P19-11 The cork filing collect at pressure antinodes when standing waves are present, and the
antinodes are each half a wavelength apart. Then v = fλ = f(2d).

P19-12 (a) f = v/4L = (343 m/s)/4(1.18 m) = 72.7 Hz.
(b) F = µv2 = µf2λ2, or

F = (9.57×10−3kg/0.332 m)(72.7 Hz)2[2(0.332 m)]2 = 67.1N.
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P19-13 In this problem the string is observed to resonate at 880 Hz and then again at 1320 Hz,
so the two corresponding values of n must differ by 1. We can then write two equations

(880 Hz) =
nv

2L
and (1320 Hz) =

(n+ 1)v
2L

and solve these for v. It is somewhat easier to first solve for n. Rearranging both equations, we get

(880 Hz)
n

=
v

2L
and

(1320 Hz)
n+ 1

=
v

2L
.

Combining these two equations we get

(880 Hz)
n

=
(1320 Hz)
n+ 1

,

(n+ 1)(880 Hz) = n(1320 Hz),

n =
(880 Hz)

(1320 Hz)− (880 Hz)
= 2.

Now that we know n we can find v,

v = 2(0.300 m)
(880 Hz)

2
= 264 m/s

And, finally, we are in a position to find the tension, since

F = µv2 = (0.652×10−3kg/m)(264 m/s)2 = 45.4 N.

P19-14 (a) There are five choices for the first fork, and four for the second. That gives 20 pairs.
But order doesn’t matter, so we need divide that by two to get a maximum of 10 possible beat
frequencies.

(b) If the forks are ordered to have equal differences (say, 400 Hz, 410 Hz, 420 Hz, 430 Hz, and
440 Hz) then there will actually be only 4 beat frequencies.

P19-15 v = (2.25×108m/s)/ sin(58.0◦) = 2.65×108m/s.

P19-16 (a) f1 = (442 Hz)(343 m/s)/(343 m/s− 31.3 m/s) = 486 Hz, while

f2 = (442 Hz)(343 m/s)/(343 m/s + 31.3 m/s) = 405 Hz,

so ∆f = 81 Hz.
(b) f1 = (442 Hz)(343 m/s− 31.3 m/s)/(343 m/s) = 402 Hz, while

f2 = (442 Hz)(343 m/s + 31.3 m/s)/(343 m/s) = 482 Hz,

so ∆f = 80 Hz.

P19-17 The sonic boom that you hear is not from the sound given off by the plane when it is
overhead, it is from the sound given off before the plane was overhead. So this problem isn’t as
simple as distance equals velocity × time. It is very useful to sketch a picture.
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θ

x2 x1H

O

S

We can find the angle θ from the figure, we’ll get Eq. 19-45, so

sin θ =
v

vs
=

(330 m/s)
(396 m/s)

= 0.833 or θ = 56.4◦

Note that vs is the speed of the source, not the speed of sound!
Unfortunately t = 12 s is not the time between when the sonic boom leaves the plane and when

it arrives at the observer. It is the time between when the plane is overhead and when the sonic
boom arrives at the observer. That’s why there are so many marks and variables on the figure. x1

is the distance from where the sonic boom which is heard by the observer is emitted to the point
directly overhead; x2 is the distance from the point which is directly overhead to the point where
the plane is when the sonic boom is heard by the observer. We do have x2 = vs(12.0 s). This length
forms one side of a right triangle HSO, the opposite side of this triangle is the side HO, which is
the height of the plane above the ground, so

h = x2 tan θ = (343 m/s)(12.0 s) tan(56.4◦) = 7150 m.

P19-18 (a) The target “hears”

f ′ = fs
v + V

v
.

This sound is reflected back to the detector which then “hears”

fr = f ′
v

v − V
= fs

v + V

v − V
.

(b) Rearranging,

V/v =
fr − fs
fr + fs

≈ 1
2
fr − fs
fs

,

where we have assumed that the source frequency and the reflected frequency are almost identical,
so that when added fr + fs ≈ 2fs.

P19-19 (a) We apply Eq. 19-44

f ′ = f
v + vO
v − vS

= (1030 Hz)
(5470 km/h) + (94.6 km/h)
(5470 km/h)− (20.2 km/h)

= 1050 Hz
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(b) The reflected signal has a frequency equal to that of the signal received by the second sub
originally. Applying Eq. 19-44 again,

f ′ = f
v + vO
v − vS

= (1050 Hz)
(5470 km/h) + (20.2 km/h)
(5470 km/h)− (94.6 km/h)

= 1070 Hz

P19-20 In this case vS = 75.2 km/h− 30.5 km/h = 12.4 m/s. Then

f ′ = (989 Hz)(1482 m/s)(1482 m/s− 12.4 m/s) = 997 Hz.

P19-21 There is no relative motion between the source and observer, so there is no frequency shift
regardless of the wind direction.

P19-22 (a) vS = 34.2 m/s and vO = 34.2 m/s, so

f ′ = (525 Hz)(343 m/s + 34.2 m/s)/(343 m/s− 34.2 m/s) = 641 Hz.

(b) vS = 34.2 m/s + 15.3 m/s = 49.5 m/s and vO = 34.2 m/s− 15.3 m/s = 18.9 m/s, so

f ′ = (525 Hz)(343 m/s + 18.9 m/s)/(343 m/s− 49.5 m/s) = 647 Hz.

(c) vS = 34.2 m/s− 15.3 m/s = 18.9 m/s and vO = 34.2 m/s + 15.3 m/s = 49.5 m/s, so

f ′ = (525 Hz)(343 m/s + 49.5 m/s)/(343 m/s− 18.9 m/s) = 636 Hz.
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