
E17-1 For a perfect spring |F | = k|x|. x = 0.157 m when 3.94 kg is suspended from it. There
would be two forces on the object— the force of gravity, W = mg, and the force of the spring, F .
These two force must balance, so mg = kx or

k =
mg

x
=

(3.94 kg)(9.81 m/s2)
(0.157 m)

= 0.246 N/m.

Now that we know k, the spring constant, we can find the period of oscillations from Eq. 17-8,

T = 2π
√
m

k
= 2π

√
(0.520 kg)

(0.246 N/m)
= 0.289 s.

E17-2 (a) T = 0.484 s.
(b) f = 1/T = 1/(0.484 s) = 2.07 s−1.
(c) ω = 2πf = 13.0 rad/s.
(d) k = mω2 = (0.512 kg)(13.0 rad/s)2 = 86.5 N/m.
(e) vm = ωxm = (13.0 rad/s)(0.347 m) = 4.51 m/s.
(f) Fm = mam = (0.512 kg)(13.0 rad/s)2(0.347 m) = 30.0 N.

E17-3 am = (2πf)2xm. Then

f =
√

(9.81 m/s2)/(1.20×10−6m)/(2π) = 455 Hz.

E17-4 (a) ω = (2π)/(0.645 s) = 9.74 rad/s. k = mω2 = (5.22 kg)(9.74 rad/s)2 = 495 N/m.
(b) xm = vm/ω = (0.153 m/s)/(9.74 rad/s) = 1.57×10−2m.
(c) f = 1/(0.645 s) = 1.55 Hz.

E17-5 (a) The amplitude is half of the distance between the extremes of the motion, so A = (2.00
mm)/2 = 1.00 mm.

(b) The maximum blade speed is given by vm = ωxm. The blade oscillates with a frequency of
120 Hz, so ω = 2πf = 2π(120 s−1) = 754 rad/s, and then vm = (754 rad/s)(0.001 m) = 0.754 m/s.

(c) Similarly, am = ω2xm, am = (754 rad/s)2(0.001 m) = 568 m/s2.

E17-6 (a) k = mω2 = (1460 kg/4)(2π2.95/s)2 = 1.25×105N/m
(b) f =

√
k/m/2π =

√
(1.25×105N/m)/(1830 kg/4)/2π = 2.63/s.

E17-7 (a) x = (6.12 m) cos[(8.38 rad/s)(1.90 s) + 1.92 rad] = 3.27 m.
(b) v = −(6.12 m)(8.38/s) sin[(8.38 rad/s)(1.90 s) + 1.92 rad] = 43.4 m/s.
(c) a = −(6.12 m)(8.38/s)2 cos[(8.38 rad/s)(1.90 s) + 1.92 rad] = −229 m/s2.
(d) f = (8.38 rad/s)/2π = 1.33/s.
(e) T = 1/f = 0.750 s.

E17-8 k = (50.0 lb)/(4.00 in) = 12.5 lb/in.

mg =
(32 ft/s2)(12 in/ft)(12.5 lb/in)

[2π(2.00/s)]2
= 30.4 lb.

E17-9 If the drive wheel rotates at 193 rev/min then

ω = (193 rev/min)(2π rad/rev)(1/60 s/min) = 20.2 rad/s,

then vm = ωxm = (20.2 rad/s)(0.3825 m) = 7.73 m/s.
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E17-10 k = (0.325 kg)(9.81 m/s2)/(1.80×10−2 m) = 177 N/m..

T = 2π
√
m

k
= 2π

√
(2.14 kg)

(177 N/m)
= 0.691 s.

E17-11 For the tides ω = 2π/(12.5 h). Half the maximum occurs when cosωt = 1/2, or ωt = π/3.
Then t = (12.5 h)/6 = 2.08 h.

E17-12 The two will separate if the (maximum) acceleration exceeds g.
(a) Since ω = 2π/T = 2π/(1.18 s) = 5.32 rad/s the maximum amplitude is

xm = (9.81 m/s2)/(5.32 rad/s)2 = 0.347 m.

(b) In this case ω =
√

(9.81 m/s2)/(0.0512 m) = 13.8 rad/s. Then f = (13.8 rad/s)/2π = 2.20/s.

E17-13 (a) ax/x = −ω2. Then

ω =
√
−(−123 m/s)/(0.112m) = 33.1 rad/s,

so f = (33.1 rad/s)/2π = 5.27/s.
(b) m = k/ω2 = (456 N/m)/(33.1 rad/s)2 = 0.416 kg.
(c) x = xm cosωt; v = −xmω sinωt. Combining,

x2 + (v/ω)2 = xm
2 cos2 ωt+ xm

2 sin2 ωt = xm
2.

Consequently,
xm =

√
(0.112 m)2 + (−13.6 m/s)2/(33.1 rad/s)2 = 0.426 m.

E17-14 x1 = xm cosωt, x2 = xm cos(ωt + φ). The crossing happens when x1 = xm/2, or when
ωt = π/3 (and other values!). The same constraint happens for x2, except that it is moving in the
other direction. The closest value is ωt+ φ = 2π/3, or φ = π/3.

E17-15 (a) The net force on the three cars is zero before the cable breaks. There are three forces
on the cars: the weight, W , a normal force, N , and the upward force from the cable, F . Then

F = W sin θ = 3mg sin θ.

This force is from the elastic properties of the cable, so

k =
F

x
=

3mg sin θ
x

The frequency of oscillation of the remaining two cars after the bottom car is released is

f =
1

2π

√
k

2m
=

1
2π

√
3mg sin θ

2mx
=

1
2π

√
3g sin θ

2x
.

Numerically, the frequency is

f =
1

2π

√
3g sin θ

2x
=

1
2π

√
3(9.81 m/s2) sin(26◦)

2(0.142 m)
= 1.07 Hz.

(b) Each car contributes equally to the stretching of the cable, so one car causes the cable to
stretch 14.2/3 = 4.73 cm. The amplitude is then 4.73 cm.
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E17-16 Let the height of one side over the equilibrium position be x. The net restoring force
on the liquid is 2ρAxg, where A is the cross sectional area of the tube and g is the acceleration of
free-fall. This corresponds to a spring constant of k = 2ρAg. The mass of the fluid is m = ρAL.
The period of oscillation is

T = 2π
√
m

k
= π

√
2L
g
.

E17-17 (a) There are two forces on the log. The weight, W = mg, and the buoyant force B.
We’ll assume the log is cylindrical. If x is the length of the log beneath the surface and A the
cross sectional area of the log, then V = Ax is the volume of the displaced water. Furthermore,
mw = ρwV is the mass of the displaced water and B = mwg is then the buoyant force on the log.
Combining,

B = ρwAgx,

where ρw is the density of water. This certainly looks similar to an elastic spring force law, with
k = ρwAg. We would then expect the motion to be simple harmonic.

(b) The period of the oscillation would be

T = 2π
√
m

k
= 2π

√
m

ρwAg
,

where m is the total mass of the log and lead. We are told the log is in equilibrium when x = L = 2.56
m. This would give us the weight of the log, since W = B is the condition for the log to float. Then

m =
B

g
=
ρwAgL

g
= ρAL.

From this we can write the period of the motion as

T = 2π

√
ρAL

ρwAg
= 2π

√
L/g = 2π

√
(2.56 m)

(9.81 m/s2)
= 3.21 s.

E17-18 (a) k = 2(1.18 J)/(0.0984 m)2 = 244 N/m.
(b) m = 2(1.18 J)/(1.22 m/s)2 = 1.59 kg.
(c) f = [(1.22 m/s)/(0.0984 m)]/(2π) = 1.97/s.

E17-19 (a) Equate the kinetic energy of the object just after it leaves the slingshot with the
potential energy of the stretched slingshot.

k =
mv2

x2
=

(0.130 kg)(11.2×103m/s)2

(1.53 m)2
= 6.97×106N/m.

(b) N = (6.97×106 N/m)(1.53 m)/(220 N) = 4.85×104 people.

E17-20 (a) E = kxm
2/2, U = kx2/2 = k(xm/2)2/2 = E/4. K = E − U = 3E/4. The the energy

is 25% potential and 75% kinetic.
(b) If U = E/2 then kx2/2 = kxm

2/4, or x = xm/
√

2.
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E17-21 (a) am = ω2xm so

ω =
√
am

xm
=

√
(7.93× 103 m/s2)
(1.86× 10−3 m)

= 2.06× 103 rad/s

The period of the motion is then

T =
2π
ω

= 3.05×10−3s.

(b) The maximum speed of the particle is found by

vm = ωxm = (2.06× 103 rad/s)(1.86× 10−3 m) = 3.83 m/s.

(c) The mechanical energy is given by Eq. 17-15, except that we will focus on when vx = vm,
because then x = 0 and

E =
1
2
mvm

2 =
1
2

(12.3 kg)(3.83 m/s)2 = 90.2 J.

E17-22 (a) f =
√
k/m/2π =

√
(988 N/m)/(5.13 kg)/2π = 2.21/s.

(b) U i = (988 N/m)(0.535 m)2/2 = 141 J.
(c) K i = (5.13 kg)(11.2 m/s)2/2 = 322 J.
(d) xm =

√
2E/k =

√
2(322 J + 141 J)/(988 N/m) = 0.968 m.

E17-23 (a) ω =
√

(538 N/m)/(1.26 kg) = 20.7 rad/s.

xm =
√

(0.263 m)2 + (3.72 m/s)2/(20.7 rad/s)2 = 0.319 m.

(b) φ = arctan {−(−3.72 m/s)/[(20.7 rad/s)(0.263 m)]} = 34.3◦.

E17-24 Before doing anything else apply conservation of momentum. If v0 is the speed of the
bullet just before hitting the block and v1 is the speed of the bullet/block system just after the two
begin moving as one, then v1 = mv0/(m+M), where m is the mass of the bullet and M is the mass
of the block.

For this system ω =
√
k/(m+M).

(a) The total energy of the oscillation is 1
2 (m+M)v2

1 , so the amplitude is

xm =

√
m+M

k
v1 =

√
m+M

k

mv0

m+M
= mv0

√
1

k(m+M)
.

The numerical value is

xm = (0.050 kg)(150 m/s)

√
1

(500 N/m)(0.050 kg + 4.00 kg)
= 0.167 m.

(b) The fraction of the energy is

(m+M)v2
1

mv2
0

=
m+M

m

(
m

m+M

)2

=
m

m+M
=

(0.050 kg)
(0.050 kg + 4.00 kg)

= 1.23×10−2.

E17-25 L = (9.82 m/s2)(1.00 s/2π)2 = 0.249 m.
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E17-26 T = (180 s)/(72.0). Then

g =
(

2π(72.0)
(180 s)

)2

(1.53 m) = 9.66 m/s.

E17-27 We are interested in the value of θm which will make the second term 2% of the first
term. We want to solve

0.02 =
1
22

sin2 θm

2
,

which has solution
sin

θm

2
=
√

0.08

or θm = 33◦.
(b) How large is the third term at this angle?

32

2242
sin4 θm

2
=

32

22

(
1
22

sin2 θm
2

)2

=
9
4

(0.02)2

or 0.0009, which is very small.

E17-28 Since T ∝
√

1/g we have

T p = T e

√
ge/gp = (1.00 s)

√
(9.78 m/s2)
(9.834 m/s2)

= 0.997 s.

E17-29 Let the period of the clock in Paris be T1. In a day of length D1 = 24 hours it will
undergo n = D/T1 oscillations. In Cayenne the period is T2. n oscillations should occur in 24 hours,
but since the clock runs slow, D2 is 24 hours + 2.5 minutes elapse. So

T2 = D2/n = (D2/D1)T1 = [(1442.5 min)/(1440.0 min)]T1 = 1.0017T1.

Since the ratio of the periods is (T2/T1) =
√

(g1/g2), the g2 in Cayenne is

g2 = g1(T1/T2)2 = (9.81 m/s2)/(1.0017)2 = 9.78 m/s2.

E17-30 (a) Take the differential of

g =
(

2π(100)
T

)2

(10 m) =
4π2×105 m

T 2
,

so δg = (−8π2×105 m/T 3)δT . Note that T is not the period here, it is the time for 100 oscillations!
The relative error is then

δg

g
= −2

δT

T
.

If δg/g = 0.1% then δT/T = 0.05%.
(b) For g ≈ 10 m/s2 we have

T ≈ 2π(100)
√

(10 m)/(10 m/s2) = 628 s.

Then δT ≈ (0.0005)(987 s) ≈ 300 ms.
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E17-31 T = 2π
√

(17.3 m)/(9.81 m/s2) = 8.34 s.

E17-32 The spring will extend until the force from the spring balances the weight, or when Mg =
kh. The frequency of this system is then

f =
1

2π

√
k

M
=

1
2π

√
Mg/h

M
=

1
2π

√
g

h
,

which is the frequency of a pendulum of length h. The mass of the bob is irrelevant.

E17-33 The frequency of oscillation is

f =
1

2π

√
Mgd

I
,

where d is the distance from the pivot about which the hoop oscillates and the center of mass of the
hoop.

The rotational inertia I is about an axis through the pivot, so we apply the parallel axis theorem.
Then

I = Md2 + Icm = Md2 +Mr2.

But d is r, since the pivot point is on the rim of the hoop. So I = 2Md2, and the frequency is

f =
1

2π

√
Mgd

2Md2
=

1
2π

√
g

2d
=

1
2π

√
(9.81 m/s2)
2(0.653 m)

= 0.436 Hz.

(b) Note the above expression looks like the simple pendulum equation if we replace 2d with l.
Then the equivalent length of the simple pendulum is 2(0.653 m) = 1.31 m.

E17-34 Apply Eq. 17-21:

I =
T 2κ

4π2
=

(48.7 s/20.0)2(0.513 N ·m)
4π2

= 7.70×10−2kg ·m2.

E17-35 κ = (0.192 N · m)/(0.850 rad) = 0.226 N · m. I = 2
5 (95.2 kg)(0.148 m)2 = 0.834 kg · m2.

Then
T = 2π

√
I/κ = 2π

√
(0.834 kg ·m2)/(0.226 N ·m) = 12.1 s.

E17-36 x is d in Eq. 17-29. Since the hole is drilled off center we apply the principle axis theorem
to find the rotational inertia:

I =
1
12
ML2 +Mx2.

Then

1
12
ML2 +Mx2 =

T 2Mgx

4π2
,

1
12

(1.00 m)2 + x2 =
(2.50 s)2(9.81 m/s2)

4π2
x,

(8.33×10−2m2)− (1.55 m)x+ x2 = 0.

This has solutions x = 1.49 m and x = 0.0557 m. Use the latter.
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E17-37 For a stick of length L which can pivot about the end, I = 1
3ML2. The center of mass

of such a stick is located d = L/2 away from the end.
The frequency of oscillation of such a stick is

f =
1

2π

√
Mgd

I
,

f =
1

2π

√
Mg (L/2)

1
3ML2

,

f =
1

2π

√
3g
2L
.

This means that f is proportional to
√

1/L, regardless of the mass or density of the stick. The ratio
of the frequency of two such sticks is then f2/f1 =

√
L1/L2, which in our case gives

f2 = f1

√
L2/L1 = f1

√
(L1)/(2L1/3) = 1.22f1.

E17-38 The rotational inertia of the pipe section about the cylindrical axis is

Icm =
M

2
[
r2
1 + r2

2

]
=
M

2
[
(0.102 m)2 + (0.1084 m)2

]
= (1.11×10−2m2)M

(a) The total rotational inertia about the pivot axis is

I = 2Icm +M(0.102 m)2 +M(0.3188 m)2 = (0.134 m2)M.

The period of oscillation is

T = 2π

√
(0.134 m2)M

M(9.81 m/s2)(0.2104 m)
= 1.60 s

(b) The rotational inertia of the pipe section about a diameter is

Icm =
M

4
[
r2
1 + r2

2

]
=
M

4
[
(0.102 m)2 + (0.1084 m)2

]
= (5.54×10−3m2)M

The total rotational inertia about the pivot axis is now

I = M(1.11×10−2m2) +M(0.102 m)2 +M(5.54×10−3m2) +M(0.3188 m)2 = (0.129 m2)M

The period of oscillation is

T = 2π

√
(0.129 m2)M

M(9.81 m/s2)(0.2104 m)
= 1.57 s.

The percentage difference with part (a) is (0.03 s)/(1.60 s) = 1.9%.

E17-39

E17-40

E17-41 (a) Since effectively x = y, the path is a diagonal line.
(b) The path will be an ellipse which is symmetric about the line x = y.
(c) Since cos(ωt+ 90◦) = − sin(ωt), the path is a circle.
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E17-42 (a)
(b) Take two time derivatives and multiply by m,

~F = −mAω2
(̂
i cosωt+ 9ĵ cos 3ωt

)
.

(c) U = −
∫
~F · d~r, so

U =
1
2
mA2ω2

(
cos2 ωt+ 9 cos2 3ωt

)
.

(d) K = 1
2mv

2, so

K =
1
2
mA2ω2

(
sin2 ωt+ 9 sin2 3ωt

)
;

And then E = K + U = 5mA2ω2.
(e) Yes; the period is 2π/ω.

E17-43 The ω which describes the angular velocity in uniform circular motion is effectively the
same ω which describes the angular frequency of the corresponding simple harmonic motion. Since
ω =

√
k/m, we can find the effective force constant k from knowledge of the Moon’s mass and the

period of revolution.
The moon orbits with a period of T , so

ω =
2π
T

=
2π

(27.3× 24× 3600 s)
= 2.66×10−6rad/s.

This can be used to find the value of the effective force constant k from

k = mω2 = (7.36×1022kg)(2.66×10−6rad/s)2 = 5.21×1011N/m.

E17-44 (a) We want to know when e−bt/2m = 1/3, or

t =
2m
b

ln 3 =
2(1.52 kg)

(0.227 kg/s)
ln 3 = 14.7 s

(b) The (angular) frequency is

ω′ =

√(
(8.13 N/m)
(1.52 kg)

)
−
(

(0.227 kg/s)
2(1.52 kg)

)2

= 2.31 rad/s.

The number of oscillations is then

(14.7 s)(2.31 rad/s)/2π = 5.40

E17-45 The first derivative of Eq. 17-39 is

dx

dt
= xm(−b/2m)e−bt/2m cos(ω′t+ φ) + xme

−bt/2m(−ω′) sin(ω′t+ φ),

= −xme
−bt/2m ((b/2m) cos(ω′t+ φ) + ω′ sin(ω′t+ φ))

The second derivative is quite a bit messier;

d2

dx2
= −xm(−b/2m)e−bt/2m ((b/2m) cos(ω′t+ φ) + ω′ sin(ω′t+ φ))

−xme
−bt/2m ((b/2m)(−ω′) sin(ω′t+ φ) + (ω′)2 cos(ω′t+ φ)

)
,

= xme
−bt/2m ((ω′b/m) sin(ω′t+ φ) + (b2/4m2 − ω′2) cos(ω′t+ φ)

)
.
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Substitute these three expressions into Eq. 17-38. There are, however, some fairly obvious simpli-
fications. Every one of the terms above has a factor of xm, and every term above has a factor of
e−bt/2m, so simultaneously with the substitution we will cancel out those factors. Then Eq. 17-38
becomes

m
[
(ω′b/m) sin(ω′t+ φ) + (b2/4m2 − ω′2) cos(ω′t+ φ)

]
−b [(b/2m) cos(ω′t+ φ) + ω′ sin(ω′t+ φ)] + k cos(ω′t+ φ) = 0

Now we collect terms with cosine and terms with sine,

(ω′b− ω′b) sin(ω′t+ φ) +
(
mb2/4m2 − ω′2 − b2/2m+ k

)
cos(ω′t+ φ) = 0.

The coefficient for the sine term is identically zero; furthermore, because the cosine term must then
vanish regardless of the value of t, the coefficient for the sine term must also vanish. Then(

mb2/4m2 −mω′2 − b2/2m+ k
)

= 0,

or

ω′2 =
k

m
− b2

4m2
.

If this condition is met, then Eq. 17-39 is indeed a solution of Eq. 17-38.

E17-46 (a) Four complete cycles requires a time t4 = 8π/ω′. The amplitude decays to 3/4 the
original value in this time, so 0.75 = e−bt4/2m, or

ln(4/3) =
8πb

2mω′
.

It is probably reasonable at this time to assume that b/2m is small compared to ω so that ω′ ≈ ω.
We’ll do it the hard way anyway. Then

ω′2 =
(

8π
ln(4/3)

)2(
b

2m

)2

,

k

m
−
(

b

2m

)2

=
(

8π
ln(4/3)

)2(
b

2m

)2

,

k

m
= (7630)

(
b

2m

)2

Numerically, then,

b =

√
4(1.91 kg)(12.6 N/m)

(7630)
= 0.112 kg/s.

(b)

E17-47 (a) Use Eqs. 17-43 and 17-44. At resonance ω′′ = ω, so

G =
√
b2ω2 = bω,

and then xm = Fm/bω.
(b) vm = ωxm = Fm/b.
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E17-48 We need the first two derivatives of

x =
Fm

G
cos(ω′′t− β)

The derivatives are easy enough to find,

dx

dt
=
Fm

G
(−ω′′) sin(ω′′t− β),

and
d2x

dt2
= −Fm

G
(ω′′)2 cos(ω′′t− β),

We’ll substitute this into Eq. 17-42,

m

(
−Fm

G
(ω′′)2 cos(ω′′t− β)

)
,

+b
(
Fm

G
(−ω′′) sin(ω′′t− β)

)
+ k

Fm

G
cos(ω′′t− β) = Fm cosω′′t.

Then we’ll cancel out as much as we can and collect the sine and cosine terms,(
k −m(ω′′)2

)
cos(ω′′t− β)− (bω′′) sin(ω′′t− β) = G cosω′′t.

We can write the left hand side of this equation in the form

A cosα1 cosα2 −A sinα1 sinα2,

if we let α2 = ω′′t− β and choose A and α1 correctly. The best choice is

A cosα1 = k −m(ω′′)2,

A sinα1 = bω′′,

and then taking advantage of the fact that sin2 + cos2 = 1,

A2 =
(
k −m(ω′′)2

)2
+ (bω′′)2,

which looks like Eq. 17-44! But then we can apply the cosine angle addition formula, and

A cos(α1 + ω′′t− β) = G cosω′′t.

This expression needs to be true for all time. This means that A = G and α1 = β.

E17-49 The derivatives are easy enough to find,

dx

dt
=
Fm

G
(−ω′′′) sin(ω′′′t− β),

and
d2x

dt2
= −Fm

G
(ω′′′)2 cos(ω′′′t− β),

We’ll substitute this into Eq. 17-42,

m

(
−Fm

G
(ω′′′)2 cos(ω′′′t− β)

)
,

+b
(
Fm

G
(−ω′′′) sin(ω′′′t− β)

)
+ k

Fm

G
cos(ω′′′t− β) = Fm cosω′′t.
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Then we’ll cancel out as much as we can and collect the sine and cosine terms,(
k −m(ω′′′)2

)
cos(ω′′′t− β)− (bω′′′) sin(ω′′′t− β) = G cosω′′t.

We can write the left hand side of this equation in the form

A cosα1 cosα2 −A sinα1 sinα2,

if we let α2 = ω′′′t− β and choose A and α1 correctly. The best choice is

A cosα1 = k −m(ω′′′)2,

A sinα1 = bω′′′,

and then taking advantage of the fact that sin2 + cos2 = 1,

A2 =
(
k −m(ω′′′)2

)2
+ (bω′′′)2,

which looks like Eq. 17-44! But then we can apply the cosine angle addition formula, and

A cos(α1 + ω′′′t− β) = G cosω′′t.

This expression needs to be true for all time. This means that A = G and α1 + ω′′′t− β = ω′′t and
α1 = β and ω′′′ = ω′′.

E17-50 Actually, Eq. 17-39 is not a solution to Eq. 17-42 by itself, this is a wording mistake in
the exercise. Instead, Eq. 17-39 can be added to any solution of Eq. 17-42 and the result will still
be a solution.

Let xn be any solution to Eq. 17-42 (such as Eq. 17-43.) Let xh be given by Eq. 17-39. Then

x = xn + xh.

Take the first two time derivatives of this expression.

dx

dt
=

dxn

dt
+
dxh

dt
,

d2x

dt2
=

d2xn

dt2
+
d2xh

dt2

Substitute these three expressions into Eq. 17-42.

m

(
d2xn

dt2
+
d2xh

dt2

)
+ b

(
dxn

dt
+
dxh

dt

)
+ k (xn + xh) = Fm cosω′′t.

Rearrange and regroup.(
m
d2xn

dt2
+ b

dxn

dt
+ kxn

)
+
(
m
d2xh

dt2
+ b

dxh

dt
+ kxh

)
= Fm cosω′′t.

Consider the second term on the left. The parenthetical expression is just Eq. 17-38, the damped
harmonic oscillator equation. It is given in the text (and proved in Ex. 17-45) the xh is a solution,
so this term is identically zero. What remains is Eq. 17-42; and we took as a given that xn was a
solution.

(b) The “add-on” solution of xh represents the transient motion that will die away with time.
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E17-51 The time between “bumps” is the solution to

vt = x,

t =
(13 ft)

(10 mi/hr)

(
1 mi

5280 ft

)(
3600 s
1 hr

)
= 0.886 s

The angular frequency is

ω =
2π
T

= 7.09 rad/s

This is the driving frequency, and the problem states that at this frequency the up-down bounce
oscillation is at a maximum. This occurs when the driving frequency is approximately equal to the
natural frequency of oscillation. The force constant for the car is k, and this is related to the natural
angular frequency by

k = mω2 =
W

g
ω2,

where W = (2200 + 4× 180) lb= 2920 lb is the weight of the car and occupants. Then

k =
(2920 lb)
(32 ft/s2)

(7.09 rad/s)2 = 4590 lb/ft

When the four people get out of the car there is less downward force on the car springs. The
important relationship is

∆F = k∆x.

In this case ∆F = 720 lb, the weight of the four people who got out of the car. ∆x is the distance
the car will rise when the people get out. So

∆x =
∆F
k

=
(720 lb)

4590 lb/ft
= 0.157 ft ≈ 2 in.

E17-52 The derivative is easy enough to find,

dx

dt
=
Fm

G
(−ω′′) sin(ω′′t− β),

The velocity amplitude is

vm =
Fm

G
ω′′,

=
Fm

1
ω′′

√
m2(ω′′2 − ω2)2 + b2ω′′2

,

=
Fm√

(mω′′ − k/ω′′)2 + b2
.

Note that this is exactly a maximum when ω′′ = ω.

E17-53 The reduced mass is

m = (1.13 kg)(3.24 kg)/(1.12 kg + 3.24 kg) = 0.840 kg.

The period of oscillation is

T = 2π
√

(0.840 kg)/(252 N/m) = 0.363 s
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E17-54

E17-55 Start by multiplying the kinetic energy expression by (m1 +m2)/(m1 +m2).

K =
(m1 +m2)
2(m1 +m2)

(
m1v

2
1 +m2v

2
2

)
,

=
1

2(m1 +m2)
(
m2

1v
2
1 +m1m2(v2

1 + v2
2) +m2

2v
2
2

)
,

and then add 2m1m2v1v2 − 2m1m2v1v2,

K =
1

2(m1 +m2)
(
m2

1v
2
1 + 2m1m2v1v2 +m2

2v
2
2 +m1m2(v2

1 + v2
2 − 2v1v2)

)
,

=
1

2(m1 +m2)
(
(m1v1 +m2v2)2 +m1m2(v1 − v2)2

)
.

But m1v2 +m2v2 = 0 by conservation of momentum, so

K =
(m1m2)

2(m1 +m2)
(v1 − v2)2

,

=
m

2
(v1 − v2)2.

P17-1 The mass of one silver atom is (0.108 kg)/(6.02×1023) = 1.79×10−25kg. The effective spring
constant is

k = (1.79×10−25kg)4π2(10.0×1012/s)2 = 7.07×102N/m.

P17-2 (a) Rearrange Eq. 17-8 except replace m with the total mass, or m+M . Then (M+m)/k =
T 2/(4π2), or

M = (k/4π2)T 2 −m.
(b) When M = 0 we have

m = [(605.6 N/m)/(4π2)](0.90149 s)2 = 12.467 kg.

(c) M = [(605.6 N/m)/(4π2)](2.08832 s)2 − (12.467 kg) = 54.432 kg.

P17-3 The maximum static friction is Ff ≤ µsN . Then

Ff = µsN = µsW = µsmg

is the maximum available force to accelerate the upper block. So the maximum acceleration is

am =
Ff
m

= µsg

The maximum possible amplitude of the oscillation is then given by

xm =
am

ω2
=

µsg

k/(m+M)
,

where in the last part we substituted the total mass of the two blocks because both blocks are
oscillating. Now we put in numbers, and find

xm =
(0.42)(1.22 kg + 8.73 kg)(9.81 m/s2)

(344 N/m)
= 0.119 m.
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P17-4 (a) Equilibrium occurs when F = 0, or b/r3 = a/r2. This happens when r = b/a.
(b) dF/dr = 2a/r3 − 3b/r4. At r = b/a this becomes

dF/dr = 2a4/b3 − 3a4/b3 = −a4/b3,

which corresponds to a force constant of a4/b3.
(c) T = 2π

√
m/k = 2π

√
mb3/a2, where m is the reduced mass.

P17-5 Each spring helps to restore the block. The net force on the block is then of magnitude
F1 + F2 = k1x+ k2x = (k1 + k2)x = kx. We can then write the frequency as

f =
1

2π

√
k

m
=

1
2π

√
k1 + k2

m
.

With a little algebra,

f =
1

2π

√
k1 + k2

m
,

=

√
1

4π2

k1

m
+

1
4π2

k2

m
,

=
√
f2

1 + f2
2 .

P17-6 The tension in the two spring is the same, so k1x1 = k2x2, where xi is the extension of the
ith spring. The total extension is x1 + x2, so the effective spring constant of the combination is

F

x
=

F

x1 + x2
=

1
x1/F + x2/F

=
1

1/k1 + 1/k2
=

k1k2

k1 + k2
.

The period is then

T =
1

2π

√
k

m
=

1
2π

√
k1k2

(k1 + k2)m

With a little algebra,

f =
1

2π

√
k1k2

(k1 + k2)m
,

=
1

2π

√
1

m/k1 +m/k2
,

=
1

2π

√
1

1/ω2
1 + 1/ω2

2

,

=
1

2π

√
ω2

1ω
2
2

ω2
1 + ω2

2

,

=
f1f2√
f2

1 + f2
2

.
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P17-7 (a) When a spring is stretched the tension is the same everywhere in the spring. The
stretching, however, is distributed over the entire length of the spring, so that the relative amount
of stretch is proportional to the length of the spring under consideration. Half a spring, half the
extension. But k = −F/x, so half the extension means twice the spring constant.

In short, cutting the spring in half will create two stiffer springs with twice the spring constant,
so k = 7.20 N/cm for each spring.

(b) The two spring halves now support a mass M . We can view this as each spring is holding
one-half of the total mass, so in effect

f =
1

2π

√
k

M/2

or, solving for M ,

M =
2k

4π2f2
=

2(720 N/m)
4π2(2.87 s−1)2

= 4.43 kg.

P17-8 Treat the spring a being composed of N massless springlets each with a point mass ms/N
at the end. The spring constant for each springlet will be kN . An expression for the conservation
of energy is then

m

2
v2 +

ms

2N

N∑
1

vn
2 +

Nk

2

N∑
1

xn
2 = E.

Since the spring stretches proportionally along the length then we conclude that each springlet
compresses the same amount, and then xn = A/N sinωt could describe the change in length of each
springlet. The energy conservation expression becomes

m

2
v2 +

ms

2N

N∑
1

vn
2 +

k

2
A2 sin2 ωt = E.

v = Aω cosωt. The hard part to sort out is the vn, since the displacements for all springlets to one
side of the nth must be added to get the net displacement. Then

vn = n
A

N
ω cosωt,

and the energy expression becomes(
m

2
+

ms

2N3

N∑
1

n2

)
A2ω2 cos2 ωt+

k

2
A2 sin2 ωt = E.

Replace the sum with an integral, then

1
N3

∫ N

0

n2 dn =
1
3
,

and the energy expression becomes

1
2

(
m+

ms

3

)
A2ω2 cos2 ωt+

k

2
A2 sin2 ωt = E.

This will only be constant if
ω2 =

(
m+

ms

3

)
/k,

or T = 2π
√

(m+ms/3)/k.

220



P17-9 (a) Apply conservation of energy. When x = xm v = 0, so

1
2
kxm

2 =
1
2
m[v(0)]2 +

1
2
k[x(0)]2,

xm
2 =

m

k
[v(0)]2 + [x(0)]2,

xm =
√

[v(0)/ω]2 + [x(0)]2.

(b) When t = 0 x(0) = xm cosφ and v(0) = −ωxm sinφ, so

v(0)
ωx(0)

= − sinφ
cosφ

= tanφ.

P17-10

P17-11 Conservation of momentum for the bullet block collision gives mv = (m+M)vf or

vf =
m

m+M
v.

This vf will be equal to the maximum oscillation speed vm. The angular frequency for the oscillation
is given by

ω =

√
k

m+M
.

Then the amplitude for the oscillation is

xm =
vm

ω
= v

m

m+M

√
m+M

k
=

mv√
k(m+M)

.

P17-12 (a) W = F s, or mg = kx, so x = mg/k.
(b) F = ma, but F = W − F s = mg − kx, and since ma = md2x/dt2,

m
d2x

dt2
+ kx = mg.

The solution can be verified by direct substitution.
(c) Just look at the answer!
(d) dE/dt is

mv
dv

dt
+ kx

dx

dt
−mgdx

dt
= 0,

m
dv

dt
+ kx = mg.

P17-13 The initial energy stored in the spring is kxm
2/2. When the cylinder passes through the

equilibrium point it has a translational velocity vm and a rotational velocity ωr = vm/R, where R
is the radius of the cylinder. The total kinetic energy at the equilibrium point is

1
2
mvm

2 +
1
2
Iωr

2 =
1
2

(
m+

1
2
m

)
vm

2.

Then the kinetic energy is 2/3 translational and 1/3 rotational. The total energy of the system is

E =
1
2

(294 N/m)(0.239 m)2 = 8.40 J.
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(a) Kt = (2/3)(8.40 J) = 5.60 J.
(b) Kr = (1/3)(8.40 J) = 2.80 J.
(c) The energy expression is

1
2

(
3m
2

)
v2 +

1
2
kx2 = E,

which leads to a standard expression for the period with 3M/2 replacing m. Then T = 2π
√

3M/2k.

P17-14 (a) Integrate the potential energy expression over one complete period and then divide by
the time for one period:

ω

2π

∫ 2π/ω

0

1
2
kx2 dt =

kω

4π

∫ 2π/ω

0

xm
2 cos2 ωt dt,

=
kω

4π
xm

2 π

ω
,

=
1
4
kxm

2.

This is half the total energy; since the average total energy is E, then the average kinetic energy
must be the other half of the average total energy, or (1/4)kxm

2.
(b) Integrate over half a cycle and divide by twice the amplitude.

1
2xm

∫ xm

−xm

1
2
kx2 dx =

1
2xm

1
3
kxm

3,

=
1
6
kxm

2.

This is one-third the total energy. The average kinetic energy must be two-thirds the total energy,
or (1/3)kxm

2.

P17-15 The rotational inertia is

I =
1
2
MR2 +Md2 = M

(
1
2

(0.144 m)2 + (0.102 m)2

)
= (2.08×10−2m2)M.

The period of oscillation is

T = 2π

√
I

Mgd
= 2π

√
(2.08×10−2m2)M

M(9.81 m/s2)(0.102 m)
= 0.906 s.

P17-16 (a) The rotational inertia of the pendulum about the pivot is

(0.488 kg)
(

1
2

(0.103 m)2 + (0.103 m + 0.524 m)2

)
+

1
3

(0.272 kg)(0.524 m)2 = 0.219 kg ·m2.

(b) The center of mass location is

d =
(0.524 m)(0.272 kg)/2 + (0.103 m + 0.524 m)(0.488 kg)

(0.272 kg) + (0.488 kg)
= 0.496 m.

(c) The period of oscillation is

T = 2π
√

(0.291 kg ·m2)/(0.272 kg + 0.488 kg)(9.81 m/s2)(0.496 m) = 1.76 s.
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P17-17 (a) The rotational inertia of a stick about an axis through a point which is a distance d
from the center of mass is given by the parallel axis theorem,

I = Icm +md2 =
1
12
mL2 +md2.

The period of oscillation is given by Eq. 17-28,

T = 2π

√
I

mgd
= 2π

√
L2 + 12d2

12gd

(b) We want to find the minimum period, so we need to take the derivative of T with respect to
d. It’ll look weird, but

dT

dd
= π

12d2 − L2√
12gd3(L2 + 12d2)

.

This will vanish when 12d2 = L2, or when d = L/
√

12.

P17-18 The energy stored in the spring is given by kx2/2, the kinetic energy of the rotating wheel
is

1
2

(MR2)
(v
r

)2

,

where v is the tangential velocity of the point of attachment of the spring to the wheel. If x =
xm sinωt, then v = xmω cosωt, and the energy will only be constant if

ω2 =
k

M

r2

R2
.

P17-19 The method of solution is identical to the approach for the simple pendulum on page 381
except replace the tension with the normal force of the bowl on the particle. The effective pendulum
with have a length R.

P17-20 Let x be the distance from the center of mass to the first pivot point. Then the period is
given by

T = 2π

√
I +Mx2

Mgx
.

Solve this for x by expressing the above equation as a quadratic:(
MgT 2

4π2

)
x = I +Mx2,

or

Mx2 −
(
MgT 2

4π2

)
x+ I = 0

There are two solutions. One corresponds to the first location, the other the second location. Adding
the two solutions together will yield L; in this case the discriminant of the quadratic will drop out,
leaving

L = x1 + x2 =
MgT 2

M4π2
=
gT 2

4π2
.

Then g = 4π2L/T 2.
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P17-21 In this problem

I = (2.50 kg)
(

(0.210 m)2

2
+ (0.760 m + 0.210 m)2

)
= 2.41 kg/ ·m2.

The center of mass is at the center of the disk.
(a) T = 2π

√
(2.41 kg/ ·m2)/(2.50 kg)(9.81 m/s2)(0.760 m + 0.210 m) = 2.00 s.

(b) Replace Mgd with Mgd+ κ and 2.00 s with 1.50 s. Then

κ =
4π2(2.41 kg/ ·m2)

(1.50 s)2
− (2.50 kg)(9.81 m/s2)(0.760 m + 0.210 m) = 18.5 N ·m/rad.

P17-22 The net force on the bob is toward the center of the circle, and has magnitude F net =
mv2/R. This net force comes from the horizontal component of the tension. There is also a vertical
component of the tension of magnitude mg. The tension then has magnitude

T =
√

(mg)2 + (mv2/R)2 = m
√
g2 + v4/R2.

It is this tension which is important in finding the restoring force in Eq. 17-22; in effect we want to
replace g with

√
g2 + v4/R2 in Eq. 17-24. The frequency will then be

f =
1

2π

√
L√

g2 + v4/R2
.

P17-23 (a) Consider an object of mass m at a point P on the axis of the ring. It experiences a
gravitational force of attraction to all points on the ring; by symmetry, however, the net force is not
directed toward the circumference of the ring, but instead along the axis of the ring. There is then
a factor of cos θ which will be thrown in to the mix.

The distance from P to any point on the ring is r =
√
R2 + z2, and θ is the angle between the

axis on the line which connects P and any point on the circumference. Consequently,

cos θ = z/r,

and then the net force on the star of mass m at P is

F =
GMm

r2
cos θ =

GMmz

r3
=

GMmz

(R2 + z2)3/2
.

(b) If z � R we can apply the binomial expansion to the denominator, and

(R2 + z2)−3/2 = R−3

(
1 +

( z
R

)2
)−3/2

≈ R−3

(
1− 3

2

( z
R

)2
)
.

Keeping terms only linear in z we have

F =
GMm

R3
z,

which corresponds to a spring constant k = GMm/R3. The frequency of oscillation is then

f =
√
k/m/(2π) =

√
GM/R3/(2π).

(c) Using some numbers from the Milky Way galaxy,

f =
√

(7×10−11N ·m2/kg2)(2×1043kg)/(6×1019m)3/(2π) = 1×10−14 Hz.
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P17-24 (a) The acceleration of the center of mass (point C) is a = F/M . The torque about an
axis through the center of mass is tau = FR/2, since O is R/2 away from the center of mass. The
angular acceleration of the disk is then

α = τ/I = (FR/2)/(MR2/2) = F/(MR).

Note that the angular acceleration will tend to rotate the disk anti-clockwise. The tangential com-
ponent to the angular acceleration at P is aT = −αR = −F/M ; this is exactly the opposite of the
linear acceleration, so P will not (initially) accelerate.

(b) There is no net force at P .

P17-25 The value for k is closest to

k ≈ (2000 kg/4)(9.81 m/s2)/(0.10 m) = 4.9×104N/m.

One complete oscillation requires a time t1 = 2π/ω′. The amplitude decays to 1/2 the original
value in this time, so 0.5 = e−bt1/2m, or

ln(2) =
2πb

2mω′
.

It is not reasonable at this time to assume that b/2m is small compared to ω so that ω′ ≈ ω. Then

ω′2 =
(

2π
ln(2)

)2(
b

2m

)2

,

k

m
−
(

b

2m

)2

=
(

2π
ln(2)

)2(
b

2m

)2

,

k

m
= (81.2)

(
b

2m

)2

Then the value for b is

b =

√
4(2000 kg/4)(4.9×104N/m)

(81.2)
= 1100 kg/s.

P17-26 a = d2x/dt2 = −Aω2 cosωt. Substituting into the non-linear equation,

−mAω2 cosωt+ kA3 cos3 ωt = F cosωdt.

Now let ωd = 3ω. Then
kA3 cos3 ωt−mAω2 cosωt = F cos 3ωt

Expand the right hand side as cos 3ωt = 4 cos3 ωt− 3 cosωt, then

kA3 cos3 ωt−mAω2 cosωt = F (4 cos3 ωt− 3 cosωt)

This will only work if 4F = kA3 and 3F = mAω2. Dividing one condition by the other means
4mAω2 = kA3, so A ∝ ω and then F ∝ ω3 ∝ ωd

3.
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P17-27 (a) Divide the top and the bottom by m2. Then

m1m2

m1 +m2
=

m1

(m1/m2) + 1
,

and in the limit as m2 →∞ the value of (m1/m2)→ 0, so

lim
m2→∞

m1m2

m1 +m2
= lim
m2→∞

m1

(m1/m2) + 1
= m1.

(b) m is called the reduced mass because it is always less than either m1 or m2. Think about it
in terms of

m =
m1

(m1/m2) + 1
=

m2

(m2/m1) + 1
.

Since mass is always positive, the denominator is always greater than or equal to 1. Equality only
occurs if one of the masses is infinite. Now ω =

√
k/m, and since m is always less than m1, so the

existence of a finite wall will cause ω to be larger, and the period to be smaller.
(c) If the bodies have equal mass then m = m1/2. This corresponds to a value of ω =

√
2k/m1.

In effect, the spring constant is doubled, which is what happens if a spring is cut in half.
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