
E12-1 (a) Integrate.

U(x) = −
∫ x

∞
G
m1m2

x2
dx = −Gm1m2

x
.

(b) W = U(x)− U(x+ d), so

W = Gm1m2

(
1
x
− 1
x+ d

)
= Gm1m2

d

x(x+ d)
.

E12-2 If d << x then x(x+ d) ≈ x2, so

W ≈ Gm1m2

x2
d.

E12-3 Start with Eq. 12-6.

U(x)− U(x0) = −
∫ x

x0

Fx(x)dx,

= −
∫ x

x0

(
−αxe−βx

2
)
dx,

=
−α
2β

e−βx
2
∣∣∣∣x
x0

.

Finishing the integration,
U(x) = U(x0) +

α

2β

(
e−βx

2
0 − e−βx

2
)
.

If we choose x0 =∞ and U(x0) = 0 we would be left with

U(x) = − α

2β
e−βx

2
.

E12-4 ∆K = −∆U so ∆K = mg∆y. The power output is then

P = (58%)
(1000 kg/m3)(73, 800 m3)

(60 s)
(9.81 m/s2)(96.3 m) = 6.74×108W.

E12-5 ∆U = −∆K, so 1
2kx

2 = 1
2mv

2. Then

k =
mv2

x2
=

(2.38 kg)(10.0×103 /s)
(1.47 m)2

= 1.10×108N/m.

Wow.

E12-6 ∆Ug + ∆U s = 0, since K = 0 when the man jumps and when the man stops. Then
∆U s = −mg∆y = (220 lb)(40.4 ft) = 8900 ft · lb.

E12-7 Apply Eq. 12-15,

Kf + U f = K i + U i,
1
2
mvf

2 +mgyf =
1
2
mvi

2 +mgyi,

1
2
vf

2 + g(−r) =
1
2

(0)2 + g(0).

Rearranging,
vf =

√
−2g(−r) =

√
−2(9.81 m/s2)(−0.236 m) = 2.15 m/s.
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E12-8 (a) K = 1
2mv

2 = 1
2 (2.40 kg)(150 m/s)2 = 2.70×104J.

(b) Assuming that the ground is zero, U = mgy = (2.40 kg)(9.81 m/s2)(125 m) = 2.94×103J.
(c) Kf = K i + U i since U f = 0. Then

vf =

√
2

(2.70×104J) + (2.94×103J)
(2.40 kg)

= 158 m/s.

Only (a) and (b) depend on the mass.

E12-9 (a) Since ∆y = 0, then ∆U = 0 and ∆K = 0. Consequently, at B, v = v0.
(b) At C KC = KA + UA − UC , or

1
2
mvC

2 =
1
2
mv0

2 +mgh−mgh
2
,

or

vB =

√
v0

2 + 2g
h

2
=
√
v0

2 + gh.

(c) At D KD = KA + UA − UD, or

1
2
mvD

2 =
1
2
mv0

2 +mgh−mg(0),

or
vB =

√
v0

2 + 2gh.

E12-10 From the slope of the graph, k = (0.4 N)/(0.04 m) = 10 N/m.
(a) ∆K = −∆U , so 1

2mvf
2 = 1

2kxi
2, or

vf =

√
(10 N/m)

(0.00380 kg)
(0.0550 m) = 2.82 m/s.

(b) ∆K = −∆U , so 1
2mvf

2 = 1
2k(xi

2 − xf
2), or

vf =

√
(10 N/m)

(0.00380 kg)
[(0.0550 m)2 − (0.0150 m)2] = 2.71 m/s.

E12-11 (a) The force constant of the spring is

k = F/x = mg/x = (7.94 kg)(9.81 m/s2)/(0.102 m) = 764 N/m.

(b) The potential energy stored in the spring is given by Eq. 12-8,

U =
1
2
kx2 =

1
2

(764 N/m)(0.286 m + 0.102 m)2 = 57.5 J.

(c) Conservation of energy,

Kf + U f = K i + U i,
1
2
mvf

2 +mgyf +
1
2
kxf

2 =
1
2
mvi

2 +mgyi +
1
2
kxi

2,

1
2

(0)2 +mgh+
1
2
k(0)2 =

1
2

(0)2 +mg(0) +
1
2
kxi

2.

Rearranging,

h =
k

2mg
xi

2 =
(764 N/m)

2(7.94 kg)(9.81 m/s2)
(0.388 m)2 = 0.738 m.
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E12-12 The annual mass of water is m = (1000 kg/m3)(8× 1012m2)(0.75 m). The change in
potential energy each year is then ∆U = −mgy, where y = −500 m. The power available is then

P =
1
3

(1000 kg/m3)(8×1012m2)
(0.75 m)

(3.15×107m)
(500 m) = 3.2×107W.

E12-13 (a) From kinematics, v = −gt, so K = 1
2mg

2t2 and U = U0 −K = mgh− 1
2mg

2t2.
(b) U = mgy so K = U0 − U = mg(h− y).

E12-14 The potential energy is the same in both cases. Consequently, mgE∆yE = mgM∆yM, and
then

yM = (2.05 m− 1.10 m)(9.81 m/s2)/(1.67 m/s2) + 1.10 m = 6.68 m.

E12-15 The working is identical to Ex. 12-11,

Kf + U f = K i + U i,
1
2
mvf

2 +mgyf +
1
2
kxf

2 =
1
2
mvi

2 +mgyi +
1
2
kxi

2,

1
2

(0)2 +mgh+
1
2
k(0)2 =

1
2

(0)2 +mg(0) +
1
2
kxi

2,

so

h =
k

2mg
xi

2 =
(2080 N/m)

2(1.93 kg)(9.81 m/s2)
(0.187 m)2 = 1.92 m.

The distance up the incline is given by a trig relation,

d = h/ sin θ = (1.92 m)/ sin(27◦) = 4.23 m.

E12-16 The vertical position of the pendulum is y = −l cos θ, where θ is measured from the
downward vertical and l is the length of the string. The total mechanical energy of the pendulum is

E =
1
2
mvb

2

if we set U = 0 at the bottom of the path and vb is the speed at the bottom. In this case
U = mg(l + y).

(a) K = E − U = 1
2mvb

2 −mgl(1− cos θ). Then

v =
√

(8.12 m/s)2 − 2(9.81 m/s2)(3.82 kg)(1− cos 58.0◦) = 5.54 m/s.

(b) U = E −K, but at highest point K = 0. Then

θ = arccos
(

1− 1
2

(8.12 m/s)2

(9.81 m/s2)(3.82 kg)

)
= 83.1◦.

(c) E = 1
2 (1.33 kg)(8.12 m/s)2 = 43.8 J.

E12-17 The equilibrium position is when F = ky = mg. Then ∆Ug = −mgy and ∆U s =
1
2 (ky)y = 1

2mgy. So 2∆U s = −∆Ug.
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E12-18 Let the spring get compressed a distance x. If the object fell from a height h = 0.436 m,
then conservation of energy gives 1

2kx
2 = mg(x+ h). Solving for x,

x =
mg

k
±
√(mg

k

)2

+ 2
mg

k
h

only the positive answer is of interest, so

x =
(2.14 kg)(9.81 m/s2)

(1860 N/m)
±

√(
(2.14 kg)(9.81 m/s2)

(1860 N/m)

)2

+ 2
(2.14 kg)(9.81 m/s2)

(1860 N/m)
(0.436 m) = 0.111 m.

E12-19 The horizontal distance traveled by the marble is R = vtf , where tf is the time of flight
and v is the speed of the marble when it leaves the gun. We find that speed using energy conservation
principles applied to the spring just before it is released and just after the marble leaves the gun.

K i + U i = Kf + U f ,

0 +
1
2
kx2 =

1
2
mv2 + 0.

K i = 0 because the marble isn’t moving originally, and U f = 0 because the spring is no longer
compressed. Substituting R into this,

1
2
kx2 =

1
2
m

(
R

tf

)2

.

We have two values for the compression, x1 and x2, and two ranges, R1 and R2. We can put both
pairs into the above equation and get two expressions; if we divide one expression by the other we
get (

x2

x1

)2

=
(
R2

R1

)2

.

We can easily take the square root of both sides, then

x2

x1
=
R2

R1
.

R1 was Bobby’s try, and was equal to 2.20 − 0.27 = 1.93 m. x1 = 1.1 cm was his compression. If
Rhoda wants to score, she wants R2 = 2.2 m, then

x2 =
2.2 m
1.93 m

1.1 cm = 1.25 cm.

E12-20 Conservation of energy— U1 + K1 = U2 + K2— but U1 = mgh, K1 = 0, and U2 = 0, so
K2 = 1

2mv
2 = mgh at the bottom of the swing.

The net force on Tarzan at the bottom of the swing is F = mv2/r, but this net force is equal to
the tension T minus the weight W = mg. Then 2mgh/r = T −mg. Rearranging,

T = (180 lb)
(

2(8.5 ft)
(50 ft)

+ 1
)

= 241 lb.

This isn’t enough to break the vine, but it is close.
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E12-21 Let point 1 be the start position of the first mass, point 2 be the collision point, and point
3 be the highest point in the swing after the collision. Then U1 = K2, or 1

2m1v1
2 = m1gd, where v1

is the speed of m1 just before it collides with m2. Then v1 =
√

2gd.
After the collision the speed of both objects is, by momentum conservation, v2 = m1v1/(m1+m2).
Then, by energy conservation, U3 = K ′2, or 1

2 (m1 +m2)v2
2 = (m1 +m2)gy, where y is the height

to which the combined masses rise.
Combining,

y =
v2

2

2g
=

m1
2v1

2

2(m1 +m2)2g
=
(

m1

m1 +m2

)2

d.

E12-22 ∆K = −∆U , so
1
2
mv2 +

1
2
Iω2 = mgh,

where I = 1
2MR2 and ω = v/R. Combining,

1
2
mv2 +

1
4
Mv2 = mgh,

so

v =

√
4mgh

2m+M
=

√
4(0.0487 kg)(9.81 m/s2)(0.540 m)

2(0.0487 kg) + (0.396 kg)
= 1.45 m/s.

E12-23 There are three contributions to the kinetic energy: rotational kinetic energy of the shell
(Ks), rotational kinetic energy of the pulley (Kp), and translational kinetic energy of the block
(Kb). The conservation of energy statement is then

Ks,i +Kp,i +Kb,i + U i = Ks,f +Kp,f +Kb,f + U f ,

(0) + (0) + (0) + (0) =
1
2
Isωs

2 +
1
2
Ipωp

2 +
1
2
mvb

2 +mgy.

Finally, y = −h and
ωsR = ωpr = vb.

Combine all of this together, and our energy conservation statement will look like this:

0 =
1
2

(
2
3
MR2

)(vb

R

)2

+
1
2
Ip

(vb

r

)2

+
1
2
mvb

2 −mgh

which can be fairly easily rearranged into

vb
2 =

2mgh
2M/3 + IP/r2 +m

.

E12-24 The angular speed of the flywheel and the speed of the car are related by

k =
ω

v
=

(1490 rad/s)
(24.0 m/s)

= 62.1 rad/m.

The height of the slope is h = (1500 m) sin(5.00◦) = 131 m. The rotational inertia of the flywheel is

I =
1
2

(194 N)
(9.81 m/s2)

(0.54 m)2 = 2.88 kg ·m2.
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(a) Energy is conserved as the car moves down the slope: U i = Kf , or

mgh =
1
2
mv2 +

1
2
Iω2 =

1
2
mv2 +

1
2
Ik2v2,

or

v =

√
2mgh
m+ Ik2

=

√
2(822 kg)(9.81 m/s2)(131 m)

(822 kg) + (2.88 kg ·m2)(62.1 rad/m)2
= 13.3 m/s,

or 47.9 m/s.
(b) The average speed down the slope is 13.3 m/s/2 = 6.65 m/s. The time to get to the bottom

is t = (1500 m)/(6.65 m/s) = 226 s. The angular acceleration of the disk is

α =
ω

t
=

(13.3 m/s)(62.1 rad/m)
(226 s)

= 3.65 rad/s2
.

(c) P = τω = Iαω, so

P = (2.88 kg ·m2)(3.65 rad/s2)(13.3 m/s)(62.1 rad/m) = 8680 W.

E12-25 (a) For the solid sphere I = 2
5mr

2; if it rolls without slipping ω = v/r; conservation of
energy means K i = U f . Then

1
2
mv2 +

1
2

(
2
5
mr2

)(v
r

)2

= mgh.

or

h =
(5.18 m/s)2

2(9.81 m/s2)
+

(5.18 m/s)2

5(9.81 m/s2)
= 1.91 m.

The distance up the incline is (1.91 m)/ sin(34.0◦) = 3.42 m.
(b) The sphere will travel a distance of 3.42 m with an average speed of 5.18 m/2, so t =

(3.42 m)/(2.59 m/s) = 1.32 s. But wait, it goes up then comes back down, so double this time to get
2.64 s.

(c) The total distance is 6.84 m, so the number of rotations is (6.84 m)/(0.0472 m)/(2π) = 23.1.

E12-26 Conservation of energy means 1
2mv

2 + 1
2Iω

2 = mgh. But ω = v/r and we are told
h = 3v2/4g, so

1
2
mv2 +

1
2
I
v2

r2
= mg

3v2

4g
,

or

I = 2r2

(
3
4
m− 1

2
m

)
=

1
2
mr2,

which could be a solid disk or cylinder.

E12-27 We assume the cannon ball is solid, so the rotational inertia will be I = (2/5)MR2

The normal force on the cannon ball will be N = Mg, where M is the mass of the bowling ball.
The kinetic friction on the cannon ball is Ff = µkN = µkMg. The magnitude of the net torque on
the bowling ball while skidding is then τ = µkMgR.

Originally the angular momentum of the cannon ball is zero; the final angular momentum will
have magnitude l = Iω = Iv/R, where v is the final translational speed of the ball.

The time requires for the cannon ball to stop skidding is the time required to change the angular
momentum to l, so

∆t =
∆l
τ

=
(2/5)MR2v/R

µkMgR
=

2v
5µkg

.
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Since we don’t know ∆t, we can’t solve this for v. But the same time through which the angular
momentum of the ball is increasing the linear momentum of the ball is decreasing, so we also have

∆t =
∆p
−Ff

=
Mv −Mv0

−µkMg
=
v0 − v
µkg

.

Combining,

2v
5µkg

=
v0 − v
µkg

,

2v = 5(v0 − v),
v = 5v0/7

E12-28

0 1 2 3 4 5 6

0

1

2

3

4

0 1 2 3 4 5 6

-2

-1

0

1

2

F(
x)

 (
N

)

K
(x

) 
(J

)
x (m)x(m)

E12-29 (a) F = −∆U/∆x = −[(−17 J)− (−3 J)]/[(4 m)− (1 m)] = 4.7 N.
(b) The total energy is 1

2 (2.0 kg)(−2.0 m/s)2 + (−7 J), or −3 J. The particle is constrained to
move between x = 1 m and x = 14 m.

(c) When x = 7 m K = (−3 J)− (−17 J) = 14 J. The speed is v =
√

2(14 J)/(2.0 kg) = 3.7 m/s.

E12-30 Energy is conserved, so
1
2
mv2

0 =
1
2
mv2 +mgy,

or
v =

√
v2

0 − 2gy,

which depends only on y.

E12-31 (a) We can find Fx and Fy from the appropriate derivatives of the potential,

Fx = −∂U
∂x

= −kx,

Fy = −∂U
∂y

= −ky.

The force at point (x, y) is then

~F = Fx î + Fy ĵ = −kx̂i− kyĵ.

(b) Since the force vector points directly toward the origin there is no angular component, and
Fθ = 0. Then Fr = −kr where r is the distance from the origin.

(c) A spring which is attached to a point; the spring is free to rotate, perhaps?
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E12-32 (a) By symmetry we expect Fx, Fy, and Fz to all have the same form.

Fx = −∂U
∂x

=
−kx

(x2 + y2 + z2)3/2
,

with similar expressions for Fy and Fz. Then

~F =
−k

(x2 + y2 + z2)3/2
(x̂i + yĵ + zk̂).

(b) In spherical polar coordinates r2 = x2 + y2 + z2. Then U = −k/r and

Fr = −∂U
∂r

= − k

r2
.

E12-33 We’ll just do the paths, showing only non-zero terms.
Path 1: W =

∫ b
0

(−k2a) dy) = −k2ab.
Path 2: W =

∫ a
0

(−k1b) dx) = −k1ab.
Path 3: W = (cosφ sinφ)

∫ d
0

(−k1 − k2)r dr = −(k1 + k2)ab/2.
These three are only equal if k1 = k2.

P12-1 (a) We need to integrate an expression like

−
∫ z

∞

k

(z + l)2
dz =

k

z + l
.

The second half is dealt with in a similar manner, yielding

U(z) =
k

z + l
− k

z − l
.

(b) If z � l then we can expand the denominators, then

U(z) =
k

z + l
− k

z − l
,

≈
(
k

z
− kl

z2

)
−
(
k

z
+
kl

z2

)
,

= −2kl
z2
.

P12-2 The ball just reaches the top, so K2 = 0. Then K1 = U2 − U1 = mgL, so v1 =√
2(mgL)/m =

√
2gL.

P12-3 Measure distances along the incline by x, where x = 0 is measured from the maximally
compressed spring. The vertical position of the mass is given by x sin θ. For the spring k =
(268 N)/(0.0233 m) = 1.15×104 N/m. The total energy of the system is

1
2

(1.15×104 N/m)(0.0548 m)2 = 17.3 J.

(a) The block needs to have moved a vertical distance x sin(32.0◦), where

17.3 J = (3.18 kg)(9.81 m/s2)x sin(32.0◦),

or x = 1.05 m.
(b) When the block hits the top of the spring the gravitational potential energy has changed by

∆U = −(3.18 kg)(9.81 m/s2)(1.05 m− 0.0548 m) sin(32.0◦) = 16.5, J;

hence the speed is v =
√

2(16.5 J)/(3.18 kg) = 3.22 m/s.
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P12-4 The potential energy associated with the hanging part is

U =
∫ 0

−L/4

M

L
gy dy =

Mg

2L
y2

∣∣∣∣0
−L/4

= −MgL

32
,

so the work required is W = MgL/32.

P12-5 (a) Considering points P and Q we have

KP + UP = KQ + UQ,

(0) +mg(5R) =
1
2
mv2 +mg(R),

4mgR =
1
2
mv2,√

8gR = v.

There are two forces on the block, the normal force from the track,

N =
mv2

R
=
m(8gR)

R
= 8mg,

and the force of gravity W = mg. They are orthogonal so

F net =
√

(8mg)2 + (mg)2 =
√

65 mg

and the angle from the horizontal by

tan θ =
−mg
8mg

= −1
8
,

or θ = 7.13◦ below the horizontal.
(b) If the block barely makes it over the top of the track then the speed at the top of the loop

(point S, perhaps?) is just fast enough so that the centripetal force is equal in magnitude to the
weight,

mvS
2/R = mg.

Assume the block was released from point T . The energy conservation problem is then

KT + UT = KS + US ,

(0) +mgyT =
1
2
mv2

S +mgyS ,

yT =
1
2

(R) +m(2R),

= 5R/2.

P12-6 The wedge slides to the left, the block to the right. Conservation of momentum requires
Mvw +mvb,x = 0. The block is constrained to move on the surface of the wedge, so

tanα =
vb,y

vb,x − vw
,

or
vb,y = vb,x tanα(1 +m/M).
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Conservation of energy requires

1
2
mvb

2 +
1
2
Mvw

2 = mgh.

Combining,

1
2
m
(
vb,x

2 + vb,y
2
)

+
1
2
M
(m
M
vb,x

)2

= mgh,(
tan2 α(1 +m/M)2 + 1 +

m

M

)
vb,x

2 = 2gh,(
sin2 α(M +m)2 +M2 cos2 α+mM cos2 α

)
vb,x

2 = 2M2gh cos2 α,(
M2 +mM +mM sin2 α+m2 sin2 α

)
vb,x

2 = 2M2gh cos2 α,(
(M +m)(M +m sin2 α)

)
vb,x

2 = 2M2gh cos2 α,

or

vb,x = M cosα

√
2gh

(M +m)(M +m sin2 α)
.

Then

vw = −m cosα

√
2gh

(M +m)(M +m sin2 α)
.

P12-7 U(x) = −
∫
Fx dx = −Ax2/2−Bx3/3.

(a) U = −(−3.00 N/m)(2.26 m)2/2− (−5.00 N/m2)(2.26 m)3/3 = 26.9 J.
(b) There are two points to consider:

U1 = −(−3.00 N/m)(4.91 m)2/2− (−5.00 N/m2)(4.91 m)3/3 = 233 J,
U2 = −(−3.00 N/m)(1.77 m)2/2− (−5.00 N/m2)(1.77 m)3/3 = 13.9 J,

K1 =
1
2

(1.18kg)(4.13 m/s)2 = 10.1 J.

Then

v2 =

√
2(10.1 J + 233 J− 13.9 J)

(1.18 kg)
= 19.7 m/s.

P12-8 Assume that U0 = K0 = 0. Then conservation of energy requires K = −U ; consequently,
v =

√
2g(−y).

(a) v =
√

2(9.81 m/s2)(1.20 m) = 4.85 m/s.
(b) v =

√
2(9.81 m/s2)(1.20 m− 0.45 m− 0.45 m) = 2.43 m/s.

P12-9 Assume that U0 = K0 = 0. Then conservation of energy requires K = −U ; consequently,
v =

√
2g(−y). If the ball barely swings around the top of the peg then the speed at the top of the

loop is just fast enough so that the centripetal force is equal in magnitude to the weight,

mv2/R = mg.

The energy conservation problem is then

mv2 = 2mg(L− 2(L− d)) = 2mg(2d− L)
mg(L− d) = 2mg(2d− L),

d = 3L/5.
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P12-10 The speed at the top and the speed at the bottom are related by

1
2
mvb

2 =
1
2
mvt

2 + 2mgR.

The magnitude of the net force is F = mv2/R, the tension at the top is

T t = mvt
2/R−mg,

while tension at the bottom is
T b = mvb

2/R+mg,

The difference is
∆T = 2mg +m(vb

2 − vt
2)/R = 2mg + 4mg = 6mg.

P12-11 Let the angle θ be measured from the horizontal to the point on the hemisphere where
the boy is located. There are then two components to the force of gravity— a component tangent
to the hemisphere, W|| = mg cos θ, and a component directed radially toward the center of the
hemisphere, W⊥ = mg sin θ.

While the boy is in contact with the hemisphere the motion is circular so

mv2/R = W⊥ −N.

When the boy leaves the surface we have mv2/R = W⊥, or mv2 = mgR sin θ. Now for energy
conservation,

K + U = K0 + U0,
1
2
mv2 +mgy =

1
2
m(0)2 +mgR,

1
2
gR sin θ +mgy = mgR,

1
2
y + y = R,

y = 2R/3.

P12-12 (a) To be in contact at the top requires mvt
2/R = mg. The speed at the bottom would

be given by energy conservation

1
2
mvb

2 =
1
2
mvt

2 + 2mgR,

so vb =
√

5gR is the speed at the bottom that will allow the object to make it around the circle
without loosing contact.

(b) The particle will lose contact with the track if mv2/R ≤ mg sin θ. Energy conservation gives

1
2
mv2

0 =
1
2
mv2 +mgR(1 + sin θ)

for points above the half-way point. Then the condition for “sticking” to the track is

1
R
v2

0 − 2g(1 + sin θ) ≤ g sin θ,

or, if v0 = 0.775vm,
5(0.775)2 − 2 ≤ 3 sin θ,

or θ = arcsin(1/3).
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P12-13 The rotational inertia is

I =
1
3
ML2 +ML2 =

4
3
ML2.

Conservation of energy is
1
2
Iω2 = 3Mg(L/2),

so ω =
√

9g/(4L).

P12-14 The rotational speed of the sphere is ω = v/r; the rotational kinetic energy is Kr =
1
2Iω

2 = 1
5mv

2.
(a) For the marble to stay on the track mv2/R = mg at the top of the track. Then the marble

needs to be released from a point

mgh =
1
2
mv2 +

1
5
mv2 + 2mgR,

or h = R/2 +R/5 + 2R = 2.7R.
(b) Energy conservation gives

6mgR =
1
2
mv2 +

1
5
mv2 +mgR,

or mv2/R = 50mg/7. This corresponds to the horizontal force acting on the marble.

P12-15 1
2mv

2
0 +mgy = 0, where y is the distance beneath the rim, or y = −r cos θ0. Then

v0 =
√
−2gy =

√
2gr cos θ0.

P12-16 (a) For E1 the atoms will eventually move apart completely.
(b) For E2 the moving atom will bounce back and forth between a closest point and a farthest

point.
(c) U ≈ −1.2×10−19J.
(d) K = E1 − U ≈ 2.2×10−19J.
(e) Find the slope of the curve, so

F ≈ − (−1×10−19J)− (−2×10−19J)
(0.3×10−9m)− (0.2×10−9m)

= −1×10−9N,

which would point toward the larger mass.

P12-17 The function needs to fall off at infinity in both directions; an exponential envelope
would work, but it will need to have an −x2 term to force the potential to zero on both sides. So we
propose something of the form

U(x) = P (x)e−βx
2

where P (x) is a polynomial in x and β is a positive constant.
We proposed the polynomial because we need a symmetric function which has two zeroes. A

quadratic of the form αx2−U0 would work, it has two zeroes, a minimum at x = 0, and is symmetric.
So our trial function is

U(x) =
(
αx2 − U0

)
e−βx

2
.
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This function should have three extrema. Take the derivative, and then we’ll set it equal to zero,

dU

dx
= 2αxe−βx

2
− 2

(
αx2 − U0

)
βxe−βx

2
.

Setting this equal to zero leaves two possibilities,

x = 0,
2α− 2

(
αx2 − U0

)
β = 0.

The first equation is trivial, the second is easily rearranged to give

x = ±

√
α+ βU0

βα

These are the points ±x1. We can, if we wanted, try to find α and β from the picture, but you
might notice we have one equation, U(x1) = U1 and two unknowns. It really isn’t very illuminating
to take this problem much farther, but we could.

(b) The force is the derivative of the potential; this expression was found above.
(c) As long as the energy is less than the two peaks, then the motion would be oscillatory, trapped

in the well.

P12-18 (a) F = −∂U/∂r, or

F = −U0

(
r0

r2
+

1
r

)
e−r/r0 .

(b) Evaluate the force at the four points:

F (r0) = −2(U0/r0)e−1,

F (2r0) = −(3/4)(U0/r0)e−2,

F (4r0) = −(5/16)(U0/r0)e−4,

F (10r0) = −(11/100)(U0/r0)e−10.

The ratios are then

F (2r0)/F (r0) = (3/8)e−1 = 0.14,
F (4r0)/F (r0) = (5/32)e−3 = 7.8×10−3,

F (10r0)/F (r0) = (11/200)e−9 = 6.8×10−6.
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