
E18-1 (a) f = v/λ = (243 m/s)/(0.0327 m) = 7.43×103 Hz.
(b) T = 1/f = 1.35×10−4s.

E18-2 (a) f = (12)/(30 s) = 0.40 Hz.
(b) v = (15 m)/(5.0 s) = 3.0 m/s.
(c) λ = v/f = (3.0 m/s)/(0.40 Hz) = 7.5 m.

E18-3 (a) The time for a particular point to move from maximum displacement to zero dis-
placement is one-quarter of a period; the point must then go to maximum negative displacement,
zero displacement, and finally maximum positive displacement to complete a cycle. So the period is
4(178 ms) = 712 ms.

(b) The frequency is f = 1/T = 1/(712×10−3s) = 1.40 Hz.
(c) The wave-speed is v = fλ = (1.40 Hz)(1.38 m) = 1.93 m/s.

E18-4 Use Eq. 18-9, except let f = 1/T :

y = (0.0213 m) sin 2π
(

x

(0.114 m)
− (385 Hz)t

)
= (0.0213 m) sin [(55.1 rad/m)x− (2420 rad/s)t] .

E18-5 The dimensions for tension are [F] = [M][L]/[T]2 where M stands for mass, L for length, T
for time, and F stands for force. The dimensions for linear mass density are [M]/[L]. The dimensions
for velocity are [L]/[T].

Inserting this into the expression v = F a/µb,

[L]
[T]

=
(

[M][L]
[T]2

)a

/

(
[M]
[L]

)b

,

[L]
[T]

=
[M]a[L]a

[T]2a

[L]b

[M]b
,

[L]
[T]

=
[M]a−b[L]a+b

[T]2a

There are three equations here. One for time, −1 = −2a; one for length, 1 = a+ b; and one for
mass, 0 = a− b. We need to satisfy all three equations. The first is fairly quick; a = 1/2. Either of
the other equations can be used to show that b = 1/2.

E18-6 (a) ym = 2.30 mm.
(b) f = (588 rad/s)/(2π rad) = 93.6 Hz.
(c) v = (588 rad/s)/(1822 rad/m) = 0.323 m/s.
(d) λ = (2π rad)/(1822 rad/m) = 3.45 mm.
(e) uy = ymω = (2.30 mm)(588 rad/s) = 1.35 m/s.

E18-7 (a) ym = 0.060 m.
(b) λ = (2π rad)/(2.0π rad/m) = 1.0 m.
(c) f = (4.0π rad/s)/(2π rad) = 2.0 Hz.
(d) v = (4.0π rad/s)/(2.0π rad/m) = 2.0 m/s.
(e) Since the second term is positive the wave is moving in the −x direction.
(f) uy = ymω = (0.060 m)(4.0π rad/s) = 0.75 m/s.

E18-8 v =
√
F/µ =

√
(487 N)/[(0.0625 kg)/(2.15 m)] = 129 m/s.
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E18-9 We’ll first find the linear mass density by rearranging Eq. 18-19,

µ =
F

v2

Since this is the same string, we expect that changing the tension will not significantly change the
linear mass density. Then for the two different instances,

F1

v2
1

=
F2

v2
2

We want to know the new tension, so

F2 = F1
v2

2

v2
1

= (123 N)
(180 m/s)2

(172 m/s)2
= 135 N

E18-10 First v = (317 rad/s)/(23.8 rad/m) = 13.32 m/s. Then

µ = F/v2 = (16.3 N)/(13.32 m/s)2 = 0.0919 kg/m.

E18-11 (a) ym = 0.05 m.
(b) λ = (0.55 m)− (0.15 m) = 0.40 m.
(c) v =

√
F/µ =

√
(3.6 N)/(0.025 kg/m) = 12 m/s.

(d) T = 1/f = λ/v = (0.40 m)/(12 m/s) = 3.33×10−2s.
(e) uy = ymω = 2πym/T = 2π(0.05 m)/(3.33×10−2s) = 9.4 m/s.
(f) k = (2π rad)/(0.40 m) = 5.0π rad/m; ω = kv = (5.0π rad/m)(12 m/s) = 60π rad/s. The

phase angle can be found from
(0.04 m) = (0.05 m) sin(φ),

or φ = 0.93 rad. Then

y = (0.05 m) sin[(5.0π rad/m)x+ (60π rad/s)t+ (0.93 rad)].

E18-12 (a) The tensions in the two strings are equal, so F = (0.511 kg)(9.81 m/s2)/2 = 2.506 N.
The wave speed in string 1 is

v =
√
F/µ =

√
(2.506 N)/(3.31×10−3kg/m) = 27.5 m/s,

while the wave speed in string 2 is

v =
√
F/µ =

√
(2.506 N)/(4.87×10−3kg/m) = 22.7 m/s.

(b) We have
√
F1/µ1 =

√
F2/µ2, or F1/µ1 = F2/µ2. But Fi = Mig, so M1/µ1 = M2/µ2. Using

M = M1 +M2,

M1

µ1
=

M −M1

µ2
,

M1

µ1
+
M1

µ2
=

M

µ2
,

M1 =
M

µ2

/(
1
µ1

+
1
µ2

)
,

=
(0.511 kg)

(4.87×10−3kg/m)

/(
1

(3.31×10−3kg/m)
+

1
(4.87×10−3kg/m)

)
,

= 0.207 kg

and M2 = (0.511 kg)− (0.207 kg) = 0.304 kg.
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E18-13 We need to know the wave speed before we do anything else. This is found from Eq.
18-19,

v =

√
F

µ
=

√
F

m/L
=

√
(248 N)

(0.0978 kg)/(10.3 m)
= 162 m/s.

The two pulses travel in opposite directions on the wire; one travels as distance x1 in a time t, the
other travels a distance x2 in a time t+ 29.6 ms, and since the pulses meet, we have x1 + x2 = 10.3
m.

Our equations are then x1 = vt = (162 m/s)t, and x2 = v(t+29.6 ms) = (162 m/s)(t+29.6 ms) =
(162 m/s)t+ 4.80 m. We can add these two expressions together to solve for the time t at which the
pulses meet,

10.3 m = x1 + x2 = (162 m/s)t+ (162 m/s)t+ 4.80 m = (324 m/s)t+ 4.80 m.

which has solution t = 0.0170 s. The two pulses meet at x1 = (162 m/s)(0.0170 s) = 2.75 m, or
x2 = 7.55 m.

E18-14 (a) ∂y/∂r = (A/r)k cos(kr−ωt)− (A/r2) sin(kr−ωt). Multiply this by r2, and then find

∂

∂r
r2 ∂y

∂r
= Ak cos(kr − ωt)−Ak2r sin(kr − ωt)−Ak cos(kr − ωt).

Simplify, and then divide by r2 to get

1
r2

∂

∂r
r2 ∂y

∂r
= −(Ak2/r) sin(kr − ωt).

Now find ∂2y/∂t2 = −Aω2 sin(kr − ωt). But since 1/v2 = k2/ω2, the two sides are equal.
(b) [length]2.

E18-15 The liner mass density is µ = (0.263 kg)/(2.72 m) = 9.669×10−2kg/m. The wave speed is
v =

√
(36.1 N)/(9.669×10−2kg/m) = 19.32 m/s.

P av = 1
2µω

2ym
2v, so

ω =

√
2(85.5 W)

(9.669×10−2kg/m)(7.70×10−3m)2(19.32 m/s)
= 1243 rad/s.

Then f = (1243 rad/s)/2π = 199 Hz.

E18-16 (a) If the medium absorbs no energy then the power flow through any closed surface
which contains the source must be constant. Since for a cylindrical surface the area grows as r, then
intensity must fall of as 1/r.

(b) Intensity is proportional to the amplitude squared, so the amplitude must fall off as 1/
√
r.

E18-17 The intensity is the average power per unit area (Eq. 18-33); as you get farther from the
source the intensity falls off because the perpendicular area increases. At some distance r from the
source the total possible area is the area of a spherical shell of radius r, so intensity as a function of
distance from the source would be

I =
P av

4πr2
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We are given two intensities: I1 = 1.13 W/m2 at a distance r1; I2 = 2.41 W/m2 at a distance
r2 = r1 − 5.30 m. Since the average power of the source is the same in both cases we can equate
these two values as

4πr2
1I1 = 4πr2

2I2,

4πr2
1I1 = 4π(r1 − d)2I2,

where d = 5.30 m, and then solve for r1. Doing this we find a quadratic expression which is

r2
1I1 = (r2

1 − 2dr1 + d2)I2,

0 =
(

1− I1
I2

)
r2
1 − 2dr1 + d2,

0 =
(

1− (1.13 W/m2)
(2.41 W/m2)

)
r2
1 − 2(5.30 m)r1 + (5.30 m)2,

0 = (0.531)r2
1 − (10.6 m)r1 + (28.1 m2).

The solutions to this are r1 = 16.8 m and r1 = 3.15 m; but since the person walked 5.3 m toward
the lamp we will assume they started at least that far away. Then the power output from the light
is

P = 4πr2
1I1 = 4π(16.8 m)2(1.13 W/m2) = 4.01×103W.

E18-18 Energy density is energy per volume, or u = U/V . A wave front of cross sectional area A
sweeps out a volume of V = Al when it travels a distance l. The wave front travels that distance
l in a time t = l/v. The energy flow per time is the power, or P = U/t. Combine this with the
definition of intensity, I = P/A, and

I =
P

A
=

U

At
=
uV

At
=
uAl

At
= uv.

E18-19 Refer to Eq. 18-40, where the amplitude of the combined wave is

2ym cos(∆φ/2),

where ym is the amplitude of the combining waves. Then

cos(∆φ/2) = (1.65ym)/(2ym) = 0.825,

which has solution ∆φ = 68.8◦.

E18-20 Consider only the point x = 0. The displacement y at that point is given by

y = ym1 sin(ωt) + ym2 sin(ωt+ π/2) = ym1 sin(ωt) + ym2 cos(ωt).

This can be written as
y = ym(A1 sinωt+A2 cosωt),

where Ai = ymi/ym. But if ym is judiciously chosen, A1 = cosβ and A2 = sinβ, so that

y = ym sin(ωt+ β).

Since we then require A2
1 +A2

2 = 1, we must have

ym =
√

(3.20 cm)2 + (4.19 cm)2 = 5.27 cm.
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E18-21 The easiest approach is to use a phasor representation of the waves.
Write the phasor components as

x1 = ym1 cosφ1,

y1 = ym1 sinφ1,

x2 = ym2 cosφ2,

y2 = ym2 sinφ2,

and then use the cosine law to find the magnitude of the resultant.
The phase angle can be found from the arcsine of the opposite over the hypotenuse.

E18-22 (a) The diagrams for all times except t = 15 ms should show two distinct pulses, first
moving closer together, then moving farther apart. The pulses don not flip over when passing each
other. The t = 15 ms diagram, however, should simply be a flat line.

E18-23 Use a program such as Maple or Mathematica to plot this.

E18-24 Use a program such as Maple or Mathematica to plot this.

E18-25 (a) The wave speed can be found from Eq. 18-19; we need to know the linear mass
density, which is µ = m/L = (0.122 kg)/(8.36 m) = 0.0146 kg/m. The wave speed is then given by

v =

√
F

µ
=

√
(96.7 N)

(0.0146 kg/m)
= 81.4 m/s.

(b) The longest possible standing wave will be twice the length of the string; so λ = 2L = 16.7 m.
(c) The frequency of the wave is found from Eq. 18-13, v = fλ.

f =
v

λ
=

(81.4 m/s)
(16.7 m)

= 4.87 Hz

E18-26 (a) v =
√

(152 N)/(7.16×10−3kg/m) = 146 m/s.
(b) λ = (2/3)(0.894 m) = 0.596 m.
(c) f = v/λ = (146 m/s)/(0.596 m) = 245 Hz.

E18-27 (a) y = −3.9 cm.
(b) y = (0.15 m) sin[(0.79 rad/m)x+ (13 rad/s)t].
(c) y = 2(0.15 m) sin[(0.79 rad/m)(2.3 m)] cos[(13 rad/s)(0.16 s)] = −0.14 m.

E18-28 (a) The amplitude is half of 0.520 cm, or 2.60 mm. The speed is

v = (137 rad/s)/(1.14 rad/cm) = 1.20 m/s.

(b) The nodes are (πrad)/(1.14 rad/cm) = 2.76 cm apart.
(c) The velocity of a particle on the string at position x and time t is the derivative of the wave

equation with respect to time, or

uy = −(0.520 cm)(137 rad/s) sin[(1.14 rad/cm)(1.47 cm)] sin[(137 rad/s)(1.36 s)] = −0.582 m/s.
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E18-29 (a) We are given the wave frequency and the wave-speed, the wavelength is found from
Eq. 18-13,

λ =
v

f
=

(388 m/s)
(622 Hz)

= 0.624 m

The standing wave has four loops, so from Eq. 18-45

L = n
λ

2
= (4)

(0.624 m)
2

= 1.25 m

is the length of the string.
(b) We can just write it down,

y = (1.90 mm) sin[(2π/0.624 m)x] cos[(2π622 s−1)t].

E18-30 (a) fn = nv/2L = (1)(250 m/s)/2(0.150 m) = 833 Hz.
(b) λ = v/f = (348 m/s)/(833 Hz) = 0.418 m.

E18-31 v =
√
F/µ =

√
FL/m. Then fn = nv/2L = n

√
F/4mL, so

f1 = (1)
√

(236 N)/4(0.107 kg)(9.88 m)7.47 Hz,

and f2 = 2f1 = 14.9 Hz while f3 = 3f1 = 22.4 Hz.

E18-32 (a) v =
√
F/µ =

√
FL/m =

√
(122 N)(1.48 m)/(8.62×10−3kg) = 145 m/s.

(b) λ1 = 2(1.48 m) = 2.96 m; λ2 = 1.48 m.
(c) f1 = (145 m/s)/(2.96 m) = 49.0 Hz; f2 = (145 m/s)/(1.48 m) = 98.0 Hz.

E18-33 Although the tied end of the string forces it to be a node, the fact that the other end
is loose means that it should be an anti-node. The discussion of Section 18-10 indicated that the
spacing between nodes is always λ/2. Since anti-nodes occur between nodes, we can expect that the
distance between a node and the nearest anti-node is λ/4.

The longest possible wavelength will have one node at the tied end, an anti-node at the loose
end, and no other nodes or anti-nodes. In this case λ/4 = 120 cm, or λ = 480 cm.

The next longest wavelength will have a node somewhere in the middle region of the string. But
this means that there must be an anti-node between this new node and the node at the tied end
of the string. Moving from left to right, we then have an anti-node at the loose end, a node, and
anti-node, and finally a node at the tied end. There are four points, each separated by λ/4, so the
wavelength would be given by 3λ/4 = 120 cm, or λ = 160 cm.

To progress to the next wavelength we will add another node, and another anti-node. This will
add another two lengths of λ/4 that need to be fit onto the string; hence 5λ/4 = 120 cm, or λ = 100
cm.

In the figure below we have sketched the first three standing waves.
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E18-34 (a) Note that fn = nf1. Then fn+1 − fn = f1. Since there is no resonant frequency
between these two then they must differ by 1, and consequently f1 = (420 Hz)− (315 Hz) = 105 Hz.

(b) v = fλ = (105 Hz)[2(0.756 m)] = 159 m/s.

P18-1 (a) λ = v/f and k = 360◦/λ. Then

x = (55◦)λ/(360◦) = 55(353 m/s)/360(493 Hz) = 0.109 m.

(b) ω = 360◦f , so
φ = ωt = (360◦)(493 Hz)(1.12×10−3s) = 199◦.

P18-2 ω = (2π rad)(548 Hz) = 3440 rad/s; λ = v/f and then

k = (2π rad)/[(326 m/s)/(548 Hz)] = 10.6 rad/m.

Finally, y = (1.12×10−2m) sin[(10.6 rad/m)x+ (3440 rad/s)t].

P18-3 (a) This problem really isn’t as bad as it might look. The tensile stress S is tension per
unit cross sectional area, so

S =
F

A
or F = SA.

We already know that linear mass density is µ = m/L, where L is the length of the wire. Substituting
into Eq. 18-19,

v =

√
F

µ
=

√
SA

m/L

√
S

m/(AL)
.

But AL is the volume of the wire, so the denominator is just the mass density ρ.
(b) The maximum speed of the transverse wave will be

v =

√
S

ρ
=

√
(720× 106 Pa)
(7800 kg/m3)

= 300 m/s.

P18-4 (a) f = ω/2π = (4.08 rad/s)/(2π rad) = 0.649 Hz.
(b) λ = v/f = (0.826 m/s)/(0.649 Hz) = 1.27 m.
(c) k = (2π rad)/(1.27 m) = 4.95 rad/m, so

y = (5.12 cm) sin[(4.95 rad/mx− (4.08 rad/s)t+ φ],

where φ is determined by (4.95 rad/m)(9.60×10−2m) + φ = (1.16 rad), or φ = 0.685 rad.
(d) F = µv2 = (0.386 kg/m)(0.826 m/s)2 = 0.263 m/s.

P18-5 We want to show that dy/dx = uy/v. The easy way, although not mathematically rigorous:

dy

dx
=
dy

dx

dt

dt
=
dy

dt

dt

dx
= uy

1
v

=
uy
x
.

P18-6 The maximum value for uy occurs when the cosine function in Eq. 18-14 returns unity.
Consequently, um/ym = ω.
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P18-7 (a) The linear mass density changes as the rubber band is stretched! In this case,

µ =
m

L+ ∆L
.

The tension in the rubber band is given by F = k∆L. Substituting this into Eq. 18-19,

v =

√
F

µ
=

√
k∆L(L+ ∆L)

m
.

(b) We want to know the time it will take to travel the length of the rubber band, so

v =
L+ ∆L

t
or t =

L+ ∆L
v

.

Into this we will substitute our expression for wave speed

t = (L+ ∆L)
√

m

k∆L(L+ ∆L)
=

√
m(L+ ∆L)

k∆L

We have to possibilities to consider: either ∆L � L or ∆L � L. In either case we are only
interested in the part of the expression with L+ ∆L; whichever term is much larger than the other
will be the only significant part.

Then if ∆L� L we get L+ ∆L ≈ L and

t =

√
m(L+ ∆L)

k∆L
≈
√

mL

k∆L
,

so that t is proportional to 1/
√

∆L.
But if ∆L� L we get L+ ∆L ≈ ∆L and

t =

√
m(L+ ∆L)

k∆L
≈
√
m∆L
k∆L

=
√
m

k
,

so that t is constant.

P18-8 (a) The tension in the rope at some point is a function of the weight of the cable beneath
it. If the bottom of the rope is y = 0, then the weight beneath some point y is W = y(m/L)g. The
speed of the wave at that point is v =

√
T/(m/L) =

√
y(M/L)g/(m/L) =

√
gy.

(b) dy/dt =
√
gy, so

dt =
dy
√
gy
,

t =
∫ L

0

dy
√
gy

= 2
√
L/g.

(c) No.

P18-9 (a) M =
∫
µdx, so

M =
∫ L

0

kx dx =
1
2
kL2.

Then k = 2M/L2.
(b) v =

√
F/µ =

√
F/kx, then

dt =
√
kx/F dx,

t =
∫ L

0

√
2M/FL2

√
x dx =

2
3

√
2M/FL2L3/2 =

√
8ML/9F .
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P18-10 Take a cue from pressure and surface tension. In the rotating non-inertial reference frame
for which the hoop appears to be at rest there is an effective force per unit length acting to push on
each part of the loop directly away from the center. This force per unit length has magnitude

∆F
∆L

= (∆m/∆L)
v2

r
= µ

v2

r
.

There must be a tension T in the string to hold the loop together. Imagine the loop to be replaced
with two semicircular loops. Each semicircular loop has a diameter part; the force tending to pull
off the diameter section is (∆F/∆L)2r = 2µv2. There are two connections to the diameter section,
so the tension in the string must be half the force on the diameter section, or T = µv2.

The wave speed is vw =
√
T/µ = v.

Note that the wave on the string can travel in either direction relative to an inertial observer.
One wave will appear to be fixed in space; the other will move around the string with twice the
speed of the string.

P18-11 If we assume that Handel wanted his violins to play in tune with the other instruments
then all we need to do is find an instrument from Handel’s time that will accurately keep pitch over
a period of several hundred years. Most instruments won’t keep pitch for even a few days because of
temperature and humidity changes; some (like the piccolo?) can’t even play in tune for more than
a few notes! But if someone found a tuning fork...

Since the length of the string doesn’t change, and we are using a string with the same mass
density, the only choice is to change the tension. But f ∝ v ∝

√
T , so the percentage change in the

tension of the string is

T f − T i

T i
=
f f

2 − f i
2

f i
2

=
(440 Hz)2 − (422.5 Hz)2

(422.5 Hz)2
= 8.46 %.

P18-12

P18-13 (a) The point sources emit spherical waves; the solution to the appropriate wave equation
is found in Ex. 18-14:

yi =
A

ri
sin(kri − ωt).

If ri is sufficiently large compared to A, and r1 ≈ r2, then let r1 = r − δr and r2 = r − δr;

A

r1
+
A

r2
≈ 2A

r
,

with an error of order (δr/r)2. So ignore it.
Then

y1 + y2 ≈ A

r
[sin(kr1 − ωt) + sin(kr2 − ωt)] ,

=
2A
r

sin(kr − ωt) cos
k

2
(r1 − r2),

ym =
2A
r

cos
k

2
(r1 − r2).

(b) A maximum (minimum) occurs when the operand of the cosine, k(r1 − r2)/2 is an integer
multiple of π (a half odd-integer multiple of π)
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P18-14 The direct wave travels a distance d from S to D. The wave which reflects off the original
layer travels a distance

√
d2 + 4H2 between S and D. The wave which reflects off the layer after

it has risen a distance h travels a distance
√
d2 + 4(H + h)2. Waves will interfere constructively if

there is a difference of an integer number of wavelengths between the two path lengths. In other
words originally we have √

d2 + 4H2 − d = nλ,

and later we have destructive interference so√
d2 + 4(H + h)2 − d = (n+ 1/2)λ.

We don’t know n, but we can subtract the top equation from the bottom and get√
d2 + 4(H + h)2 −

√
d2 + 4H2 = λ/2

P18-15 The wavelength is

λ = v/f = (3.00×108m/s)/(13.0×106Hz) = 23.1 m.

The direct wave travels a distance d from S to D. The wave which reflects off the original layer
travels a distance

√
d2 + 4H2 between S and D. The wave which reflects off the layer one minute

later travels a distance
√
d2 + 4(H + h)2. Waves will interfere constructively if there is a difference

of an integer number of wavelengths between the two path lengths. In other words originally we
have √

d2 + 4H2 − d = n1λ,

and then one minute later we have√
d2 + 4(H + h)2 − d = n2λ.

We don’t know either n1 or n2, but we do know the difference is 6, so we can subtract the top
equation from the bottom and get√

d2 + 4(H + h)2 −
√
d2 + 4H2 = 6λ

We could use that expression as written, do some really obnoxious algebra, and then get the
answer. But we don’t want to; we want to take advantage of the fact that h is small compared to d
and H. Then the first term can be written as√

d2 + 4(H + h)2 =
√
d2 + 4H2 + 8Hh+ 4h2,

≈
√
d2 + 4H2 + 8Hh,

≈
√
d2 + 4H2

√
1 +

8H
d2 + 4H2

h,

≈
√
d2 + 4H2

(
1 +

1
2

8H
d2 + 4H2

h

)
.

Between the second and the third lines we factored out d2 + 4H2; that last line is from the binomial
expansion theorem. We put this into the previous expression, and√

d2 + 4(H + h)2 −
√
d2 + 4H2 = 6λ,√

d2 + 4H2

(
1 +

4H
d2 + 4H2

h

)
−
√
d2 + 4H2 = 6λ,

4H√
d2 + 4H2

h = 6λ.
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Now what were we doing? We were trying to find the speed at which the layer is moving. We know
H, d, and λ; we can then find h,

h =
6(23.1 m)

4(510×103m)

√
(230×103m)2 + 4(510×103m)2 = 71.0 m.

The layer is then moving at v = (71.0 m)/(60 s) = 1.18 m/s.

P18-16 The equation of the standing wave is

y = 2ym sin kx cosωt.

The transverse speed of a point on the string is the derivative of this, or

uy = −2ymω sin kx sinωt,

this has a maximum value when ωt− π/2 is a integer multiple of π. The maximum value is

um = 2ymω sin kx.

Each mass element on the string dm then has a maximum kinetic energy

dKm = (dm/2)um
2 = ym

2ω2 sin2 kx dm.

Using dm = µdx, and integrating over one loop from kx = 0 to kx = π, we get

Km = ym
2ω2µ/2k = 2π2ym

2fµv.

P18-17 (a) For 100% reflection the amplitudes of the incident and reflected wave are equal, or
Ai = Ar, which puts a zero in the denominator of the equation for SWR. If there is no reflection,
Ar = 0 leaving the expression for SWR to reduce to Ai/Ai = 1.

(b) Pr/Pi = A2
r/A

2
i . Do the algebra:

Ai +Ar
Ai −Ar

= SWR,

Ai +Ar = SWR(Ai −Ar),
Ar(SWR + 1) = Ai(SWR− 1),

Ar/Ai = (SWR− 1)/(SWR + 1).

Square this, and multiply by 100.

P18-18 Measure with a ruler; I get 2Amax = 1.1 cm and 2Amin = 0.5 cm.
(a) SWR = (1.1/0.5) = 2.2
(b) (2.2− 1)2/(2.2 + 1)2 = 0.14 %.

P18-19 (a) Call the three waves

yi = A sin k1(x− v1t),
yt = B sin k2(x− v2t),
yr = C sin k1(x+ v1t),

where the subscripts i, t, and r refer to the incident, transmitted, and reflected waves respectively.
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Apply the principle of superposition. Just to the left of the knot the wave has amplitude yi + yr

while just to the right of the knot the wave has amplitude yt. These two amplitudes must line up
at the knot for all times t, or the knot will come undone. Remember the knot is at x = 0, so

yi + yr = yt,

A sin k1(−v1t) + C sin k1(+v1t) = B sin k2(−v2t),
−A sin k1v1t+ C sin k1v1t = −B sin k2v2t

We know that k1v1 = k2v2 = ω, so the three sin functions are all equivalent, and can be canceled.
This leaves A = B + C.

(b) We need to match more than the displacement, we need to match the slope just on either
side of the knot. In that case we need to take the derivative of

yi + yr = yt

with respect to x, and then set x = 0. First we take the derivative,

d

dx
(yi + yr) =

d

dx
(yt) ,

k1A cos k1(x− v1t) + k1C cos k1(x+ v1t) = k2B cos k2(x− v2t),

and then we set x = 0 and simplify,

k1A cos k1(−v1t) + k1C cos k1(+v1t) = k2B cos k2(−v2t),
k1A cos k1v1t+ k1C cos k1v1t = k2B cos k2v2t.

This last expression simplifies like the one in part (a) to give

k1(A+ C) = k2B

We can combine this with A = B + C to solve for C,

k1(A+ C) = k2(A− C),
C(k1 + k2) = A(k2 − k1),

C = A
k2 − k1

k1 + k2
.

If k2 < k1 C will be negative; this means the reflected wave will be inverted.

P18-20

P18-21 Find the wavelength from

λ = 2(0.924 m)/4 = 0.462 m.

Find the wavespeed from

v = fλ = (60.0 Hz)(0.462 m) = 27.7 m/s.

Find the tension from

F = µv2 = (0.0442 kg)(27.7 m/s)2/(0.924 m) = 36.7 N.
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P18-22 (a) The frequency of vibration f is the same for both the aluminum and steel wires; they
don not, however, need to vibrate in the same mode. The speed of waves in the aluminum is v1,
that in the steel is v2. The aluminum vibrates in a mode given by n1 = 2L1f/v1, the steel vibrates
in a mode given by n2 = 2L2f/v2. Both n1 and n2 need be integers, so the ratio must be a rational
fraction. Note that the ratio is independent of f , so that L1 and L2 must be chosen correctly for
this problem to work at all!

This ratio is
n2

n1
=
L2

L1

√
µ2

µ1
=

(0.866 m)
(0.600 m)

√
(7800 kg/m3)
(2600 kg/m3)

= 2.50 ≈ 5
2

Note that since the wires have the same tension and the same cross sectional area it is acceptable
to use the volume density instead of the linear density in the problem.

The smallest integer solution is then n1 = 2 and n2 = 5. The frequency of vibration is then

f =
n1v

2L1
=

n1

2L1

√
T

ρ1A
=

(2)
2(0.600 m)

√
(10.0 kg)(9.81 m/s2)

(2600 kg/m3)(1.00×10−6m2)
= 323 Hz.

(b) There are three nodes in the aluminum and six in the steel. But one of those nodes is shared,
and two are on the ends of the wire. The answer is then six.
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