E13-1 If the projectile had not experienced air drag it would have risen to a height y_{2}, but because of air drag 68 kJ of mechanical energy was dissipated so it only rose to a height y_{1}. In either case the initial velocity, and hence initial kinetic energy, was the same; and the velocity at the highest point was zero. Then $W=\Delta U$, so the potential energy would have been 68 kJ greater, and

$$
\Delta y=\Delta U / m g=\left(68 \times 10^{3} \mathrm{~J}\right) /(9.4 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=740 \mathrm{~m}
$$

is how much higher it would have gone without air friction.

E13-2 (a) The road incline is $\theta=\arctan (0.08)=4.57^{\circ}$. The frictional forces are the same; the car is now moving with a vertical upward speed of $(15 \mathrm{~m} / \mathrm{s}) \sin \left(4.57^{\circ}\right)=1.20 \mathrm{~m} / \mathrm{s}$. The additional power required to drive up the hill is then $\Delta P=m g v_{y}=(1700 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)(1.20 \mathrm{~m} / \mathrm{s})=20000 \mathrm{~W}$. The total power required is 36000 W .
(b) The car will "coast" if the power generated by rolling downhill is equal to 16000 W , or

$$
v_{y}=(16000 \mathrm{~W}) /\left[(1700 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)\right]=0.959 \mathrm{~m} / \mathrm{s}
$$

down. Then the incline is

$$
\theta=\arcsin (0.959 \mathrm{~m} / \mathrm{s} / 15 \mathrm{~m} / \mathrm{s})=3.67^{\circ}
$$

This corresponds to a downward grade of $\tan \left(3.67^{\circ}\right)=6.4 \%$.

E13-3 Apply energy conservation:

$$
\frac{1}{2} m v^{2}+m g y+\frac{1}{2} k y^{2}=0
$$

so

$$
v=\sqrt{-2\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)(-0.084 \mathrm{~m})-(262 \mathrm{~N} / \mathrm{m})(-0.084 \mathrm{~m})^{2} /(1.25 \mathrm{~kg})}=0.41 \mathrm{~m} / \mathrm{s}
$$

E13-4 The car climbs a vertical distance of $(225 \mathrm{~m}) \sin \left(10^{\circ}\right)=39.1 \mathrm{~m}$ in coming to a stop. The change in energy of the car is then

$$
\Delta E=-\frac{1}{2} \frac{(16400 \mathrm{~N})}{\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)}(31.4 \mathrm{~m} / \mathrm{s})^{2}+(16400 \mathrm{~N})(39.1 \mathrm{~m})=-1.83 \times 10^{5} \mathrm{~J}
$$

E13-5 (a) Applying conservation of energy to the points where the ball was dropped and where it entered the oil,

$$
\begin{aligned}
\frac{1}{2} m v_{\mathrm{f}}^{2}+m g y_{\mathrm{f}} & =\frac{1}{2} m v_{\mathrm{i}}^{2}+m g y_{\mathrm{i}} \\
\frac{1}{2} v_{\mathrm{f}}^{2}+g(0) & =\frac{1}{2}(0)^{2}+g y_{\mathrm{i}} \\
v_{\mathrm{f}} & =\sqrt{2 g y_{\mathrm{i}}}, \\
& =\sqrt{2\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)(0.76 \mathrm{~m})}=3.9 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(b) The change in internal energy of the ball + oil can be found by considering the points where the ball was released and where the ball reached the bottom of the container.

$$
\begin{aligned}
\Delta E & =K_{\mathrm{f}}+U_{\mathrm{f}}-K_{\mathrm{i}}-U_{\mathrm{i}} \\
& =\frac{1}{2} m v_{\mathrm{f}}^{2}+m g y_{\mathrm{f}}-\frac{1}{2} m(0)^{2}-m g y_{\mathrm{i}} \\
& =\frac{1}{2}\left(12.2 \times 10^{-3} \mathrm{~kg}\right)(1.48 \mathrm{~m} / \mathrm{s})^{2}-\left(12.2 \times 10^{-3} \mathrm{~kg}\right)\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)(-0.55 \mathrm{~m}-0.76 \mathrm{~m}) \\
& =-0.143 \mathrm{~J}
\end{aligned}
$$

E13-6 (a) $U_{\mathrm{i}}=(25.3 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)(12.2 \mathrm{~m})=3030 \mathrm{~J}$.
(b) $K_{\mathrm{f}}=\frac{1}{2}(25.3 \mathrm{~kg})(5.56 \mathrm{~m} / \mathrm{s})^{2}=391 \mathrm{~J}$.
(c) $\Delta E_{\text {int }}=3030 \mathrm{~J}-391 \mathrm{~J}=2640 \mathrm{~J}$.

E13-7 (a) At atmospheric entry the kinetic energy is

$$
K=\frac{1}{2}\left(7.9 \times 10^{4} \mathrm{~kg}\right)\left(8.0 \times 10^{3} \mathrm{~m} / \mathrm{s}\right)^{2}=2.5 \times 10^{12} \mathrm{~J}
$$

The gravitational potential energy is

$$
U=\left(7.9 \times 10^{4} \mathrm{~kg}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)\left(1.6 \times 10^{5} \mathrm{~m}\right)=1.2 \times 10^{11} \mathrm{~J}
$$

The total energy is $2.6 \times 10^{12} \mathrm{~J}$.
(b) At touch down the kinetic energy is

$$
K=\frac{1}{2}\left(7.9 \times 10^{4} \mathrm{~kg}\right)\left(9.8 \times 10^{1} \mathrm{~m} / \mathrm{s}\right)^{2}=3.8 \times 10^{8} \mathrm{~J}
$$

E13-8 $\Delta E / \Delta t=(68 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(59 \mathrm{~m} / \mathrm{s})=39000 \mathrm{~J} / \mathrm{s}$.
E13-9 Let m be the mass of the water under consideration. Then the percentage of the potential energy "lost" which appears as kinetic energy is

$$
\frac{K_{\mathrm{f}}-K_{\mathrm{i}}}{U_{\mathrm{i}}-U_{\mathrm{f}}}
$$

Then

$$
\begin{aligned}
\frac{K_{\mathrm{f}}-K_{\mathrm{i}}}{U_{\mathrm{i}}-U_{\mathrm{f}}} & =\frac{1}{2} m\left(v_{\mathrm{f}}^{2}-v_{\mathrm{i}}^{2}\right) /\left(m g y_{\mathrm{i}}-m g y_{\mathrm{f}}\right) \\
& =\frac{v_{\mathrm{f}}^{2}-v_{\mathrm{i}}^{2}}{-2 g \Delta y} \\
& =\frac{(13 \mathrm{~m} / \mathrm{s})^{2}-(3.2 \mathrm{~m} / \mathrm{s})^{2}}{-2\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)(-15 \mathrm{~m})} \\
& =54 \%
\end{aligned}
$$

The rest of the energy would have been converted to sound and thermal energy.
E13-10 The change in energy is

$$
\Delta E=\frac{1}{2}(524 \mathrm{~kg})(62.6 \mathrm{~m} / \mathrm{s})^{2}-(524 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)(292 \mathrm{~m})=4.74 \times 10^{5} \mathrm{~J}
$$

E13-11 $U_{\mathrm{f}}=K_{\mathrm{i}}-(34.6 \mathrm{~J})$. Then

$$
h=\frac{1}{2} \frac{(7.81 \mathrm{~m} / \mathrm{s})^{2}}{\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)}-\frac{(34.6 \mathrm{~J})}{(4.26 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)}=2.28 \mathrm{~m}
$$

which means the distance along the incline is $(2.28 \mathrm{~m}) / \sin \left(33.0^{\circ}\right)=4.19 \mathrm{~m}$.

E13-12 (a) $K_{\mathrm{f}}=U_{\mathrm{i}}-U_{\mathrm{f}}$, so

$$
v_{\mathrm{f}}=\sqrt{2\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)[(862 \mathrm{~m})-(741 \mathrm{~m})]}=48.7 \mathrm{~m} / \mathrm{s}
$$

That's a quick $175 \mathrm{~km} / \mathrm{h}$; but the speed at the bottom of the valley is 40% of the speed of sound!
(b) $\Delta E=U_{\mathrm{f}}-U_{\mathrm{i}}$, so

$$
\Delta E=(54.4 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)[(862 \mathrm{~m})-(741 \mathrm{~m})]=-6.46 \times 10^{4} \mathrm{~J}
$$

which means the internal energy of the snow and skis increased by $6.46 \times 10^{4} \mathrm{~J}$.
E13-13 The final potential energy is 15% less than the initial kinetic plus potential energy of the ball, so

$$
0.85\left(K_{\mathrm{i}}+U_{\mathrm{i}}\right)=U_{\mathrm{f}}
$$

But $U_{\mathrm{i}}=U_{\mathrm{f}}$, so $K_{\mathrm{i}}=0.15 U_{\mathrm{f}} / 0.85$, and then

$$
v_{\mathrm{i}}=\sqrt{\frac{0.15}{0.85} 2 g h}=\sqrt{2(0.176)\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)(12.4 \mathrm{~m})}=6.54 \mathrm{~m} / \mathrm{s}
$$

E13-14 Focus on the potential energy. After the nth bounce the ball will have a potential energy at the top of the bounce of $U_{n}=0.9 U_{n-1}$. Since $U \propto h$, one can write $h_{n}=(0.9)^{n} h_{0}$. Solving for n,

$$
n=\log \left(h_{n} / h_{0}\right) / \log (0.9)=\log (3 \mathrm{ft} / 6 \mathrm{ft}) / \log (0.9)=6.58
$$

which must be rounded up to 7 .
E13-15 Let m be the mass of the ball and M be the mass of the block.
The kinetic energy of the ball just before colliding with the block is given by $K_{1}=U_{0}$, so $v_{1}=\sqrt{2\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)(0.687 \mathrm{~m})}=3.67 \mathrm{~m} / \mathrm{s}$.

Momentum is conserved, so if v_{2} and v_{3} are velocities of the ball and block after the collision then $m v_{1}=m v_{2}+M v_{3}$. Kinetic energy is not conserved, instead

$$
\frac{1}{2}\left(\frac{1}{2} m v_{1}^{2}\right)=\frac{1}{2} m v_{2}^{2}+\frac{1}{2} M v_{3}^{2}
$$

Combine the energy and momentum expressions to eliminate v_{3} :

$$
\begin{aligned}
m v_{1}^{2} & =2 m v_{2}^{2}+2 M\left(\frac{m}{M}\left(v_{1}-v_{2}\right)\right)^{2} \\
M v_{1}^{2} & =2 M v_{2}^{2}+2 m v_{1}^{2}-4 m v_{1} v_{2}+2 m v_{2}^{2}
\end{aligned}
$$

which can be formed into a quadratic. The solution for v_{2} is

$$
v_{2}=\frac{2 m \pm \sqrt{2\left(M^{2}-m M\right)}}{2(M+m)} v_{1}=(0.600 \pm 1.95) \mathrm{m} / \mathrm{s}
$$

The corresponding solutions for v_{3} are then found from the momentum expression to be $v_{3}=$ $0.981 \mathrm{~m} / \mathrm{s}$ and $v_{3}=0.219$. Since it is unlikely that the ball passed through the block we can toss out the second set of answers.

E13-16 $E_{\mathrm{f}}=K_{\mathrm{f}}+U_{\mathrm{f}}=3 m g h$, or

$$
v_{\mathrm{f}}=\sqrt{2\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right) 2(0.18 \mathrm{~m})}=2.66 \mathrm{~m} / \mathrm{s}
$$

E13-17 We can find the kinetic energy of the center of mass of the woman when her feet leave the ground by considering energy conservation and her highest point. Then

$$
\begin{aligned}
\frac{1}{2} m v_{\mathrm{i}}^{2}+m g y_{\mathrm{i}} & =\frac{1}{2} m v_{\mathrm{f}}^{2}+m g y_{\mathrm{f}} \\
\frac{1}{2} m v_{\mathrm{i}} & =m g \Delta y \\
& =(55.0 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)(1.20 \mathrm{~m}-0.90 \mathrm{~m})=162 \mathrm{~J}
\end{aligned}
$$

(a) During the jumping phase her potential energy changed by

$$
\Delta U=m g \Delta y=(55.0 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)(0.50 \mathrm{~m})=270 \mathrm{~J}
$$

while she was moving up. Then

$$
F_{\mathrm{ext}}=\frac{\Delta K+\Delta U}{\Delta s}=\frac{(162 \mathrm{~J})+(270 \mathrm{~J})}{(0.5 \mathrm{~m})}=864 \mathrm{~N}
$$

(b) Her fastest speed was when her feet left the ground,

$$
v=\frac{2 K}{m}=\frac{2(162 \mathrm{~J})}{(55.0 \mathrm{~kg})}=2.42 \mathrm{~m} / \mathrm{s}
$$

E13-18 (b) The ice skater needs to lose $\frac{1}{2}(116 \mathrm{~kg})(3.24 \mathrm{~m} / \mathrm{s})^{2}=609 \mathrm{~J}$ of internal energy.
(a) The average force exerted on the rail is $F=(609 \mathrm{~J}) /(0.340 \mathrm{~m})=1790 \mathrm{~N}$.

E13-19 $12.6 \mathrm{~km} / \mathrm{h}$ is equal to $3.50 \mathrm{~m} / \mathrm{s}$; the initial kinetic energy of the car is

$$
\frac{1}{2}(2340 \mathrm{~kg})(3.50 \mathrm{~m} / \mathrm{s})^{2}=1.43 \times 10^{4} \mathrm{~J}
$$

(a) The force exerted on the car is $F=\left(1.43 \times 10^{4} \mathrm{~J}\right) /(0.64 \mathrm{~m})=2.24 \times 10^{4} \mathrm{~N}$.
(b) The change increase in internal energy of the car is

$$
\Delta E_{\text {int }}=\left(2.24 \times 10^{4} \mathrm{~N}\right)(0.640 \mathrm{~m}-0.083 \mathrm{~m})=1.25 \times 10^{4} \mathrm{~J}
$$

E13-20 Note that $v_{n}^{2}=v_{n}^{\prime 2}-2 \overrightarrow{\mathbf{v}}_{n}^{\prime} \cdot \overrightarrow{\mathbf{v}}_{\mathrm{cm}}+v_{\mathrm{cm}}{ }^{2}$. Then

$$
\begin{aligned}
K & =\sum_{n} \frac{1}{2}\left(m_{n} v_{n}^{\prime 2}-2 m_{n} \overrightarrow{\mathbf{v}}_{n}^{\prime} \cdot \overrightarrow{\mathbf{v}}_{\mathrm{cm}}+m_{n} v_{\mathrm{cm}}^{2}\right) \\
& =\sum_{n} \frac{1}{2} m_{n} v_{n}^{\prime 2}-\left(\sum_{n} m_{n} \overrightarrow{\mathbf{v}}_{n}^{\prime}\right) \cdot \overrightarrow{\mathbf{v}}_{\mathrm{cm}}+\left(\sum_{n} \frac{1}{2} m_{n}\right) v_{\mathrm{cm}}^{2} \\
& =K_{\mathrm{int}}-\left(\sum_{n} m_{n} \overrightarrow{\mathbf{v}}_{n}^{\prime}\right) \cdot \overrightarrow{\mathbf{v}}_{\mathrm{cm}}+K_{\mathrm{cm}}
\end{aligned}
$$

The middle term vanishes because of the definition of velocities relative to the center of mass.

E13-21 Momentum conservation requires $m v_{0}=m v+M V$, where the sign indicates the direction. We are assuming one dimensional collisions. Energy conservation requires

$$
\frac{1}{2} m v_{0}^{2}=\frac{1}{2} m v^{2}+\frac{1}{2} M V^{2}+E
$$

Combining,

$$
\begin{aligned}
\frac{1}{2} m v_{0}^{2} & =\frac{1}{2} m v^{2}+\frac{1}{2} M\left(\frac{m}{M} v_{0}-\frac{m}{M} v\right)^{2}+E \\
M v_{0}^{2} & =M v^{2}+m\left(v_{0}-v\right)^{2}+2(M / m) E
\end{aligned}
$$

Arrange this as a quadratic in v,

$$
(M+m) v^{2}-\left(2 m v_{0}\right) v+\left(2(M / m) E+m v_{0}^{2}-M v_{0}^{2}\right)=0
$$

This will only have real solutions if the discriminant $\left(b^{2}-4 a c\right)$ is greater than or equal to zero. Then

$$
\left(2 m v_{0}\right)^{2} \geq 4(M+m)\left(2(M / m) E+m v_{0}^{2}-M v_{0}^{2}\right)
$$

is the condition for the minimum v_{0}. Solving the equality condition,

$$
4 m^{2} v_{0}^{2}=4(M+m)\left(2(M / m) E+(m-M) v_{0}^{2}\right)
$$

or $M^{2} v_{0}^{2}=2(M+m)(M / m) E$. One last rearrangement, and $v_{0}=\sqrt{2(M+m) E /(m M)}$.

P13-1 (a) The initial kinetic energy will equal the potential energy at the highest point plus the amount of energy which is dissipated because of air drag.

$$
\begin{aligned}
m g h+f h & =\frac{1}{2} m v_{0}^{2} \\
h & =\frac{v_{0}^{2}}{2(g+f / m)}=\frac{v_{0}^{2}}{2 g(1+f / w)}
\end{aligned}
$$

(b) The final kinetic energy when the stone lands will be equal to the initial kinetic energy minus twice the energy dissipated on the way up, so

$$
\begin{aligned}
\frac{1}{2} m v^{2} & =\frac{1}{2} m v_{0}^{2}-2 f h \\
& =\frac{1}{2} m v_{0}^{2}-2 f \frac{v_{0}^{2}}{2 g(1+f / w)} \\
& =\left(\frac{m}{2}-\frac{f}{g(1+f / w)}\right) v_{0}^{2} \\
v^{2} & =\left(1-\frac{2 f}{w+f}\right) v_{0}^{2} \\
v & =\left(\frac{w-f}{w+f}\right)^{1 / 2} v_{0} .
\end{aligned}
$$

P13-2 The object starts with $U=(0.234 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)(1.05 \mathrm{~m})=2.41 \mathrm{~J}$. It will move back and forth across the flat portion $(2.41 \mathrm{~J}) /(0.688 \mathrm{~J})=3.50$ times, which means it will come to a rest at the center of the flat part while attempting one last right to left journey.

P13-3 (a) The work done on the block block because of friction is

$$
(0.210)(2.41 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)(1.83 \mathrm{~m})=9.09 \mathrm{~J}
$$

The energy dissipated because of friction is $(9.09 \mathrm{~J}) / 0.83=11.0 \mathrm{~J}$.
The speed of the block just after the bullet comes to a rest is

$$
v=\sqrt{2 K / m}=\sqrt{2(1.10 \mathrm{~J}) /(2.41 \mathrm{~kg})}=3.02 \mathrm{~m} / \mathrm{s}
$$

(b) The initial speed of the bullet is

$$
v_{0}=\frac{M+m}{m} v=\frac{(2.41 \mathrm{~kg})+(0.00454 \mathrm{~kg})}{(0.00454 \mathrm{~kg})}(3.02 \mathrm{~m} / \mathrm{s})=1.60 \times 10^{3} \mathrm{~m} / \mathrm{s}
$$

$\mathbf{P 1 3 - 4}$ The energy stored in the spring after compression is $\frac{1}{2}(193 \mathrm{~N} / \mathrm{m})(0.0416 \mathrm{~m})^{2}=0.167 \mathrm{~J}$. Since 117 mJ was dissipated by friction, the kinetic energy of the block before colliding with the spring was 0.284 J . The speed of the block was then

$$
v=\sqrt{2(0.284 \mathrm{~J}) /(1.34 \mathrm{~kg})}=0.651 \mathrm{~m} / \mathrm{s}
$$

P13-5 (a) Using Newton's second law, $F=m a$, so for circular motion around the proton

$$
\frac{m v^{2}}{r}=F=k \frac{e^{2}}{r^{2}}
$$

The kinetic energy of the electron in an orbit is then

$$
K=\frac{1}{2} m v^{2}=\frac{1}{2} k \frac{e^{2}}{r} .
$$

The change in kinetic energy is

$$
\Delta K=\frac{1}{2} k e^{2}\left(\frac{1}{r_{2}}-\frac{1}{r_{1}}\right) .
$$

(b) The potential energy difference is

$$
\Delta U=-\int_{r_{1}}^{r_{2}} \frac{k e^{2}}{r^{2}} d r=-k e^{2}\left(\frac{1}{r_{2}}-\frac{1}{r_{1}}\right) .
$$

(c) The total energy change is

$$
\Delta E=\Delta K+\Delta U=-\frac{1}{2} k e^{2}\left(\frac{1}{r_{2}}-\frac{1}{r_{1}}\right)
$$

P13-6 (a) The initial energy of the system is $(4000 \mathrm{lb})(12 \mathrm{ft})=48,000 \mathrm{ft} \cdot \mathrm{lb}$. The safety device removes $(1000 \mathrm{lb})(12 \mathrm{ft})=12,000 \mathrm{ft} \cdot \mathrm{lb}$ before the elevator hits the spring, so the elevator has a kinetic energy of $36,000 \mathrm{ft} \cdot \mathrm{lb}$ when it hits the spring. The speed of the elevator when it hits the spring is

$$
v=\sqrt{\frac{2(36,000 \mathrm{ft} \cdot \mathrm{lb})\left(32.0 \mathrm{ft} / \mathrm{s}^{2}\right)}{(4000 \mathrm{lb})}}=24.0 \mathrm{ft} / \mathrm{s}
$$

(b) Assuming the safety clamp remains in effect while the elevator is in contact with the spring then the distance compressed will be found from

$$
36,000 \mathrm{ft} \cdot \mathrm{lb}=\frac{1}{2}(10,000 \mathrm{lb} / \mathrm{ft}) y^{2}-(4000 \mathrm{lb}) y+(1000 \mathrm{lb}) y
$$

This is a quadratic expression in y which can be simplified to look like

$$
5 y^{2}-3 y-36=0
$$

which has solutions $y=(0.3 \pm 2.7) \mathrm{ft}$. Only $y=3.00 \mathrm{ft}$ makes sense here.
(c) The distance through which the elevator will bounce back up is found from

$$
33,000 \mathrm{ft}=(4000 \mathrm{lb}) y-(1000 \mathrm{lb}) y
$$

where y is measured from the most compressed point of the spring. Then $y=11 \mathrm{ft}$, or the elevator bounces back up 8 feet.
(d) The elevator will bounce until it has traveled a total distance so that the safety device dissipates all of the original energy, or 48 ft .

P13-7 The net force on the top block while it is being pulled is

$$
11.0 \mathrm{~N}-F_{f}=11.0 \mathrm{~N}-(0.35)(2.5 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=2.42 \mathrm{~N}
$$

This means it is accelerating at $(2.42 \mathrm{~N}) /(2.5 \mathrm{~kg})=0.968 \mathrm{~m} / \mathrm{s}^{2}$. That acceleration will last a time $t=\sqrt{2(0.30 \mathrm{~m}) /\left(0.968 \mathrm{~m} / \mathrm{s}^{2}\right)}=0.787 \mathrm{~s}$. The speed of the top block after the force stops pulling is then $\left(0.968 \mathrm{~m} / \mathrm{s}^{2}\right)(0.787 \mathrm{~s})=0.762 \mathrm{~m} / \mathrm{s}$. The force on the bottom block is F_{f}, so the acceleration of the bottom block is

$$
(0.35)(2.5 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right) /(10.0 \mathrm{~kg})=0.858 \mathrm{~m} / \mathrm{s}^{2}
$$

and the speed after the force stops pulling on the top block is $\left(0.858 \mathrm{~m} / \mathrm{s}^{2}\right)(0.787 \mathrm{~s})=0.675 \mathrm{~m} / \mathrm{s}$.
(a) $W=F s=(11.0 \mathrm{~N})(0.30 \mathrm{~m})=3.3 \mathrm{~J}$ of energy were delivered to the system, but after the force stops pulling only

$$
\frac{1}{2}(2.5 \mathrm{~kg})(0.762 \mathrm{~m} / \mathrm{s})^{2}+\frac{1}{2}(10.0 \mathrm{~kg})(0.675 \mathrm{~m} / \mathrm{s})^{2}=3.004 \mathrm{~J}
$$

were present as kinetic energy. So 0.296 J is "missing" and would be now present as internal energy.
(b) The impulse received by the two block system is then $J=(11.0 \mathrm{~N})(0.787 \mathrm{~s})=8.66 \mathrm{~N} \cdot \mathrm{~s}$. This impulse causes a change in momentum, so the speed of the two block system after the external force stops pulling and both blocks move as one is $(8.66 \mathrm{~N} \cdot \mathrm{~s})(12.5 \mathrm{~kg})=0.693 \mathrm{~m} / \mathrm{s}$. The final kinetic energy is

$$
\frac{1}{2}(12.5 \mathrm{~kg})(0.693 \mathrm{~m} / \mathrm{s})^{2}=3.002 \mathrm{~J}
$$

this means that 0.002 J are dissipated.

P13-8 Hmm.

