
E14-1 F S/FE = MSrE
2/MErS

2, since everything else cancels out in the expression. Then

F S

FE
=

(1.99×1030kg)(3.84×108m)2

(5.98×1024)(1.50×1011m)2
= 2.18

E14-2 Consider the force from the Sun and the force from the Earth. F S/FE = MSrE
2/MErS

2,
since everything else cancels out in the expression. We want the ratio to be one; we are also
constrained because rE + rS = R is the distance from the Sun to the Earth. Then

ME (R− rE)2 = MSrE
2,

R− rE =
√
MS

ME
rE,

rE = (1.50×1011m)/

(
1 +

√
(1.99×1030kg)
(5.98×1024)

)
= 2.6×108m.

E14-3 The masses of each object are m1 = 20.0 kg and m2 = 7.0 kg; the distance between the
centers of the two objects is 15 + 3 = 18 m.

The magnitude of the force from Newton’s law of gravitation is then

F =
Gm1m2

r2
=

(6.67×10−11N ·m2/kg2)(20.0 kg)(7.0 kg)
(18 m)2

= 2.9×10−11N.

E14-4 (a) The magnitude of the force from Newton’s law of gravitation is

F =
Gm1m2

r2
=

(6.67×10−11N ·m2/kg2)(12.7 kg)(9.85×10−3 kg)
(0.108 m)2

= 7.15×10−10N.

(b) The torque is τ = 2(0.262 m)(7.15×10−10N) = 3.75×10−10N ·m.

E14-5 The force of gravity on an object near the surface of the earth is given by

F =
GMm

(re + y)2
,

where M is the mass of the Earth, m is the mass of the object, re is the radius of the Earth, and
y is the height above the surface of the Earth. Expand the expression since y � re. We’ll use a
Taylor expansion, where F (re + y) ≈ F (re) + y∂F/∂re;

F ≈ GMm

r2
e

− 2y
GMm

r3
e

Since we are interested in the difference between the force at the top and the bottom, we really want

∆F = 2y
GMm

r3
e

= 2
y

re

GMm

r2
e

= 2
y

re
W,

where in the last part we substituted for the weight, which is the same as the force of gravity,

W =
GMm

r2
e

.

Finally,
∆F = 2(411 m)/(6.37×106m)(120 lb) = 0.015 lb.
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E14-6 g ∝ 1/r2, so g1/g2 = r2
2/r

2
1. Then

r2 =
√

(9.81 m/s2)/(7.35 m/s2)(6.37×106m) = 7.36×106 m.

That’s 990 kilometers above the surface of the Earth.

E14-7 (a) a = GM/r2, or

a =
(6.67×10−11N ·m2/kg2)(1.99×1030kg)

(10.0×103m)2
= 1.33×1012m/s2.

(b) v =
√

2ax =
√

2(1.33×1012m/s2)(1.2 m/s) = 1.79×106m/s.

E14-8 (a) g0 = GM/r2, or

g0 =
(6.67×10−11N ·m2/kg2)(7.36×1022kg)

(1.74×106m)2
= 1.62 m/s2.

(b) Wm = W e(gm/ge) so

Wm = (100 N)(1.62 m/s2/9.81 m/s2) = 16.5 N.

(c) Invert g = GM/r2;

r =
√
GM/g =

√
(6.67×10−11N ·m2/kg2)(5.98×1024kg)/(1.62 m/s2) = 1.57×107m.

That’s 2.46 Earth radii, or 1.46 Earth radii above the surface of the Earth.

E14-9 The object fell through y = −10.0 m; the time required to fall would then be

t =
√
−2y/g =

√
−2(−10.0 m)/(9.81 m/s2) = 1.43 s.

We are interested in the error, that means taking the total derivative of y = − 1
2gt

2. and getting

δy = −1
2
δg t2 − gt δt.

δy = 0 so − 1
2δg t = gδ t, which can be rearranged as

δt = −δg t
2g

The percentage error in t needs to be δt/t = 0.1 %/2 = 0.05 %. The absolute error is then δt =
(0.05 %)(1.43 s) = 0.7 ms.

E14-10 Treat mass which is inside a spherical shell as being located at the center of that shell.
Ignore any contributions from shells farther away from the center than the point in question.

(a) F = G(M1 +M2)m/a2.
(b) F = G(M1)m/b2.
(c) F = 0.
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E14-11 For a sphere of uniform density and radius R > r,

M(r)
4
3πr

3
=

M
4
3πR

3
,

where M is the total mass.
The force of gravity on the object of mass m is then

F =
GMm

r2

r3

R3
=
GMmr

R3
.

g is the free-fall acceleration of the object, and is the gravitational force divided by the mass, so

g =
GMr

R3
=
GM

R2

r

R
=
GM

R2

R−D
R

.

Since R is the distance from the center to the surface, and D is the distance of the object beneath
the surface, then r = R −D is the distance from the center to the object. The first fraction is the
free-fall acceleration on the surface, so

g =
GM

R2

R−D
R

= gs
R−D
R

= gs

(
1− D

R

)
E14-12 The work required to move the object is GMSm/r, where r is the gravitational radius.
But if this equals mc2 we can write

mc2 = GMSm/r,

r = GMS/c
2.

For the sun, r = (6.67×10−11N · m2/kg2)(1.99×1030kg)/(3.00×108m/s)2 = 1.47×103m. That’s
2.1×10−6RS.

E14-13 The distance from the center is

r = (80000)(3.00×108m/s)(3.16×107s) = 7.6×1020m.

The mass of the galaxy is

M = (1.4×1011)(1.99×1030kg) = 2.8×1041kg.

The escape velocity is

v =
√

2GM/r =
√

2(6.67×10−11N ·m2/kg2)(2.8×1041kg)/(7.6×1020m) = 2.2×105m/s.

E14-14 Staying in a circular orbit requires the centripetal force be equal to the gravitational force,
so

mvorb
2/r = GMm/r2,

or mvorb
2 = GMm/r. But −GMm/r is the gravitational potential energy; to escape one requires a

kinetic energy
mvesc

2/2 = GMm/r = mvorb
2,

which has solution vesc =
√

2vorb.
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E14-15 (a) Near the surface of the Earth the total energy is

E = K + U =
1
2
m
(

2
√
gRE

)2

− GMEm

RE

but
g =

GM

RE
2
,

so the total energy is

E = 2mgRE −
GMEm

RE
,

= 2m
(
GM

RE
2

)
RE −

GMEm

RE
,

=
GMEm

RE

This is a positive number, so the rocket will escape.
(b) Far from earth there is no gravitational potential energy, so

1
2
mv2 =

GMEm

RE
=
GME

RE
2
mRE = gmRE,

with solution v =
√

2gRE.

E14-16 The rotational acceleration of the sun is related to the galactic acceleration of free fall by

4π2mr/T 2 = GNm2/r2,

where N is the number of “sun” sized stars of mass m, r is the size of the galaxy, T is period of
revolution of the sun. Then

N =
4π2r3

GmT 2
=

4π2(2.2×1020m)3

(6.67×10−11N·m2/kg2)(2.0×1030kg)(7.9×1015s)2
= 5.1×1010.

E14-17 Energy conservation is K i + U i = Kf + U f , but at the highest point Kf = 0, so

U f = K i + U i,

−GMEm

R
=

1
2
mv2

0 −
GMEm

RE
,

1
R

=
1
RE
− 1

2GME
v2

0 ,

1
R

=
1

(6.37×106m)
− (9.42×103m/s)2)

2(6.67×10−11N·m2/kg2)(5.98×1024kg)
,

R = 2.19×107 m.

The distance above the Earth’s surface is 2.19×107 m− 6.37×106m = 1.55×106 m.
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E14-18 (a) Free-fall acceleration is g = GM/r2. Escape speed is v =
√

2GM/r. Then v =
√

2gr =√
2(1.30 m/s2)(1.569×106m) = 2.02×103m/s.
(b) U f = K i + U i. But U/m = −g0r

2
0/r, so

1
rf

=
1

(1.569×106m)
− (1.01×103m/s)2

2(1.30 m/s2)(1.569×106m)2
=

1
2.09×106m

.

That’s 523 km above the surface.
(c) Kf = U i − U f . But U/m = −g0r

2
0/r, so

v =
√

2(1.30 m/s2)(1.569×106m)2[1/(1.569×106m)− 1/(2.569×106m)] = 1260 m/s.

(d) M = gr2/G, or

M = (1.30 m/s2)(1.569×106m)2/(6.67×10−11N·m2/kg2) = 4.8×1022kg.

E14-19 (a) Apply ∆K = −∆U . Then mv2 = Gm2(1/r2 − 1/r1), so

v =

√
(6.67×10−11N·m2/kg2)(1.56×1030kg)

(
1

(4.67×104m)
− 1

(9.34×104m)

)
= 3.34×107m/s.

(b) Apply ∆K = −∆U . Then mv2 = Gm2(1/r2 − 1/r1), so

v =

√
(6.67×10−11N·m2/kg2)(1.56×1030kg)

(
1

(1.26×104m)
− 1

(9.34×104m)

)
= 5.49×107m/s.

E14-20 Call the particles 1 and 2. Then conservation of momentum requires the particle to have
the same momentum of the same magnitude, p = mv1 = Mv2. The momentum of the particles is
given by

1
2m

p2 +
1

2M
p2 =

GMm

d
,

m+M

mM
p2 = 2GMm/d,

p = mM
√

2G/d(m+M).

Then vrel = |v1|+ |v2| is equal to

vrel = mM
√

2G/d(m+M)
(

1
m

+
1
M

)
,

= mM
√

2G/d(m+M)
(
m+M

mM

)
,

=
√

2G(m+M)/d

E14-21 The maximum speed is mv2 = Gm2/d, or v =
√
Gm/d.

E14-22 T 2
1 /r

3
1 = T 2

2 /r
3
2, or

T2 = T1(r2/r1)3/2 = (1.00 y)(1.52)3/2 = 1.87 y.
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E14-23 We can use Eq. 14-23 to find the mass of Mars; all we need to do is rearrange to solve
for M—

M =
4π2r3

GT 2
=

4π2(9.4×106m)3

(6.67×10−11N·m2/kg2)(2.75×104s)2
= 6.5×1023kg.

E14-24 Use GM/r2 = 4π2r/T 2, so M = 4π2r3/GT 2, and

M =
4π2(3.82×108m)3

(6.67×10−11N·m2/kg2)(27.3× 86400 s)2
= 5.93×1024kg.

E14-25 T 2
1 /r

3
1 = T 2

2 /r
3
2, or

T2 = T1(r2/r1)3/2 = (1.00 month)(1/2)3/2 = 0.354 month.

E14-26 Geosynchronous orbit was found in Sample Problem 14-8 to be 4.22×107m. The latitude
is given by

θ = arccos(6.37×106m/4.22×107m) = 81.3◦.

E14-27 (b) Make the assumption that the altitude of the satellite is so low that the radius of
the orbit is effectively the radius of the moon. Then

T 2 =
(

4π2

GM

)
r3,

=
(

4π2

(6.67×10−11N·m2/kg2)(7.36×1022kg)

)
(1.74×106m)3 = 4.24×107s2.

So T = 6.5×103s.
(a) The speed of the satellite is the circumference divided by the period, or

v =
2πr
T

=
2π(1.74×106m)

(6.5×103s)
= 1.68×103m/s.

E14-28 The total energy is −GMm/2a. Then

1
2
mv2 − GMm

r
= −GMm

2a
,

so

v2 = GM

(
2
r
− 1
a

)
.

E14-29 ra = a(1 + e), so from Ex. 14-28,

va =

√
GM

(
2

a(1 + e)
− 1
a

)
;

rp = a(1− e), so from Ex. 14-28,

vp =

√
GM

(
2

a(1− e)
− 1
a

)
;

Dividing one expression by the other,

vp = va

√
2/(1− e)− 1
2/(1 + e)− 1

= (3.72 km/s)

√
2/0.12− 1
2/1.88− 1

= 58.3 km/s.
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E14-30 (a) Convert.

G =
(

6.67×10−11 m3

kg · s2

)(
1.99×1030kg

MS

)(
3.156×107s

y

)2( AU
1.496×1011m

)3

,

which is G = 39.49 AU3/MS
2 · y2.

(b) Here is a hint: 4π2 = 39.48. Kepler’s law then looks like

T 2 =
(
MS

2 · y2

AU3

)
r3

M
.

E14-31 Kepler’s third law states T 2 ∝ r3, where r is the mean distance from the Sun and T is
the period of revolution. Newton was in a position to find the acceleration of the Moon toward the
Earth by assuming the Moon moved in a circular orbit, since ac = v2/r = 4π2r/T 2. But this means
that, because of Kepler’s law, ac ∝ r/T 2 ∝ 1/r2.

E14-32 (a) The force of attraction between the two bodies is

F =
GMm

(r +R)2
.

The centripetal acceleration for the body of mass m is

rω2 =
GM

(r +R)2
,

ω2 =
GM

r3(1 +R/r)2
,

T 2 =
4π2

GM
r3(1 +R/r)2.

(b) Note that r = Md/(m+M) and R = md/(m+M). Then R/r = m/M , so the correction is
(1 + 5.94×1024/1.99×1030)2 = 1.000006 for the Earth/Sun system and 1.025 for the Earth/Moon
system.

E14-33 (a) Use the results of Exercise 14-32. The center of mass is located a distance r =
2md/(m+ 2m) = 2d/3 from the star of mass m and a distance R = d/3 from the star of mass 2m.
The period of revolution is then given by

T 2 =
4π2

G(2m)

(
2
3
d

)3(
1 +

d/3
2d/3

)2

=
4π2

3Gm
d3.

(b) Use Lm = mr2ω, then

Lm
LM

=
mr2

MR2
=

m(2d/3)2

(2m)(d/3)2
= 2.

(c) Use K = Iω2/2 = mr2ω2/2. Then

Km

KM
=

mr2

MR2
=

m(2d/3)2

(2m)(d/3)2
= 2.
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E14-34 Since we don’t know which direction the orbit will be, we will assume that the satellite
on the surface of the Earth starts with zero kinetic energy. Then Ei = U i.

∆U = U f − U i to get the satellite up to the specified altitude. ∆K = Kf = −U f/2. We want
to know if ∆U − ∆K is positive (more energy to get it up) or negative (more energy to put it in
orbit). Then we are interested in

∆U −∆K = 3U f/2− U i = GMm

(
1
ri
− 3

2rf

)
.

The “break-even” point is when rf = 3ri/2 = 3(6400 km)/2 = 9600 km, which is 3200 km above the
Earth.

(a) More energy to put it in orbit.
(b) Same energy for both.
(c) More energy to get it up.

E14-35 (a) The approximate force of gravity on a 2000 kg pickup truck on Eros will be

F =
GMm

r2
=

(6.67×10−11N·m2/kg2)(5.0× 1015 kg)(2000 kg)
(7000 m)2

= 13.6 N.

(b) Use

v =

√
GM

r
=

√
(6.67×10−11N·m2/kg2)(5.0× 1015 kg)

(7000 m)
= 6.9 m/s.

E14-36 (a) U = −GMm/r. The variation is then

∆U = (6.67×10−11N·m2/kg2)(1.99×1030kg)(5.98×1024kg)
(

1
(1.47×1011m)

− 1
(1.52×1011m)

)
= 1.78×1032J.

(b) ∆K + ∆U = ∆E = 0, so |∆K| = 1.78×1032J.
(c) ∆E = 0.
(d) Since ∆l = 0 and l = mvr, we have

vp − va = vp

(
1− rp

ra

)
= vp

(
1− (1.47×1011m)

(1.52×1011m)

)
= 3.29×10−2vp.

But vp ≈ vav = 2π(1.5×1011m)/(3.16×107s) = 2.98×104m/s. Then ∆v = 981 m/s.

E14-37 Draw a triangle. The angle made by Chicago, Earth center, satellite is 47.5◦. The distance
from Earth center to satellite is 4.22×107m. The distance from Earth center to Chicago is 6.37×106m.
Applying the cosine law we find the distance from Chicago to the satellite is√

(4.22×107m)2 + (6.37×106m)2 − 2(4.22×107m)(6.37×106m) cos(47.5◦) = 3.82×107m.

Applying the sine law we find the angle made by Earth center, Chicago, satellite to be

arcsin
(

(4.22×107m)
(3.82×107m)

sin(47.5◦)
)

= 126◦.

That’s 36◦ above the horizontal.
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E14-38 (a) The new orbit is an ellipse with eccentricity given by r = a′(1 + e). Then

e = r/a′ − 1 = (6.64×106m)/(6.52×106m)− 1 = 0.0184.

The distance at P ′ is given by rP ′ = a′(1− e). The potential energy at P ′ is

UP ′ = UP
1 + e

1− e
= 2(−9.76×1010J)

1 + 0.0184
1− 0.0184

= −2.03×1011J.

The kinetic energy at P ′ is then

KP ′ = (−9.94×1010J)− (−2.03×1011J) = 1.04×1011J.

That would mean v =
√

2(1.04×1011J)/(3250kg) = 8000 m/s.
(b) The average speed is

v =
2π(6.52×106m)

(5240 s)
= 7820 m/s.

E14-39 (a) The Starshine satellite was approximately 275 km above the surface of the Earth on
1 January 2000. We can find the orbital period from Eq. 14-23,

T 2 =
(

4π2

GM

)
r3,

=
(

4π2

(6.67×10−11N·m2/kg2)(5.98×1024kg)

)
(6.65×106m)3 = 2.91×107s2,

so T = 5.39×103s.
(b) Equation 14-25 gives the total energy of the system of a satellite of mass m in a circular orbit

of radius r around a stationary body of mass M � m,

E = −GMm

2r
.

We want the rate of change of this with respect to time, so

dE

dt
=
GMm

2r2

dr

dt

We can estimate the value of dr/dt from the diagram. I’ll choose February 1 and December 1 as my
two reference points.

dr

dt t=t0
≈ ∆r

∆t
=

(240 km)− (300 km)
(62 days)

≈ −1 km/day

The rate of energy loss is then

dE

dt
=

(6.67×10−11N·m2/kg2)(5.98×1024kg)(39 kg)
2(6.65×106m)2

−1000 m
8.64×104 s

= −2.0 J/s.

P14-1 The object on the top experiences a force down from gravity W1 and a force down from
the tension in the rope T . The object on the bottom experiences a force down from gravity W2 and
a force up from the tension in the rope.

In either case, the magnitude of Wi is

Wi =
GMm

r2
i
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where ri is the distance of the ith object from the center of the Earth. While the objects fall they
have the same acceleration, and since they have the same mass we can quickly write

GMm

r2
1

+ T =
GMm

r2
2

− T,

or

T =
GMm

2r2
2

− GMm

2r2
1

,

=
GMm

2

(
1
r2
1

− 1
r2
2

)
,

=
GMm

2
r2
2 − r2

1

r2
1 r

2
2

.

Now r1 ≈ r2 ≈ R in the denominator, but r2 = r1 + l, so r2
2 − r2

1 ≈ 2Rl in the numerator. Then

T ≈ GMml

R3
.

P14-2 For a planet of uniform density, g = GM/r2 = G(4πρr3/3)/r2 = 4πGρr/3. Then if ρ is
doubled while r is halved we find that g will be unchanged.

P14-3 (a) F = GMm/r2, a = F/m = GM/r.
(b) The acceleration of the Earth toward the center of mass is aE = F/M = Gm/r2. The

relative acceleration is then GM/r +Gm/r = G(m+M)/r. Only if M � m can we assume that a
is independent of m relative to the Earth.

P14-4 (a) g = GM/r2, δg = −(2GM/r3)δr. In this case δr = h and M = 4πρr3/3. Then

δW = mδg = 8πGρmh/3.

(b) ∆W/W = ∆g/g = 2h/r. Then an error of one part in a million will occur when h is one
part in two million of r, or 3.2 meters.

P14-5 (a) The magnitude of the gravitational force from the Moon on a particle at A is

FA =
GMm

(r −R)2
,

where the denominator is the distance from the center of the moon to point A.
(b) At the center of the Earth the gravitational force of the moon on a particle of mass m is

FC = GMm/r2.
(c) Now we want to know the difference between these two expressions:

FA − FC =
GMm

(r −R)2
− GMm

r2
,

= GMm

(
r2

r2(r −R)2
− (r −R)2

r2(r −R)2

)
,

= GMm

(
r2 − (r −R)2

r2(r −R)2

)
,

= GMm

(
R(2r −R)
r2(r −R)2

)
.
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To simplify assume R� r and then substitute (r −R) ≈ r. The force difference simplifies to

FT = GMm
R(2r)
r2(r)2

=
2GMmR

r3

(d) Repeat part (c) except we want r +R instead of r −R. Then

FA − FC =
GMm

(r +R)2
− GMm

r2
,

= GMm

(
r2

r2(r +R)2
− (r +R)2

r2(r +R)2

)
,

= GMm

(
r2 − (r +R)2

r2(r +R)2

)
,

= GMm

(
−R(2r +R)
r2(r +R)2

)
.

To simplify assume R� r and then substitute (r +R) ≈ r. The force difference simplifies to

FT = GMm
−R(2r)
r2(r)2

= −2GMmR

r3

The negative sign indicates that this “apparent” force points away from the moon, not toward it.
(e) Consider the directions: the water is effectively attracted to the moon when closer, but

repelled when farther.

P14-6 F net = mrωs
2, where ωs is the rotational speed of the ship. But since the ship is moving

relative to the earth with a speed v, we can write ωs = ω± v/r, where the sign is positive if the ship
is sailing east. Then F net = mr(ω ± v/r)2.

The scale measures a force W which is given by mg − F net, or

W = mg −mr(ω ± v/r)2.

Note that W0 = m(g − rω2). Then

W = W0
g − r(ω ± v/r)2

g − rω2
,

≈ W0

(
1± 2ωv

1− rω2

)
,

≈ W0(1± 2vω/g).

P14-7 (a) a = GM/r2−rω2. ω is the rotational speed of the Earth. Since Frank observes a = g/2
we have

g/2 = GM/r2 − rω2,

r2 = (2GM − 2r3ω2)/g,

r =
√

2(GM − r3ω2)/g

Note that
GM = (6.67×10−11N ·m2/kg2)(5.98×1024kg) = 3.99×1014m3/s2

while
r3ω2 = (6.37×106m)3(2π/86400 s)2 = 1.37×1012m3/s2.
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Consequently, r3ω2 can be treated as a perturbation of GM bear the Earth. Solving iteratively,

r0 =
√

2[(3.99×1014m3/s2)− (6.37×106m)3(2π/86400 s)2]/(9.81 m/s2) = 9.00×106m,

r1 =
√

2[(3.99×1014m3/s2)− (9.00×106m)3(2π/86400 s)2]/(9.81 m/s2) = 8.98×106m,

which is close enough for me. Then h = 8.98×106m− 6.37×106m = 2610 km.
(b) ∆E = Ef − Ei = U f/2− U i. Then

∆E = (6.67×10−11N·m2/kg2)(5.98×1024kg)(100 kg)
(

1
(6.37×106m)

− 1
2(8.98×106m)

)
= 4.0×109J.

P14-8 (a) Equate centripetal force with the force of gravity.

4π2mr

T 2
=

GMm

r2
,

4π2

T 2
=

G(4/3)πr3ρ

r3
,

T =
√

3π
Gρ

(b) T =
√

3π/(6.7×10−11N ·m2/kg2)(3.0×103kg/m3) = 6800 s.

P14-9 (a) One can find δg by pretending the Earth is not there, but the material in the hole is.
Concentrate on the vertical component of the resulting force of attraction. Then

δg =
GM

r2

d

r
,

where r is the straight line distance from the prospector to the center of the hole and M is the mass
of material that would fill the hole. A few substitutions later,

δg =
4πGρR3d

3(
√
d2 + x2)3

.

(b) Directly above the hole x = 0, so a ratio of the two readings gives

(10.0 milligals)
(14.0 milligals)

=
(

d2

d2 + (150 m)2

)3/2

or
(0.800)(d2 + 2.25×104m2) = d2,

which has solution d = 300 m. Then

R3 =
3(14.0×10−5m/s2)(300 m)2

4π(6.7×10−11N ·m2/kg2)(2800 kg/m3)
,

so R = 250 m. The top of the cave is then 300 m− 250 m = 50 m beneath the surface.
(b) All of the formulae stay the same except replace ρ with the difference between rock and water.

d doesn’t change, but R will now be given by

R3 =
3(14.0×10−5m/s2)(300 m)2

4π(6.7×10−11N ·m2/kg2)(1800 kg/m3)
,

so R = 292 m, and then the cave is located 300 m− 292 m = 7 m beneath the surface.
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P14-10 g = GM/r2, where M is the mass enclosed in within the sphere of radius r. Then
dg = (G/r2)dM − 2(GM/r3)dr, so that g is locally constant if dM/dr = 2M/r. Expanding,

4πr2ρl = 8πr2ρ/3,
ρl = 2ρ/3.

P14-11 The force of gravity on the small sphere of mass m is equal to the force of gravity from
a solid lead sphere minus the force which would have been contributed by the smaller lead sphere
which would have filled the hole. So we need to know about the size and mass of the lead which was
removed to make the hole.

The density of the lead is given by

ρ =
M

4
3πR

3

The hole has a radius of R/2, so if the density is constant the mass of the hole will be

Mh = ρV =
(

M
4
3πR

3

)
4
3
π

(
R

2

)3

=
M

8

The “hole” is closer to the small sphere; the center of the hole is d − R/2 away. The force of the
whole lead sphere minus the force of the “hole” lead sphere is

GMm

d2
− G(M/8)m

(d−R/2)2

P14-12 (a) Use v = ω
√
R2 − r2, where ω =

√
GME/R3. Then

T =
∫ T

0

dt =
∫ 0

R

dr

dr/dt
=
∫ 0

R

dr

v
,

=
∫ 0

R

dr

ω
√
R2 − r2

,

=
π

2ω
Knowing that

ω =

√
(6.67×10−11N ·m2/kg2)(5.98×1024kg)

(6.37×106m)3
= 1.24×10−3/s,

we can find T = 1260 s = 21 min.
(b) Same time, 21 minutes. To do a complete journey would require four times this, or 2π/ω.

That’s 84 minutes!
(c) The answers are the same.

P14-13 (a) g = GM/r2 and M = 1.93×1024kg + 4.01×1024kg + 3.94×1022kg = 5.98×1024kg so

g = (6.67×10−11N ·m2/kg2)(5.98×1024kg)/(6.37×106m)2 = 9.83 m/s2.

(b) Now M = 1.93×1024kg + 4.01×1024kg = 5.94×1024kg so

g = (6.67×10−11N ·m2/kg2)(5.94×1024kg)/(6.345×106m)2 = 9.84 m/s2.

(c) For a uniform body, g = 4πGρr/3 = GMr/R3, so

g = (6.67×10−11N ·m2/kg2)(5.98×1024kg)(6.345×106m)/(6.37×106m)3 = 9.79 m/s2.
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P14-14 (a) Use g = GM/r2, then

g = (6.67×10−11N ·m2/kg2)(1.93×1024kg)/(3.490×106m)2 = 106 m/s2.

The variation with depth is linear if core has uniform density.
(b) In the mantle we have g = G(M c +M)/r2, where M is the amount of the mass of the mantle

which is enclosed in the sphere of radius r. The density of the core is

ρc =
3(1.93×1024kg)

4π(3.490×106m)3
= 1.084×104kg/m3.

The density of the mantle is harder to find,

ρc =
3(4.01×1024kg)

4π[(6.345×106m)3 − (3.490×106m)3
= 4.496×103kg/m3.

We can pretend that the core is made up of a point mass at the center and the rest has a density
equal to that of the mantle. That point mass would be

Mp =
4π(3.490×106m)3(1.084×104kg/m3 − 4.496×103kg/m3)

3
= 1.130×1024kg.

Then
g = GMp/r

2 + 4πGρmr/3.

Find dg/dr, and set equal to zero. This happens when

2Mp/r
3 = 4πρm/3,

or r = 4.93×106m. Then g = 9.29 m/s2. Since this is less than the value at the end points it must
be a minimum.

P14-15 (a) We will use part of the hint, but we will integrate instead of assuming the bit about
gav; doing it this way will become important for later chapters. Consider a small horizontal slice of
the column of thickness dr. The weight of the material above the slice exerts a force F (r) on the
top of the slice; there is a force of gravity on the slice given by

dF =
GM(r) dm

r2
,

where M(r) is the mass contained in the sphere of radius r,

M(r) =
4
3
πr3ρ.

Lastly, the mass of the slice dm is related to the thickness and cross sectional area by dm = ρAdr.
Then

dF =
4πGAρ2

3
r dr.

Integrate both sides of this expression. On the left the limits are 0 to F center, on the right the limits
are R to 0; we need to throw in an extra negative sign because the force increases as r decreases.
Then

F =
2
3
πGAρ2R2.

Divide both sides by A to get the compressive stress.
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(b) Put in the numbers!

S =
2
3
π(6.67×10−11N ·m2/kg2)(4000 kg/m3)2(3.0×105m)2 = 2.0×108N/m2.

(c) Rearrange, and then put in numbers;

R =

√
3(4.0×107N/m2)

2π(6.67×10−11N ·m2/kg2)(3000 kg/m3)2
= 1.8×105 m.

P14-16 The two mass increments each exert a vertical and a horizontal force on the particle, but
the horizontal components will cancel. The vertical component is proportional to the sine of the
angle, so that

dF =
2Gmdm

r2

y

r
=

2Gmλdx
r2

y

r
,

where r2 = x2 + y2. We will eventually integrate from 0 to ∞, so

F =
∫ ∞

0

2Gmλdx
r2

y

r
,

= 2Gmλy
∫ ∞

0

dx

(x2 + y2)3/2
,

=
2Gmλ
y

.

P14-17 For any arbitrary point P the cross sectional area which is perpendicular to the axis
dA′ = r2dΩ is not equal to the projection dA onto the surface of the sphere. It depends on the angle
that the axis makes with the normal, according to dA′ = cos θdA. Fortunately, the angle made at
point 1 is identical to the angle made at point 2, so we can write

dΩ1 = dΩ2,

dA1/r
2
1 = dA2/r

2
2

But the mass of the shell contained in dA is proportional to dA, so

r2
1dm1 = r2

2dm2,

Gmdm1/r
2
1 = Gmdm2/r

2
2.

Consequently, the force on an object at point P is balanced by both cones.
(b) Evaluate

∫
dΩ for the top and bottom halves of the sphere. Since every dΩ on the top is

balanced by one on the bottom, the net force is zero.

P14-18

P14-19 Assume that the small sphere is always between the two spheres. Then

W = ∆U1 + ∆U2,

= (6.67×10−11N ·m2/kg2)(0.212 kg) [(7.16 kg)− (2.53 kg)]
[

1
(0.420 m)

− 1
(1.14 m)

]
,

= 9.85×10−11J.
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P14-20 Note that 1
2mvesc

2 = −U0, where U0 is the potential energy at the burn-out height.
Energy conservation gives

K = K0 + U0,
1
2
mv2 =

1
2
mv2

0 −
1
2
mvesc

2,

v =
√
v2

0 − vesc
2.

P14-21 (a) The force of one star on the other is given by F = Gm2/d2, where d is the distance
between the stars. The stars revolve around the center of mass, which is halfway between the stars
so r = d/2 is the radius of the orbit of the stars. If a is the centripetal acceleration of the stars, the
period of revolution is then

T =

√
4π2r

a
=

√
4mπ2r

F
=

√
16π2r3

Gm
.

The numerical value is

T =

√
16π2(1.12×1011m)3

(6.67×10−11N ·m2/kg2)(3.22×1030kg)
= 3.21×107s = 1.02 y.

(b) The gravitational potential energy per kilogram midway between the stars is

−2
Gm

r
= −2

(6.67×10−11N ·m2/kg2)(3.22×1030kg)
(1.12×1011m)

= −3.84×109J/kg.

An object of mass M at the center between the stars would need (3.84×109J/kg)M kinetic energy
to escape, this corresponds to a speed of

v =
√

2K/M =
√

2(3.84×109J/kg) = 8.76×104m/s.

P14-22 (a) Each differential mass segment on the ring contributes the same amount to the force
on the particle,

dF =
Gmdm

r2

x

r
,

where r2 = x2 + R2. Since the differential mass segments are all equal distance, the integration is
trivial, and the net force is

F =
GMmx

(x2 +R2)3/2
.

(b) The potential energy can be found by integrating with respect to x,

∆U =
∫ ∞

0

F dx =
∫ ∞

0

GMmx

(x2 +R2)3/2
dx =

GMm

R
.

Then the particle of mass m will pass through the center of the ring with a speed v =
√

2∆U/m =√
2GM/R.
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P14-23 (a) Consider the following diagram.

R

θ

α

R

r

FF
R

The distance r is given by the cosine law to be

r2 = R2 +R2 − 2R2 cos θ = 2R2(1− cos θ).

The force between two particles is then F = Gm2/r2. Each particle has a symmetric partner, so
only the force component directed toward the center contributes. If we call this the R component
we have

FR = F cosα = F cos(90◦ − θ/2) = F sin(θ/2).

Combining,

FR =
Gm2

2R2

sin(θ/2)
1− cos θ

.

But each of the other particles contributes to this force, so

F net =
Gm2

2R2

∑
i

sin(θi/2)
1− cos θi

When there are only 9 particles the angles are in steps of 40◦; the θi are then 40◦, 80◦, 120◦, 160◦,
200◦, 240◦, 280◦, and 320◦. With a little patience you will find∑

i

sin(θi/2)
1− cos θi

= 6.649655,

using these angles. Then F net = 3.32Gm2/R2.
(b) The rotational period of the ring would need to be

T =

√
4π2R

a
=

√
4mπ2R

F
=

√
16π2R3

3.32Gm
.

P14-24 The potential energy of the system is U = −Gm2/r. The kinetic energy is mv2. The total
energy is E = −Gm2/d. Then

dr

dt
= 2
√
Gm(1/r − 1/d),
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so the time to come together is

T =
∫ 0

d

dr

2
√
Gm(1/r − 1/d)

=

√
d3

4Gm

∫ 1

0

√
x

1− x
dx =

π

4

√
d3

Gm
.

P14-25 (a) E = U/2 for each satellite, so the total mechanical energy is −GMm/r.
(b) Now there is no K, so the total mechanical energy is simply U = −2GMm/r. The factor of

2 is because there are two satellites.
(c) The wreckage falls vertically onto the Earth.

P14-26 Let ra = a(1 + e) and rp = a(1− e). Then ra + re = 2a and ra− rp = 2ae. So the answer
is

2(0.0167)(1.50×1011m) = 5.01×109m,

or 7.20 solar radii.

P14-27

P14-28 The net force on an orbiting star is

F = Gm

(
M

r2
+m4r2

)
.

This is the centripetal force, and is equal to 4π2mr/T 2. Combining,

4π2

T 2
=

G

4r3
(4M +m),

so T = 4π
√
r3/[G(4M +m)].

P14-29 (a) v =
√
GM/r, so

v =
√

(6.67×10−11N ·m2/kg2)(5.98×1024kg)/(7.01×106m) = 7.54×103m/s.

(b) T = 2π(7.01×106m)/(7.54×103m/s) = 5.84×103s.
(c) Originally E0 = U/2, or

E = − (6.67×10−11N ·m2/kg2)(5.98×1024kg)(220kg)
2(7.01×106m)

= −6.25×109J.

After 1500 orbits the energy is now −6.25×109J − (1500)(1.40×105J) = −6.46×109J. The new
distance from the Earth is then

r = − (6.67×10−11N ·m2/kg2)(5.98×1024kg)(220kg)
2(−6.46×109J)

= 6.79×106m.

The altitude is now 6790− 6370 = 420 km.
(d) F = (1.40×105J)/(2π7.01×106m) = 3.2×10−3N.
(e) No.

181



P14-30 Let the satellite S be directly overhead at some time. The magnitude of the speed is
equal to that of a geosynchronous satellite T whose orbit is not inclined, but since there are both
parallel and perpendicular components to the motion of S it will appear to move north while “losing
ground” compared to T . Eventually, though, it must pass overhead again in 12 hours. When S is as
far north as it will go (6 hours) it has a velocity which is parallel to T , but it is located in a region
where the required speed to appear fixed is slower. Hence, it will appear to be “gaining ground”
against the background stars. Consequently, the motion against the background stars appears to be
a figure 8.

P14-31 The net force of gravity on one star because of the other two is

F =
2GM2

L2
cos(30◦).

The stars orbit about a point r = L/2 cos(30◦) from any star. The orbital speed is then found from

Mv2

r
=

Mv2

L/2 cos(30◦)
=

2GM2

L2
cos(30◦),

or v =
√
GM/L.

P14-32 A parabolic path will eventually escape; this means that the speed of the comet at any
distance is the escape speed for that distance, or v =

√
2GM/r. The angular momentum is constant,

and is equal to
l = mvArA = m

√
2GMrA.

For a parabolic path, r = 2rA/(1 + cos θ). Combining with Eq. 14-21 and the equation before that
one we get

dθ

dt
=
√

2GMrA

4rA
2

(1 + cos θ)2.

The time required is the integral

T =

√
8rA

3

GM

∫ π/2

0

dθ

(1 + cos θ)2
=

√
8rA

3

GM

(
2
3

)
.

Note that
√
rA

3/GM is equal to 1/2π years. Then the time for the comet to move is

T =
1

2π

√
8

2
3

y = 0.300 y.

P14-33 There are three forces on loose matter (of mass m0) sitting on the moon: the force of
gravity toward the moon, Fm = Gmm0/a

2, the force of gravity toward the planet, FM = GMm0/(r−
a)2, and the normal force N of the moon pushing the loose matter away from the center of the moon.

The net force on this loose matter is FM +N −Fm, this value is exactly equal to the centripetal
force necessary to keep the loose matter moving in a uniform circle. The period of revolution of the
loose matter is identical to that of the moon,

T = 2π
√
r3/GM,

but since the loose matter is actually revolving at a radial distance r − a the centripetal force is

F c =
4π2m0(r − a)

T 2
=
GMm0(r − a)

r3
.
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Only if the normal force is zero can the loose matter can lift off, and this will happen when F c =
FM − Fm, or

M(r − a)
r3

=
M

(r − a)2
− m

a2
,

=
Ma2 −m(r − a)2

a2(r − a)2
,

Ma2(r − a)3 = Mr3a2 −mr3(r − a)2,

−3r2a3 + 3ra4 − a4 =
m

M

(
−r5 + 2r4a− r3a2

)
Let r = ax, then x is dimensionless; let β = m/M , then β is dimensionless. The expression then
simplifies to

−3x2 + 3x− 1 = β(−x5 + 2x4 − x3).

If we assume than x is very large (r � a) then only the largest term on each side survives. This means
3x2 ≈ βx5, or x = (3/β)1/3. In that case, r = a(3M/m)1/3. For the Earth’s moon rc = 1.1×107m,
which is only 4,500 km away from the surface of the Earth. It is somewhat interesting to note that
the radius r is actually independent of both a and m if the moon has a uniform density!
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