
E16-1 R = Av = πd2v/4 and V = Rt, so

t =
4(1600 m3)

π(0.345 m)2(2.62 m)
= 6530 s

E16-2 A1v1 = A2v2, A1 = πd2
1/4 for the hose, and A2 = Nπd2

2 for the sprinkler, where N = 24.
Then

v2 =
(0.75 in)2

(24)(0.050 in)2
(3.5 ft/s) = 33 ft/s.

E16-3 We’ll assume that each river has a rectangular cross section, despite what the picture
implies. The cross section area of the two streams is then

A1 = (8.2 m)(3.4 m) = 28 m2 and A2 = (6.8 m)(3.2 m) = 22 m2.

The volume flow rate in the first stream is

R1 = A1v1 = (28 m2)(2.3 m/s) = 64 m3/s,

while the volume flow rate in the second stream is

R2 = A2v2 = (22 m2)(2.6 m/s) = 57 m3/s.

The amount of fluid in the stream/river system is conserved, so

R3 = R1 +R2 = (64 m3/s) + (57 m3/s) = 121 m3/s.

where R3 is the volume flow rate in the river. Then

D3 = R3/(v3W3) = (121 m3/s)/[(10.7 m)(2.9 m/s)] = 3.9 m.

E16-4 The speed of the water is originally zero so both the kinetic and potential energy is zero.
When it leaves the pipe at the top it has a kinetic energy of 1

2 (5.30 m/s)2 = 14.0 J/kg and a
potential energy of (9.81 m/s2)(2.90 m) = 28.4 J/kg. The water is flowing out at a volume rate of
R = (5.30 m/s)π(9.70×10−3m)2 = 1.57×10−3 m3/s. The mass rate is ρR = (1000 kg/m3)(1.57×
10−3 m3/s) = 1.57 kg/s.

The power supplied by the pump is (42.8 J/kg)(1.57 kg/s) = 67.2W.

E16-5 There are 8500 km2 which collects an average of (0.75)(0.48 m/y), where the 0.75 reflects
the fact that 1/4 of the water evaporates, so

R =
[
8500(103 m)2

]
(0.75)(0.48 m/y)

(
1 y

365× 24× 60× 60 s

)
= 97 m3/s.

Then the speed of the water in the river is

v = R/A = (97 m3/s)/[(21 m)(4.3 m)] = 1.1 m/s.

E16-7 (a) ∆p = ρg(y1 − y2) + ρ(v2
1 − v2

2)/2. Then

∆p = (62.4 lb/ft3)(572 ft)+[(62.4 lb/ft3)/(32 ft/s2)][(1.33 ft/s)2− (31.0 ft/s)2]/2 = 3.48×104lb/ft2
.

(b) A2v2 = A1v1, so

A2 = (7.60 ft2)(1.33 ft/s)/(31.0 ft/s) = 0.326 ft2.
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E16-8 (a) A2v2 = A1v1, so

v2 = (2.76 m/s)[(0.255 m)2 − (0.0480 m)2]/(0.255 m)2 = 2.66 m/s.

(b) ∆p = ρ(v2
1 − v2

2)/2,

∆p = (1000 kg/m3)[(2.66 m/s)2 − (2.76 m/s)2]/2 = −271 Pa

E16-9 (b) We will do part (b) first.

R = (100 m2)(1.6 m/y)
(

1 y
365× 24× 60× 60 s

)
= 5.1×10−6 m3/s.

(b) The speed of the flow R through a hole of cross sectional area a will be v = R/a. p = p0+ρgh,
where h = 2.0 m is the depth of the hole. Bernoulli’s equation can be applied to find the speed of
the water as it travels a horizontal stream line out the hole,

p0 +
1
2
ρv2 = p,

where we drop any terms which are either zero or the same on both sides. Then

v =
√

2(p− p0)/ρ =
√

2gh =
√

2(9.81 m/s2)(2.0 m) = 6.3 m/s.

Finally, a = (5.1×10−6 m3/s)/(6.3 m/s) = 8.1×10−7m2, or about 0.81 mm2.

E16-10 (a) v2 = (A1/A2)v1 = (4.20 cm2)(5.18 m/s)/(7.60 cm2) = 2.86 m/s.
(b) Use Bernoulli’s equation:

p2 + ρgy2 +
1
2
ρv2

2 = p1 + ρgy1 +
1
2
ρv2

1 .

Then

p2 = (1.52×105Pa) + (1000 kg/m3)
[
(9.81 m/s2)(9.66 m) +

1
2

(5.18 m/s)2 − 1
2

(2.86 m/s)2

]
,

= 2.56×105Pa.

E16-11 (a) The wind speed is (110 km/h)(1000 m/km)/(3600 s/h) = 30.6 m/s. The pressure
difference is then

∆p =
1
2

(1.2 kg/m3)(30.6 m/s)2 = 562 Pa.

(b) The lifting force would be F = (562 Pa)(93 m2) = 52000 N.

E16-12 The pressure difference is

∆p =
1
2

(1.23 kg/m3)(28.0 m/s)2 = 482 N.

The net force is then F = (482 N)(4.26 m)(5.26 m) = 10800 N.
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E16-13 The lower pipe has a radius r1 = 2.52 cm, and a cross sectional area of A1 = πr2
1. The

speed of the fluid flow at this point is v1. The higher pipe has a radius of r2 = 6.14 cm, a cross
sectional area of A2 = πr2

2, and a fluid speed of v2. Then

A1v1 = A2v2 or r2
1v1 = r2

2v2.

Set y1 = 0 for the lower pipe. The problem specifies that the pressures in the two pipes are the
same, so

p0 +
1
2
ρv2

1 + ρgy1 = p0 +
1
2
ρv2

2 + ρgy2,

1
2
v2

1 =
1
2
v2

2 + gy2,

We can combine the results of the equation of continuity with this and get

v2
1 = v2

2 + 2gy2,

v2
1 =

(
v1r

2
1/r

2
2

)2
+ 2gy2,

v2
1

(
1− r4

1/r
4
2

)
= 2gy2,

v2
1 = 2gy2/

(
1− r4

1/r
4
2

)
.

Then
v2

1 = 2(9.81 m/s2)(11.5 m)/
(
1− (0.0252 m)4/(0.0614 m)4

)
= 232 m2/s2

The volume flow rate in the bottom (and top) pipe is

R = πr2
1v1 = π(0.0252 m)2(15.2 m/s) = 0.0303 m3/s.

E16-14 (a) As instructed,

p0 +
1
2
ρv2

1 + ρgy1 = p0 +
1
2
ρv2

3 + ρgy3,

0 =
1
2
v2

3 + g(y3 − y1),

But y3 − y1 = −h, so v3 =
√

2gh.
(b) h above the hole. Just reverse your streamline!
(c) It won’t come out as fast and it won’t rise as high.

E16-15 Sea level will be defined as y = 0, and at that point the fluid is assumed to be at rest.
Then

p0 +
1
2
ρv2

1 + ρgy1 = p0 +
1
2
ρv2

2 + ρgy2,

0 =
1
2
v2

2 + gy2,

where y2 = −200 m. Then

v2 =
√
−2gy2 =

√
−2(9.81 m/s2)(−200 m) = 63 m/s.
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E16-16 Assume streamlined flow, then

p1 +
1
2
ρv2

1 + ρgy1 = p2 +
1
2
ρv2

2 + ρgy2,

(p1 − p2)/ρ+ g(y1 − y2) =
1
2
v2

2 .

Then upon rearranging

v2 =
√

2 [(2.1)(1.01×105Pa)/(1000 kg/m3) + (9.81 m/s2)(53.0 m)] = 38.3 m/s.

E16-17 (a) Points 1 and 3 are both at atmospheric pressure, and both will move at the same
speed. But since they are at different heights, Bernoulli’s equation will be violated.

(b) The flow isn’t steady.

E16-18 The atmospheric pressure difference between the two sides will be ∆p = 1
2ρav

2. The height
difference in the U-tube is given by ∆p = ρwgh. Then

h =
(1.20 kg/m3)(15.0 m/s)2

2(1000 kg/m3)(9.81 m/s2)
= 1.38×10−2m.

E16-19 (a) There are three forces on the plug. The force from the pressure of the water, F1 =
P1A, the force from the pressure of the air, F2 = P2A, and the force of friction, F3. These three
forces must balance, so F3 = F1 − F2, or F3 = P1A − P2A. But P1 − P2 is the pressure difference
between the surface and the water 6.15 m below the surface, so

F3 = ∆PA = −ρgyA,
= −(998 kg/m3)(9.81 m/s2)(−6.15 m)π(0.0215 m)2,

= 87.4 N

(b) To find the volume of water which flows out in three hours we need to know the volume
flow rate, and for that we need both the cross section area of the hole and the speed of the flow.
The speed of the flow can be found by an application of Bernoulli’s equation. We’ll consider the
horizontal motion only— a point just inside the hole, and a point just outside the hole. These points
are at the same level, so

p1 +
1
2
ρv2

1 + ρgy1 = p2 +
1
2
ρv2

2 + ρgy2,

p1 = p2 +
1
2
ρv2

2 .

Combine this with the results of Pascal’s principle above, and

v2 =
√

2(p1 − p2)/ρ =
√
−2gy =

√
−2(9.81 m/s2)(−6.15 m) = 11.0 m/s.

The volume of water which flows out in three hours is

V = Rt = (11.0 m/s)π(0.0215 m)2(3× 3600 s) = 173 m3.

E16-20 Apply Eq. 16-12:

v1 =
√

2(9.81 m/s2)(0.262 m)(810 kg/m3)/(1.03 kg/m3) = 63.6 m/s.
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E16-21 We’ll assume that the central column of air down the pipe exerts minimal force on the
card when it is deflected to the sides. Then

p1 +
1
2
ρv2

1 + ρgy1 = p2 +
1
2
ρv2

2 + ρgy2,

p1 = p2 +
1
2
ρv2

2 .

The resultant upward force on the card is the area of the card times the pressure difference, or

F = (p1 − p2)A =
1
2
ρAv2.

E16-22 If the air blows uniformly over the surface of the plate then there can be no torque about
any axis through the center of mass of the plate. Since the weight also doesn’t introduce a torque,
then the hinge can’t exert a force on the plate, because any such force would produce an unbalanced
torque. Consequently mg = ∆pA. ∆p = ρv2/2, so

v =
√

2mg
ρA

=

√
2(0.488 kg)(9.81 m/s2)

(1.21 kg/m3)(9.10×10−2m)2
= 30.9 m/s.

E16-23 Consider a streamline which passes above the wing and a streamline which passes beneath
the wing. Far from the wing the two streamlines are close together, move with zero relative velocity,
and are effectively at the same pressure. So we can pretend they are actually one streamline. Then,
since the altitude difference between the two points above and below the wing (on this new, single
streamline) is so small we can write

∆p =
1
2
ρ(vt

2 − vu
2)

The lift force is then
L = ∆pA =

1
2
ρA(vt

2 − vu
2)

E16-24 (a) From Exercise 16-23,

L =
1
2

(1.17 kg/m3)(2)(12.5 m2)
[
(49.8 m/s)2 − (38.2 m/s)2

]
= 1.49×104N.

The mass of the plane must be m = L/g = (1.49×104N)/(9.81 m/s2) = 1520 kg.
(b) The lift is directed straight up.
(c) The lift is directed 15◦ off the vertical toward the rear of the plane.
(d) The lift is directed 15◦ off the vertical toward the front of the plane.

E16-25 The larger pipe has a radius r1 = 12.7 cm, and a cross sectional area of A1 = πr2
1. The

speed of the fluid flow at this point is v1. The smaller pipe has a radius of r2 = 5.65 cm, a cross
sectional area of A2 = πr2

2, and a fluid speed of v2. Then

A1v1 = A2v2 or r2
1v1 = r2

2v2.

Now Bernoulli’s equation. The two pipes are at the same level, so y1 = y2. Then

p1 +
1
2
ρv2

1 + ρgy1 = p2 +
1
2
ρv2

2 + ρgy2,

p1 +
1
2
ρv2

1 = p2 +
1
2
ρv2

2 .
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Combining this with the results from the equation of continuity,

p1 +
1
2
ρv2

1 = p2 +
1
2
ρv2

2 ,

v2
1 = v2

2 +
2
ρ

(p2 − p1) ,

v2
1 =

(
v1
r2
1

r2
2

)2

+
2
ρ

(p2 − p1) ,

v2
1

(
1− r4

1

r4
2

)
=

2
ρ

(p2 − p1) ,

v2
1 =

2 (p2 − p1)
ρ (1− r4

1/r
4
2)
.

It may look a mess, but we can solve it to find v1,

v1 =

√
2(32.6×103Pa− 57.1×103Pa)

(998 kg/m3)(1− (0.127 m)4/(0.0565 m)4)
= 1.41 m/s.

The volume flow rate is then

R = Av = π(0.127 m)2(1.41 m/s) = 7.14×10−3m3/s.

That’s about 71 liters/second.

E16-26 The lines are parallel and equally spaced, so the velocity is everywhere the same. We can
transform to a reference frame where the liquid appears to be at rest, so the Pascal’s equation would
apply, and p+ ρgy would be a constant. Hence,

p0 = p+ ρgy +
1
2
ρv2

is the same for all streamlines.

E16-27 (a) The “particles” of fluid in a whirlpool would obey conservation of angular momentum,
meaning a particle off mass m would have l = mvr be constant, so the speed of the fluid as a function
of radial distance from the center would be given by k = vr, where k is some constant representing
the angular momentum per mass. Then v = k/r.

(b) Since v = k/r and v = 2πr/T , the period would be T ∝ r2.
(c) Kepler’s third law says T ∝ r3/2.

E16-28 Rc = 2000. Then

v <
Rcη

ρD
=

(2000)(4.0×10−3N · s/m2)
(1060 kg/m3)(3.8×10−3m)

= 2.0 m/s.

E16-29 (a) The volume flux is given; from that we can find the average speed of the fluid in the
pipe.

v =
5.35× 10−2 L/min

π(1.88 cm)2
= 4.81×10−3 L/cm2 ·min.

But 1 L is the same as 1000 cm3 and 1 min is equal to 60 seconds, so v = 8.03×10−4 m/s.
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Reynold’s number from Eq. 16-22 is then

R =
ρDv

η
=

(13600 kg/m3)(0.0376 m)(8.03×10−4 m/s)
(1.55× 10−3N · s/m2)

= 265.

This is well below the critical value of 2000.
(b) Poiseuille’s Law, Eq. 16-20, can be used to find the pressure difference between the ends of

the pipe. But first, note that the mass flux dm/dt is equal to the volume rate times the density
when the density is constant. Then ρ dV/dt = dm/dt, and Poiseuille’s Law can be written as

δp =
8ηL
πR4

dV

dt
=

8(1.55× 10−3N · s/m2)(1.26 m)
π(1.88×10−2 m)4

(8.92×10−7m3/s) = 0.0355 Pa.

P16-1 The volume of water which needs to flow out of the bay is

V = (6100 m)(5200 m)(3 m) = 9.5×107m3

during a 6.25 hour (22500 s) period. The average speed through the channel must be

v =
(9.5×107m3)

(22500 s)(190 m)(6.5 m)
= 3.4 m/s.

P16-2 (a) The speed of the fluid through either hole is v =
√

2gh. The mass flux through a hole
is Q = ρAv, so ρ1A1 = ρ2A2. Then ρ1/ρ2 = A2/A1 = 2.

(b) R = Av, so R1/R2 = A1/A2 = 1/2.
(c) If R1 = R2 then A1

√
2gh1 = A2

√
2gh2. Then

h2/h1 = (A1/A2)2 = (1/2)2 = 1/4.

So h2 = h1/4.

P16-3 (a) Apply Torricelli’s law (Exercise 16-14): v =
√

2gh. The speed v is a horizontal velocity,
and serves as the initial horizontal velocity of the fluid “projectile” after it leaves the tank. There
is no initial vertical velocity.

This fluid “projectile” falls through a vertical distance H−h before splashing against the ground.
The equation governing the time t for it to fall is

−(H − h) = −1
2
gt2,

Solve this for the time, and t =
√

2(H − h)/g. The equation which governs the horizontal distance
traveled during the fall is x = vxt, but vx = v and we just found t, so

x = vxt =
√

2gh
√

2(H − h)/g = 2
√
h(H − h).

(b) How many values of h will lead to a distance of x? We need to invert the expression, and
we’ll start by squaring both sides

x2 = 4h(H − h) = 4hH − 4h2,

and then solving the resulting quadratic expression for h,

h =
4H ±

√
16H2 − 16x2

8
=

1
2

(
H ±

√
H2 − x2

)
.
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For values of x between 0 and H there are two real solutions, if x = H there is one real solution,
and if x > H there are no real solutions.

If h1 is a solution, then we can write h1 = (H + ∆)/2, where ∆ = 2h1 −H could be positive or
negative. Then h2 = (H + ∆)/2 is also a solution, and

h2 = (H + 2h1 − 2H)/2 = h1 −H

is also a solution.
(c) The farthest distance is x = H, and this happens when h = H/2, as we can see from the

previous section.

P16-4 (a) Apply Torricelli’s law (Exercise 16-14): v =
√

2g(d+ h2), assuming that the liquid
remains in contact with the walls of the tube until it exits at the bottom.

(b) The speed of the fluid in the tube is everywhere the same. Then the pressure difference at
various points are only functions of height. The fluid exits at C, and assuming that it remains in
contact with the walls of the tube the pressure difference is given by ∆p = ρ(h1 + d + h2), so the
pressure at B is

p = p0 − ρ(h1 + d+ h2).

(c) The lowest possible pressure at B is zero. Assume the flow rate is so slow that Pascal’s
principle applies. Then the maximum height is given by 0 = p0 + ρgh1, or

h1 = (1.01×105Pa)/[(9.81 m/s2)(1000 kg/m3)] = 10.3 m.

P16-5 (a) The momentum per kilogram of the fluid in the smaller pipe is v1. The momentum per
kilogram of the fluid in the larger pipe is v2. The change in momentum per kilogram is v2 − v1.
There are ρa2v2 kilograms per second flowing past any point, so the change in momentum per
second is ρa2v2(v2 − v1). The change in momentum per second is related to the net force according
to F = ∆p/∆t, so F = ρa2v2(v2 − v1). But F ≈ ∆p/a2, so p1 − p2 ≈ ρv2(v2 − v1).

(b) Applying the streamline equation,

p1 + ρgy1 +
1
2
ρv2

1 = p2 + ρgy2 +
1
2
ρv2

2 ,

1
2
ρ(v2

1 − v2
2) = p2 − p1

(c) This question asks for the loss of pressure beyond that which would occur from a gradually
widened pipe. Then we want

∆p =
1
2
ρ(v2

1 − v2
2)− ρv2(v1 − v2),

=
1
2
ρ(v2

1 − v2
2)− ρv2v1 + ρv2

2 ,

=
1
2
ρ(v2

1 − 2v1v2 + v2
2) =

1
2
ρ(v1 − v2)2.

P16-6 The juice leaves the jug with a speed v =
√

2gy, where y is the height of the juice in the
jug. If A is the cross sectional area of the base of the jug and a the cross sectional area of the hole,
then the juice flows out the hole with a rate dV/dt = va = a

√
2gy, which means the level of jug

varies as dy/dt = −(a/A)
√

2gy. Rearrange and integrate,∫ h

y

dy/
√
y =

∫ t

0

√
2g(a/A)dt,
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2(
√
h−√y) =

√
2gat/A.(

A

a

√
2h
g

)
(
√
h−√y) = t

When y = 14h/15 we have t = 12.0 s. Then the part in the parenthesis on the left is 3.539×102s.
The time to empty completely is then 354 seconds, or 5 minutes and 54 seconds. But we want the
remaining time, which is 12 seconds less than this.

P16-7 The greatest possible value for v will be the value over the wing which results in an air
pressure of zero. If the air at the leading edge is stagnant (not moving) and has a pressure of p0,
then Bernoulli’s equation gives

p0 =
1
2
ρv2,

or v =
√

2p0/ρ =
√

2(1.01×105Pa)/(1.2 kg/m3) = 410 m/s. This value is only slightly larger than
the speed of sound; they are related because sound waves involve the movement of air particles which
“shove” other air particles out of the way.

P16-8 Bernoulli’s equation together with continuity gives

p1 +
1
2
ρv2

1 = p2 +
1
2
ρv2

2 ,

p1 − p2 =
1
2
ρ
(
v2

2 − v2
1

)
,

=
1
2
ρ

(
A2

1

A2
2

v2
1 − v2

1

)
,

=
v2

1

2A2
2

ρ
(
A2

1 −A2
2

)
.

But p1− p2 = (ρ′− ρ)gh. Note that we are not assuming ρ is negligible compared to ρ′. Combining,

v1 = A2

√
2(ρ′ − ρ)gh
ρ(A2

1 −A2
2)
.

P16-9 (a) Bernoulli’s equation together with continuity gives

p1 +
1
2
ρv2

1 = p2 +
1
2
ρv2

2 ,

p1 =
1
2
ρ
(
v2

2 − v2
1

)
,

=
1
2
ρ

(
A2

1

A2
2

v2
1 − v2

1

)
,

= v2
1ρ
[
(4.75)2 − 1

]
/2.

Then

v1 =

√
2(2.12)(1.01×105Pa)
(1000 kg/m3)(21.6)

= 4.45 m/s,

and then v2 = (4.75)(4.45 m/s) = 21.2 m/s.
(b) R = π(2.60×10−2m)2(4.45 m/s) = 9.45×10−3 m3/s.
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P16-10 (a) For Fig. 16-13 the velocity is constant, or ~v = vî. d~s = îdx+ ĵdy. Then∮
~v · d~s = v

∮
dx = 0,

because
∮
dx = 0.

(b) For Fig. 16-16 the velocity is ~v = (k/r)r̂. d~s = r̂dr + θ̂r dφ. Then∮
~v · d~s = v

∮
dr = 0,

because
∮
dr = 0.

P16-11 (a) For an element of the fluid of mass dm the net force as it moves around the circle is
dF = (v2/r)dm. dm/dV = ρ and dV = Adr and dF/A = dp. Then dp/dr = ρv2/r.

(b) From Bernoulli’s equation p+ ρv2/2 is a constant. Then

dp

dr
+ ρv

dv

dr
= 0,

or v/r + dv/dr = 0, or d(vr) = 0. Consequently vr is a constant.
(c) The velocity is ~v = (k/r)r̂. d~s = r̂dr + θ̂r dφ. Then∮

~v · d~s = v

∮
dr = 0,

because
∮
dr = 0. This means the flow is irrotational.

P16-12 F/A = ηv/D, so

F/A = (4.0×1019N · s/m2)(0.048 m/3.16×107s)/(1.9×105m) = 3.2×105Pa.

P16-13 A flow will be irrotational if and only if
∮
~v · d~s = 0 for all possible paths. It is fairly

easy to construct a rectangular path which is parallel to the flow on the top and bottom sides, but
perpendicular on the left and right sides. Then only the top and bottom paths contribute to the
integral. ~v is constant for either path (but not the same), so the magnitude v will come out of the
integral sign. Since the lengths of the two paths are the same but v is different the two terms don’t
cancel, so the flow is not irrotational.

P16-14 (a) The area of a cylinder is A = 2πrL. The velocity gradient if dv/dr. Then the retarding
force on the cylinder is F = −η(2πrL)dv/dr.

(b) The force pushing a cylinder through is F ′ = A∆p = πr2∆p.
(c) Equate, rearrange, and integrate:

πr2∆p = −η(2πrL)
dv

dr
,

∆p
∫ R

r

r dr = 2ηL
∫ v

0

dv,

∆p
1
2

(R2 − r2) = 2ηLv.

Then
v =

∆p
4ηL

(R2 − r2).
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P16-15 The volume flux (called Rf to distinguish it from the radius R) through an annular ring
of radius r and width δr is

δRf = δA v = 2πr δr v,

where v is a function of r given by Eq. 16-18. The mass flux is the volume flux times the density,
so the total mass flux is

dm

dt
= ρ

∫ R

0

δRf
δr

dr,

= ρ

∫ R

0

2πr
(

∆p
4ηL

(R2 − r2)
)
dr,

=
πρ∆p
2ηL

∫ R

0

(rR2 − r3)dr,

=
πρ∆p
2ηL

(R4/2−R4/4),

=
πρ∆pR4

8ηL
.

P16-16 The pressure difference in the tube is ∆p = 4γ/r, where r is the (changing) radius of the
bubble. The mass flux through the tube is

dm

dt
=

4ρπR4γ

8ηLr
,

R is the radius of the tube. dm = ρdV , and dV = 4πr2dr. Then∫ r2

r1

r3 dr =
∫ t

0

R4γ

8ηL
dt,

r4
1 − r4

2 =
ρR4γ

2ηL
t,

Then

t =
2(1.80×10−5N · s/m2)(0.112 m)

(0.54×10−3m)4(2.50×10−2N/m)
[(38.2×10−3m)4 − (21.6×10−3m)4] = 3630 s.
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