
E15-1 The pressure in the syringe is

p =
(42.3 N)

π(1.12×10−2m/s)2
= 4.29×105Pa.

E15-2 The total mass of fluid is

m = (0.5×10−3m3)(2600 kg/m3)+(0.25×10−3m3)(1000 kg/m3)+(0.4×10−3m3)(800 kg/m3) = 1.87 kg.

The weight is (18.7 kg)(9.8 m/s2) = 18 N.

E15-3 F = A∆p, so

F = (3.43 m)(2.08 m)(1.00 atm− 0.962 atm)(1.01×105Pa/ atm) = 2.74×104N.

E15-4 B∆V/V = −∆p; V = L3; ∆V ≈ L2∆L/3. Then

∆p = (140×109Pa)
(5×10−3m)
3(0.85 m)

= 2.74×109Pa.

E15-5 There is an inward force F1 pushing the lid closed from the pressure of the air outside the
box; there is an outward force F2 pushing the lid open from the pressure of the air inside the box.
To lift the lid we need to exert an additional outward force F3 to get a net force of zero.

The magnitude of the inward force is F1 = P outA, where A is the area of the lid and P out is
the pressure outside the box. The magnitude of the outward force F2 is F2 = P inA. We are told
F3 = 108 lb. Combining,

F2 = F1 − F3,

P inA = P outA− F3,

P in = P out − F3/A,

so P in = (15 lb/in2 − (108 lb)/(12 in2) = 6.0 lb/in2.

E15-6 h = ∆p/ρg, so

h =
(0.05 atm)(1.01×105Pa/ atm)

(1000 kg/m3)(9.8 m/s2)
= 0.52 m.

E15-7 ∆p = (1060 kg/m3)(9.81 m/s2)(1.83 m) = 1.90×104Pa.

E15-8 ∆p = (1024 kg/m3)(9.81 m/s2)(118 m) = 1.19×106Pa. Add this to p0; the total pressure is
then 1.29×106Pa.

E15-9 The pressure differential assuming we don’t have a sewage pump:

p2 − p1 = −ρg (y2 − y1) = (926 kg/m3)(9.81 m/s2)(8.16 m− 2.08 m) = 5.52×104Pa.

We need to overcome this pressure difference with the pump.

E15-10 (a) p = (1.00 atm)e−5.00/8.55 = 0.557 atm.
(b) h = (8.55 km) ln(1.00/0.500) = 5.93 km.
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E15-11 The mercury will rise a distance a on one side and fall a distance a on the other so that
the difference in mercury height will be 2a. Since the masses of the “excess” mercury and the water
will be proportional, we have 2aρm = dρw, so

a =
(0.112m)(1000 kg/m3)

2(13600 kg/m3)
= 4.12×10−3m.

E15-12 (a) The pressure (due to the water alone) at the bottom of the pool is

P = (62.45 lb/ft3)(8.0 ft) = 500 lb/ft2
.

The force on the bottom is

F = (500 lb/ft2)(80 ft)(30 ft) = 1.2×106 lb.

The average pressure on the side is half the pressure on the bottom, so

F = (250 lb/ft2)(80 ft)(8.0 ft) = 1.6×105 lb.

The average pressure on the end is half the pressure on the bottom, so

F = (250 lb/ft2)(30 ft)(8.0 ft) = 6.0×104 lb.

(b) No, since that additional pressure acts on both sides.

E15-13 (a) Equation 15-8 can be used to find the height y2 of the atmosphere if the density is
constant. The pressure at the top of the atmosphere would be p2 = 0, and the height of the bottom
y1 would be zero. Then

y2 = (1.01×105Pa)/
[
(1.21 kg/m3)(9.81 m/s2)

]
= 8.51×103m.

(b) We have to go back to Eq. 15-7 for an atmosphere which has a density which varies linearly
with altitude. Linear variation of density means

ρ = ρ0

(
1− y

ymax

)
Substitute this into Eq. 15-7,

p2 − p1 = −
∫ ymax

0

ρg dy,

= −
∫ ymax

0

ρ0g

(
1− y

ymax

)
dy,

= −ρ0g

(
y − y2

2ymax

)∣∣∣∣ymax

0

,

= −ρgymax/2.

In this case we have ymax = 2p1/(ρg), so the answer is twice that in part (a), or 17 km.

E15-14 ∆P = (1000 kg/m3)(9.8 m/s2)(112 m) = 1.1× 106Pa. The force required is then F =
(1.1×106Pa)(1.22 m)(0.590 m) = 7.9×105N.
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E15-15 (a) Choose any infinitesimally small spherical region where equal volumes of the two fluids
are in contact. The denser fluid will have the larger mass. We can treat the system as being a sphere
of uniform mass with a hemisphere of additional mass being superimposed in the region of higher
density. The orientation of this hemisphere is the only variable when calculating the potential energy.
The center of mass of this hemisphere will be a low as possible only when the surface is horizontal.
So all two-fluid interfaces will be horizontal.

(b) If there exists a region where the interface is not horizontal then there will be two different
values for ∆p = ρgh, depending on the path taken. This means that there will be a horizontal
pressure gradient, and the fluid will flow along that gradient until the horizontal pressure gradient
is equalized.

E15-16 The mass of liquid originally in the first vessel is m1 = ρAh1; the center of gravity is
at h1/2, so the potential energy of the liquid in the first vessel is originally U1 = ρgAh2

1/2. A
similar expression exists for the liquid in the second vessel. Since the two vessels have the same
cross sectional area the final height in both containers will be hf = (h1 + h2)/2. The final potential
energy of the liquid in each container will be U f = ρgA(h1 + h2)2/8. The work done by gravity is
then

W = U1 + U2 − 2U f ,

=
ρgA

4
[
2h2

1 + 2h2
2 − (h2

1 + 2h1h2 + h2
2)
]
,

=
ρgA

4
(h1 − h2)2.

E15-17 There are three force on the block: gravity (W = mg), a buoyant force B0 = mwg, and a
tension T0. When the container is at rest all three forces balance, so B0 −W − T0 = 0. The tension
in this case is T0 = (mw −m)g.

When the container accelerates upward we now have B −W − T = ma. Note that neither the
tension nor the buoyant force stay the same; the buoyant force increases according to B = mw(g+a).
The new tension is then

T = mw(g + a)−mg −ma = (mw −m)(g + a) = T0(1 + a/g).

E15-18 (a) F1/d
2
1 = F2/d

2
2, so

F2 = (18.6 kN)(3.72 cm)2/(51.3 cm)2 = 97.8 N.

(b) F2h2 = F1h1, so
h2 = (1.65 m)(18.6 kN)/(97.8 N) = 314 m.

E15-19 (a) 35.6 kN; the boat doesn’t get heavier or lighter just because it is in different water!
(b) Yes.

∆V =
(35.6×103N)
(9.81m/s2)

(
1

(1024 kg/m3)
− 1

(1000 kg/m3)

)
= −8.51×10−2m3.

E15-20 (a) ρ2 = ρ1(V1/V2) = (1000 kg/m3)(0.646) = 646 kg/m3.
(b) ρ2 = ρ1(V1/V2) = (646 kg/m3)(0.918)−1 = 704 kg/m3.

186



E15-21 The can has a volume of 1200 cm3, so it can displace that much water. This would
provide a buoyant force of

B = ρV g = (998kg/m3)(1200×10−6m3)(9.81 m/s2) = 11.7 N.

This force can then support a total mass of (11.7 N)/(9.81 m/s2) = 1.20 kg. If 130 g belong to the
can, then the can will be able to carry 1.07 kg of lead.

E15-22 ρ2 = ρ1(V1/V2) = (0.98 g/cm3)(2/3)−1 = 1.47 g/cm3
.

E15-23 Let the object have a mass m. The buoyant force of the air on the object is then

Bo =
ρa

ρo
mg.

There is also a buoyant force on the brass, equal to

Bb =
ρa

ρb
mg.

The fractional error in the weighing is then

Bo −Bb

mg
=

(0.0012 g/cm3)
(3.4 g/cm3)

− (0.0012 g/cm3)
(8.0 g/cm3)

= 2.0×10−4

E15-24 The volume of iron is

V i = (6130 N)/(9.81 m/s2)(7870 kg/m3) = 7.94×10−2m3.

The buoyant force of water is 6130 N− 3970 N = 2160 N. This corresponds to a volume of

V w = (2160 N)/(9.81 m/s2)(1000 kg/m3) = 2.20×10−1m3.

The volume of air is then 2.20×10−1m3 − 7.94×10−2m3 = 1.41×10−1m3.

E15-25 (a) The pressure on the top surface is p = p0 + ρgL/2. The downward force is

F t = (p0 + ρgL/2)L2,

=
[
(1.01×105Pa) + (944 kg/m3)(9.81 m/s2)(0.608 m)/2

]
(0.608 m)2 = 3.84×104N.

(b) The pressure on the bottom surface is p = p0 + 3ρgL/2. The upward force is

F b = (p0 + 3ρgL/2)L2,

=
[
(1.01×105Pa) + 3(944 kg/m3)(9.81 m/s2)(0.608 m)/2

]
(0.608 m)2 = 4.05×104N.

(c) The tension in the wire is given by T = W + F t − F b, or

T = (4450 N) + (3.84×104N)− (4.05×104N) = 2350 N.

(d) The buoyant force is

B = L3ρg = (0.6083)(944 kg/m3)(9.81 m/s2) = 2080 N.
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E15-26 The fish has the (average) density of water if

ρw =
mf

V c + V a

or
V a =

mf

ρw
− V c.

We want the fraction V a/(V c + V a), so

V a

V c + V a
= 1− ρw

V c

mf
,

= 1− ρw/ρc = 1− (1.024 g/cm3)/(1.08 g/cm3) = 5.19×10−2.

E15-27 There are three force on the dirigible: gravity (W = mgg), a buoyant force B = mag,
and a tension T . Since these forces must balance we have T = B −W . The masses are related to
the densities, so we can write

T = (ρa − ρg)V g = (1.21 kg/m3 − 0.796 kg/m3)(1.17×106m3)(9.81m/s2) = 4.75×106 N.

E15-28 ∆m = ∆ρV , so

∆m = [(0.160 kg/m3)− (0.0810 kg/m3)](5000 m3) = 395 kg.

E15-29 The volume of one log is π(1.05/2 ft)2(5.80 ft) = 5.02 ft3. The weight of the log is
(47.3 lb/ft3)(5.02 ft3) = 237 lb. Each log if completely submerged will displace a weight of wa-
ter (62.4 lb/ft3)(5.02 ft3) = 313 lb. So each log can support at most 313 lb − 237 lb = 76 lb. The
three children have a total weight of 247 lb, so that will require 3.25 logs. Round up to four.

E15-30 (a) The ice will hold up the automobile if

ρw >
ma +mi

V i
=
ma

At
+ ρi.

Then

A =
(1120 kg)

(0.305 m)[(1000 kg/m3)− (917 kg/m3)]
= 44.2 m2.

E15-31 If there were no water vapor pressure above the barometer then the height of the water
would be y1 = p/(ρg), where p = p0 is the atmospheric pressure. If there is water vapor where there
should be a vacuum, then p is the difference, and we would have y2 = (p0 − pv)/(ρg). The relative
error is

(y1 − y2)/y1 = [p0/(ρg)− (p0 − pv)/(ρg)] / [p0/(ρg)] ,
= pv/p0 = (3169 Pa)/(1.01×105Pa) = 3.14 %.

E15-32 ρ = (1.01×105Pa)/(9.81 m/s2)(14 m) = 740 kg/m3.

E15-33 h = (90)(1.01×105Pa)/(8.60 m/s2)(1.36×104kg/m3) = 78 m.

E15-34 ∆U = 2(4.5×10−2N/m)4π(2.1×10−2m)2 = 5.0×10−4J.

188



E15-35 The force required is just the surface tension times the circumference of the circular
patch. Then

F = (0./072 N/m)2π(0.12 m) = 5.43×10−2N.

E15-36 ∆U = 2(2.5×10−2N/m)4π(1.4×10−2m)2 = 1.23×10−4J.

P15-1 (a) One can replace the two hemispheres with an open flat end with two hemispheres with
a closed flat end. Then the area of relevance is the area of the flat end, or πR2. The net force from
the pressure difference is ∆pA = ∆pπR2; this much force must be applied to pull the hemispheres
apart.

(b) F = π(0.9)(1.01×105Pa)(0.305 m)2 = 2.6×104N.

P15-2 The pressure required is 4×109Pa. This will happen at a depth

h =
(4×109Pa)

(9.8 m/s2)(3100 kg/m3)
= 1.3×105m.

P15-3 (a) The resultant force on the wall will be

F =
∫ ∫

P dx dy,

=
∫

(−ρgy)W dy,

= ρgD2W/2.

(b) The torque will is given by τ = F (D−y) (the distance is from the bottom) so if we generalize,

τ =
∫ ∫

Py dx dy,

=
∫

(−ρg(D − y)) yW dy,

= ρgD3W/6.

(c) Dividing to find the location of the equivalent resultant force,

d = τ/F = (ρgD3W/6)/(ρgD2W/2) = D/3,

this distance being measured from the bottom.

P15-4 p = ρgy = ρg(3.6 m); the force on the bottom is F = pA = ρg(3.6 m)π(0.60 m)2 = 1.296πρg.
The volume of liquid is

V = (1.8 m)
[
π(0.60 m) + 4.6×10−4m2

]
= 2.037 m3

The weight is W = ρg(2.037 m3). The ratio is 2.000.

P15-5 The pressure at b is ρc(3.2×104m)+ρmy. The pressure at a is ρc(3.8×104m+d)+ρm(y−d).
Set these quantities equal to each other:

ρc(3.8×104m + d) + ρm(y − d) = ρc(3.2×104m) + ρmy,

ρc(6×103m + d) = ρmd,

d = ρc(6×103m)/(ρm − ρc),
= (2900 kg/m3)(6×103m)/(400 kg/m3) = 4.35×104m.
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P15-6 (a) The pressure (difference) at a depth y is ∆p = ρgy. Since ρ = m/V , then

∆ρ ≈ −m
V

∆V
V

= ρs
∆p
B
.

Then

ρ ≈ ρs + ∆ρ = ρs +
ρs

2gy

B
.

(b) ∆ρ/ρs = ρsgy/B, so

∆ρ/ρ ≈ (1000 kg/m3)(9.8 m/s2)(4200 m)/(2.2×109Pa) = 1.9 %.

P15-7 (a) Use Eq. 15-10, p = (p0/ρ0)ρ, then Eq. 15-13 will look like

(p0/ρ0)ρ = (p0/ρ0)ρ0e
−h/a.

(b) The upward velocity of the rocket as a function of time is given by v = art. The height of
the rocket above the ground is given by y = 1

2art
2. Combining,

v = ar

√
2y
ar

=
√

2yar.

Put this into the expression for drag, along with the equation for density variation with altitude;

D = CAρv2 = CAρ0e
−y/a2yar.

Now take the derivative with respect to y,

dD/dy = (−1/a)CAρ0e
−y/a(2yar) + CAρ0e

−y/a(2ar).

This will vanish when y = a, regardless of the acceleration ar.

P15-8 (a) Consider a slice of cross section A a depth h beneath the surface. The net force on the
fluid above the slice will be

F net = ma = ρhAg,

Since the weight of the fluid above the slice is

W = mg = ρhAg,

then the upward force on the bottom of the fluid at the slice must be

W + F net = ρhA(g + a),

so the pressure is p = F/A = ρh(g + a).
(b) Change a to −a.
(c) The pressure is zero (ignores atmospheric contributions.)

P15-9 (a) Consider a portion of the liquid at the surface. The net force on this portion is ~F =
m~a = mâi. The force of gravity on this portion is ~W = −mgĵ. There must then be a buoyant
force on the portion with direction ~B = ~F − ~W = m(âi + gĵ). The buoyant force makes an angle
θ = arctan(a/g) with the vertical. The buoyant force must be perpendicular to the surface of the
fluid; there are no pressure-related forces which are parallel to the surface. Consequently, the surface
must make an angle θ = arctan(a/g) with the horizontal.

(b) It will still vary as ρgh; the derivation on page 334 is still valid for vertical displacements.
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P15-10 dp/dr = −ρg, but now g = 4πGρr/3. Then∫ p

0

dp = −4
3
πGρ2

∫ r

R

r dr,

p =
2
3
πGρ2

(
R2 − r2

)
.

P15-11 We can start with Eq. 15-11, except that we’ll write our distance in terms of r instead
if y. Into this we can substitute our expression for g,

g = g0
R2

r2
.

Substituting, then integrating,
dp

p
= −gρ0

p0
dr,

dp

p
= −g0ρ0R

2

p0

dr

r2
,∫ p

p0

dp

p
= −

∫ r

R

g0ρ0R
2

p0

dr

r2
,

ln
p

p0
=

g0ρ0R
2

p0

(
1
r
− 1
R

)
If k = g0ρ0R

2/p0, then
p = p0e

k(1/r−1/R).

P15-12 (a) The net force on a small volume of the fluid is dF = rω2 dm directed toward the
center. For radial displacements, then, dF/dr = −rω2dm/dr or dp/dr = −rω2ρ.

(b) Integrating outward,

p = pc +
∫ r

0

ρω2r dr = pc +
1
2
ρr2ω2.

(c) Do part (d) first.
(d) It will still vary as ρgh; the derivation on page 334 is still valid for vertical displacements.
(c) The pressure anywhere in the liquid is then given by

p = p0 +
1
2
ρr2ω2 − ρgy,

where p0 is the pressure on the surface, y is measured from the bottom of the paraboloid, and r is
measured from the center. The surface is defined by p = p0, so

1
2
ρr2ω2 − ρgy = 0,

or y = r2ω2/2g.

P15-13 The total mass of the shell is m = ρwπdo
3/3, or it wouldn’t barely float. The mass of iron

in the shell is m = ρiπ(do
3 − di

3)/3, so

di
3 =

ρi − ρw

ρi
do

3,

so

di = 3

√
(7870 kg/m3)− (1000 kg/m3)

(7870 kg/m3)
(0.587 m) = 0.561 m.
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P15-14 The wood will displace a volume of water equal to (3.67 kg)/(594 kg/m3)(0.883) = 5.45×
10−3m3 in either case. That corresponds to a mass of (1000 kg/m3)(5.45×10−3m3) = 5.45 kg that
can be supported.

(a) The mass of lead is 5.45 kg − 3.67 kg = 1.78 kg.
(b) When the lead is submerged beneath the water it displaces water, which affects the “apparent”

mass of the lead. The true weight of the lead is mg, the buoyant force is (ρw/ρl)mg, so the apparent
weight is (1 − ρw/ρl)mg. This means the apparent mass of the submerged lead is (1 − ρw/ρl)m.
This apparent mass is 1.78 kg, so the true mass is

m =
(11400 kg/m3)

(11400 kg/m3)− (1000 kg)
(1.78 kg) = 1.95 kg.

P15-15 We initially have
1
4

=
ρo

ρmercury
.

When water is poured over the object the simple relation no longer works.
Once the water is over the object there are two buoyant forces: one from mercury, F1, and one

from the water, F2. Following a derivation which is similar to Sample Problem 15-3, we have

F1 = ρ1V1g and F2 = ρ2V2g

where ρ1 is the density of mercury, V1 the volume of the object which is in the mercury, ρ2 is the
density of water, and V2 is the volume of the object which is in the water. We also have

F1 + F2 = ρoV og and V1 + V2 = V o

as expressions for the net force on the object (zero) and the total volume of the object. Combining
these four expressions,

ρ1V1 + ρ2V2 = ρoV o,

or

ρ1V1 + ρ2 (V o − V1) = ρoV o,

(ρ1 − ρ2)V1 = (ρo − ρ2)V o,

V1

V o
=

ρo − ρ2

ρ1 − ρ2
.

The left hand side is the fraction that is submerged in the mercury, so we just need to substitute
our result for the density of the material from the beginning to solve the problem. The fraction
submerged after adding water is then

V1

V o
=

ρo − ρ2

ρ1 − ρ2
,

=
ρ1/4− ρ2

ρ1 − ρ2
,

=
(13600 kg/m3)/4− (998 kg/m3)
(13600 kg/m3)− (998 kg/m3)

= 0.191.

P15-16 (a) The car floats if it displaces a mass of water equal to the mass of the car. Then
V = (1820 kg)/(1000 kg/m3) = 1.82 m3.

(b) The car has a total volume of 4.87 m3 +0.750 m3 +0.810 m3 = 6.43 m3. It will sink if the total
mass inside the car (car + water) is then (6.43 m3)(1000 kg/m3) = 6430 kg. So the mass of the water
in the car is 6430 kg−1820 kg = 4610 kg when it sinks. That’s a volume of (4610 kg)/(1000 kg/m3) =
4.16 m3.
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P15-17 When the beaker is half filled with water it has a total mass exactly equal to the maximum
amount of water it can displace. The total mass of the beaker is the mass of the beaker plus the
mass of the water inside the beaker. Then

ρw(mg/ρg + V b) = mg + ρwV b/2,

where mg/ρg is the volume of the glass which makes up the beaker. Rearrange,

ρg =
mg

mg/ρw − V b/2
=

(0.390 kg)
(0.390 kg)/(1000 kg/m3)− (5.00×10−4 m3)/2

= 2790 kg/m3.

P15-18 (a) If each atom is a cube then the cube has a side of length

l = 3
√

(6.64×10−27 kg)/(145 kg/m3) = 3.58×10−10m.

Then the atomic surface density is l−2 = (3.58×10−10m)−2 = 7.8×1018/m2.
(b) The bond surface density is twice the atomic surface density. Show this by drawing a square

array of atoms and then joining each adjacent pair with a bond. You will need twice as many bonds
as there are atoms. Then the energy per bond is

(3.5×10−4N/m)
2(7.8×1018/m2)(1.6×10−19 J/eV)

= 1.4×10−4 eV.

P15-19 Pretend the bubble consists of two hemispheres. The force from surface tension holding
the hemispheres together is F = 2γL = 4πrγ. The “extra” factor of two occurs because each
hemisphere has a circumference which “touches” the boundary that is held together by the surface
tension of the liquid. The pressure difference between the inside and outside is ∆p = F/A, where A
is the area of the flat side of one of the hemispheres, so ∆p = (4πrγ)/(πr2) = 4γ/r.

P15-20 Use the results of Problem 15-19. To get a numerical answer you need to know the surface
tension; try γ = 2.5×10−2N/m. The initial pressure inside the bubble is pi = p0 + 4γ/ri. The final
pressure inside the bell jar is p = pf − 4γ/rf . The initial and final pressure inside the bubble are
related by piri

3 = pfrf
3. Now for numbers:

pi = (1.00×105Pa) + 4(2.5×10−2N/m)/(1.0×10−3m) = 1.001×105Pa.

pf = (1.0×10−3m/1.0×10−2m)3(1.001×105Pa) = 1.001×102Pa.

p = (1.001×102Pa)− 4(2.5×10−2N/m)/(1.0×10−2m) = 90.1Pa.

P15-21 The force on the liquid in the space between the rod and the cylinder is F = γL =
2πγ(R + r). This force can support a mass of water m = F/g. This mass has a volume V = m/ρ.
The cross sectional area is π(R2 − r2), so the height h to which the water rises is

h =
2πγ(R+ r)
ρgπ(R2 − r2)

=
2γ

ρg(R− r)
,

=
2(72.8×10−3N/m)

(1000 kg/m3)(9.81 m/s2)(4.0×10−3m)
= 3.71×10−3m.
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P15-22 (a) Refer to Problem 15-19. The initial pressure difference is

4(2.6×10−2N/m)/(3.20×10−2m) = 3.25Pa.

(b) The final pressure difference is

4(2.6×10−2N/m)/(5.80×10−2m) = 1.79Pa.

(c) The work done against the atmosphere is p∆V , or

(1.01×105Pa)
4π
3

[(5.80×10−2m)3 − (3.20×10−2m)3] = 68.7 J.

(d) The work done in stretching the bubble surface is γ∆A, or

(2.60×10−2N/m)4π[(5.80×10−2m)2 − (3.20×10−2m)2] = 7.65×10−4J.
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