
E11-1 (a) Apply Eq. 11-2, W = Fs cosφ = (190 N)(3.3 m) cos(22◦) = 580 J.
(b) The force of gravity is perpendicular to the displacement of the crate, so there is no work

done by the force of gravity.
(c) The normal force is perpendicular to the displacement of the crate, so there is no work done

by the normal force.

E11-2 (a) The force required is F = ma = (106 kg)(1.97 m/s2) = 209 N. The object moves with
an average velocity vav = v0/2 in a time t = v0/a through a distance x = vavt = v2

0/(2a). So

x = (51.3 m/s)2/[2(1.97 m/s2)] = 668 m.

The work done is W = Fx = (−209 N)(668 m) = 1.40×105J.
(b) The force required is

F = ma = (106 kg)(4.82 m/s2) = 511 N.

x = (51.3 m/s)2/[2(4.82 m/s2)] = 273 m. The work done is W = Fx = (−511 N)(273 m) = 1.40×105J.

E11-3 (a) W = Fx = (120 N)(3.6 m) = 430 J.
(b) W = Fx cos θ = mgx cos θ = (25 kg)(9.8 m/s2)(3.6 m) cos(117◦) = 400 N.
(c) W = Fx cos θ, but θ = 90◦, so W = 0.

E11-4 The worker pushes with a force ~P; this force has components Px = P cos θ and Py = P sin θ,
where θ = −32.0◦. The normal force of the ground on the crate is N = mg − Py, so the force of
friction is f = µkN = µk(mg − Py). The crate moves at constant speed, so Px = f . Then

P cos θ = µk(mg − P sin θ),

P =
µkmg

cos θ + µk sin θ
.

The work done on the crate is

W = ~P · ~x = Px cos θ =
µkxmg

1 + µk tan θ
,

=
(0.21)(31.3 ft)(58.7 lb)
1 + (0.21) tan(−32.0◦)

= 444 ft · lb.

E11-5 The components of the weight are W|| = mg sin θ and W⊥ = mg cos θ. The push ~P has
components P|| = P cos θ and P⊥ = P sin θ.

The normal force on the trunk is N = W⊥ + P⊥ so the force of friction is f = µk(mg cos θ +
P sin θ). The push required to move the trunk up at constant speed is then found by noting that
P|| = W|| + f .

Then

P =
mg(tan θ + µk)

1− µk tan θ
.

(a) The work done by the applied force is

W = Px cos θ =
(52.3 kg)(9.81 m/s2)[sin(28.0◦) + (0.19) cos(28.0◦)](5.95 m)

1− (0.19) tan(28.0◦)
= 2160 J.

(b) The work done by the force of gravity is

W = mgx cos(θ + 90◦) = (52.3 kg)(9.81 m/s2)(5.95 m) cos(118◦) = −1430 J.
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E11-6 θ = arcsin(0.902 m/1.62 m) = 33.8◦.
The components of the weight are W|| = mg sin θ and W⊥ = mg cos θ.
The normal force on the ice is N = W⊥ so the force of friction is f = µkmg cos θ. The push

required to allow the ice to slide down at constant speed is then found by noting that P = W|| − f .
Then P = mg(sin θ − µk cos θ).

(a) P = (47.2 kg)(9.81 m/s2)[sin(33.8◦)− (0.110) cos(33.8◦)] = 215 N.
(b) The work done by the applied force is W = Px = (215 N)(−1.62 m) = −348 J.
(c) The work done by the force of gravity is

W = mgx cos(90◦ − θ) = (47.2 kg)(9.81 m/s2)(1.62 m) cos(56.2◦) = 417 J.

E11-7 Equation 11-5 describes how to find the dot product of two vectors from components,

~a · ~b = axbx + ayby + azbz,

= (3)(2) + (3)(1) + (3)(3) = 18.

Equation 11-3 can be used to find the angle between the vectors,

a =
√

(3)2 + (3)2 + (3)2 = 5.19,

b =
√

(2)2 + (1)2 + (3)2 = 3.74.

Now use Eq. 11-3,

cosφ =
~a · ~b
ab

=
(18)

(5.19)(3.74)
= 0.927,

and then φ = 22.0◦.

E11-8 ~a · ~b = (12)(5.8) cos(55◦) = 40.

E11-9 ~r ·~s = (4.5)(7.3) cos(320◦ − 85◦) = −19.

E11-10 (a) Add the components individually:

~r = (5 + 2 + 4)̂i + (4− 2 + 3)̂j + (−6− 3 + 2)k̂ = 11̂i + 5ĵ− 7k̂.

(b) θ = arccos(−7/
√

112 + 52 + 72) = 120◦.
(c) θ = arccos(~a · ~b/

√
ab), or

θ =
(5)(−2) + (4)(2) + (−6)(3)√
(52 + 42 + 62)(22 + 22 + 32)

= 124◦.

E11-11 There are two forces on the woman, the force of gravity directed down and the normal
force of the floor directed up. These will be effectively equal, so N = W = mg. Consequently, the
57 kg woman must exert a force of F = (57kg)(9.8m/s2) = 560N to propel herself up the stairs.

From the reference frame of the woman the stairs are moving down, and she is exerting a force
down, so the work done by the woman is given by

W = Fs = (560 N)(4.5 m) = 2500 J,

this work is positive because the force is in the same direction as the displacement.
The average power supplied by the woman is given by Eq. 11-7,

P = W/t = (2500 J)/(3.5 s) = 710 W.
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E11-12 P = W/t = mgy/t = (100× 667 N)(152 m)/(55.0 s) = 1.84×105W.

E11-13 P = Fv = (110 N)(0.22 m/s) = 24 W.

E11-14 F = P/v, but the units are awkward.

F =
(4800 hp)
(77 knots)

1 knot
1.688 ft/s

1 ft/s
0.3048 m/s

745.7 W
1 hp

= 9.0×104N.

E11-15 P = Fv = (720 N)(26 m/s) = 19000 W; in horsepower, P = 19000 W(1/745.7 hp/W) =
25 hp.

E11-16 Change to metric units! Then P = 4920 W, and the flow rate is Q = 13.9 L/s. The
density of water is approximately 1.00 kg/L , so the mass flow rate is R = 13.9 kg/s.

y =
P

gR
=

(4920 kg)
(9.81 m/s2)(13.9 kg/s)

= 36.1 m,

which is the same as approximately 120 feet.

E11-17 (a) Start by converting kilowatt-hours to Joules:

1 kW · h = (1000 W)(3600 s) = 3.6×106 J.

The car gets 30 mi/gal, and one gallon of gas produces 140 MJ of energy. The gas required to
produce 3.6×106J is

3.6×106J
(

1 gal
140×106J

)
= 0.026 gal.

The distance traveled on this much gasoline is

0.026 gal
(

30 mi
1 gal

)
= 0.78 mi.

(b) At 55 mi/h, it will take

0.78 mi
(

1 hr
55 mi

)
= 0.014 h = 51 s.

The rate of energy expenditure is then (3.6×106 J)/(51 s) = 71000 W.

E11-18 The linear speed is v = 2π(0.207 m)(2.53 rev/s) = 3.29 m/s. The frictional force is f =
µkN = (0.32)(180 N) = 57.6 N. The power developed is P = Fv = (57.6 N)(3.29 m) = 190 W.

E11-19 The net force required will be (1380 kg − 1220 kg)(9.81 m/s2) = 1570 N. The work is
W = Fy, the power output is P = W/t = (1570 N)(54.5 m)/(43.0 s) = 1990 W, or P = 2.67 hp.

E11-20 (a) The momentum change of the ejected material in one second is

∆p = (70.2 kg)(497 m/s− 184 m/s) + (2.92 kg)(497 m/s) = 2.34×104kg ·m/s.

The thrust is then F = ∆p/∆t = 2.34×104N.
(b) The power is P = Fv = (2.34×104 N)(184 m/s) = 4.31×106W. That’s 5780 hp.
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E11-21 The acceleration on the object as a function of position is given by

a =
20 m/s2

8 m
x,

The work done on the object is given by Eq. 11-14,

W =
∫ 8

0

Fxdx =
∫ 8

0

(10 kg)
20 m/s2

8 m
x dx = 800 J.

E11-22 Work is area between the curve and the line F = 0. Then

W = (10 N)(2 s) +
1
2

(10 N)(2 s) +
1
2

(−5 N)(2 s) = 25 J.

E11-23 (a) For a spring, F = −kx, and ∆F = −k∆x.

k = −∆F
∆x

= − (−240 N)− (−110 N)
(0.060 m)− (0.040 m)

= 6500 N/m.

With no force on the spring,

∆x = −∆F
k

= − (0)− (−110 N)
(6500 N/m)

= −0.017 m.

This is the amount less than the 40 mm mark, so the position of the spring with no force on it is 23
mm.

(b) ∆x = −10 mm compared to the 100 N picture, so

∆F = −k∆x = −(6500 N/m)(−0.010 m) = 65 N.

The weight of the last object is 110 N− 65 N = 45 N.

E11-24 (a) W = 1
2k(xf

2 − xi
2) = 1

2 (1500 N/m)(7.60×10−3m)2 = 4.33×10−2J.
(b) W = 1

2 (1500 N/m)[(1.52×10−2m)2 − (7.60×10−3m)2 = 1.30×10−1J.

E11-25 Start with Eq. 11-20, and let Fx = 0 while Fy = −mg:

W =
∫ f

i

(Fxdx+ Fydy) = −mg
∫ f

i

dy = −mgh.

E11-26 (a) F0 = mv2
0/r0 = (0.675 kg)(10.0 m/s)2/(0.500 m) = 135 N.

(b) Angular momentum is conserved, so v = v0(r0/r). The force then varies as F = mv2/r =
mv2

0r
2
0/r

3 = F0(r0/r)3. The work done is

W =
∫
~F · ~dr =

(−135 N)(0.500 m)3

−2
(
(0.300 m)−2 − (0.500 m)−2

)
= 60.0 J.

E11-27 The kinetic energy of the electron is

4.2 eV
(

1.60× 10−19 J
1 eV

)
= 6.7× 10−19 J.

Then

v =

√
2K
m

=

√
2(6.7×10−19J)
(9.1×10−31kg)

= 1.2×106m/s.
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E11-28 (a) K = 1
2 (110 kg)(8.1 m/s)2 = 3600 J.

(b) K = 1
2 (4.2×10−3kg)(950 m/s)2 = 1900 J.

(c) m = 91, 400 tons(907.2 kg/ton) = 8.29×107kg;

v = 32.0 knots(1.688 ft/s/knot)(0.3048 m/ft) = 16.5 m/s.

K =
1
2

(8.29×107kg)(16.5 m/s)2 = 1.13×1010J.

E11-29 (b) ∆K = W = Fx = (1.67×10−27kg)(3.60×1015m/s2)(0.0350 m) = 2.10×10−13J. That’s
2.10×10−13J/(1.60×10−19J/eV) = 1.31×106eV.

(a) Kf = 2.10×10−13J + 1
2 (1.67×10−27kg)(2.40×107m/s2) = 6.91×10−13J. Then

vf =
√

2K/m =
√

2(6.91×10−13J)/(1.67×10−27kg) = 2.88×107m/s.

E11-30 Work is negative if kinetic energy is decreasing. This happens only in region CD. The
work is zero in region BC. Otherwise it is positive.

E11-31 (a) Find the velocity of the particle by taking the time derivative of the position:

v =
dx

dt
= (3.0 m/s)− (8.0 m/s2)t+ (3.0 m/s3)t2.

Find v at two times: t = 0 and t = 4 s.

v(0) = (3.0 m/s)− (8.0 m/s2)(0) + (3.0 m/s3)(0)2 = 3.0 m/s,
v(4) = (3.0 m/s)− (8.0 m/s2)(4.0 s) + (3.0 m/s3)(4.0 s)2 = 19.0 m/s

The initial kinetic energy is K i = 1
2 (2.80 kg)(3.0 m/s)2 = 13 J, while the final kinetic energy is

Kf = 1
2 (2.80 kg)(19.0 m/s)2 = 505 J.

The work done by the force is given by Eq. 11-24,

W = Kf −K i = 505 J− 13 J = 492 J.

(b) This question is asking for the instantaneous power when t = 3.0 s. P = Fv, so first find a;

a =
dv

dt
= −(8.0 m/s2) + (6.0 m/s3)t.

Then the power is given by P = mav, and when t = 3 s this gives

P = mav = (2.80 kg)(10 m/s2)(6 m/s) = 168 W.

E11-32 W = ∆K = −K i. Then

W = −1
2

(5.98×1024kg)(29.8×103m/s)2 = 2.66×1033J.

E11-33 (a) K = 1
2 (1600 kg)(20 m/s)2 = 3.2×105J.

(b) P = W/t = (3.2×105J)/(33 s) = 9.7×103W.
(c) P = Fv = mav = (1600 kg)(20 m/s/33.0 s)(20 m/s) = 1.9×104W.

E11-34 (a) I = 1.40×104u · pm2(1.66×10−27kg/mboxu) = 2.32×10−47kg ·m2.
(b) K = 1

2Iω
2 = 1

2 (2.32×10−47kg ·m2)(4.30×1012 rad/s)2 = 2.14×10−22J. That’s 1.34 meV.
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E11-35 The translational kinetic energy is Kt = 1
2mv

2, the rotational kinetic energy is Kr =
1
2Iω

2 = 2
3Kt. Then

ω =

√
2m
3I

v =

√
2(5.30×10−26kg)

3(1.94×10−46kg ·m2)
(500 m/s) = 6.75×1012 rad/s.

E11-36 Kr = 1
2Iω

2 = 1
4 (512 kg)(0.976 m)2(624 rad/s)2 = 4.75×107J.

(b) t = W/P = (4.75×107J)/(8130 W) = 5840 s, or 97.4 minutes.

E11-37 From Eq. 11-29, K i = 1
2Iωi

2. The object is a hoop, so I = MR2. Then

K i =
1
2
MR2ω2 =

1
2

(31.4 kg)(1.21 m)2(29.6 rad/s)2 = 2.01× 104 J.

Finally, the average power required to stop the wheel is

P =
W

t
=
Kf −K i

t
=

(0)− (2.01× 104 J)
(14.8 s)

= −1360 W.

E11-38 The wheels are connected by a belt, so rAωA = rBωB , or ωA = 3ωB .
(a) If lA = lB then

IA
IB

=
lA/ωA
lB/ωB

=
ωB
ωA

=
1
3
.

(b) If instead KA = KB then

IA
IB

=
2KA/ωA

2

2KB/ωB2
=
ωB

2

ωA2
=

1
9
.

E11-39 (a) ω = 2π/T , so

K =
1
2
Iω2 =

4π2

5
(5.98×1024kg)(6.37×106m)2

(86, 400 s)2
= 2.57×1029J

(b) t = (2.57×1029J)/(6.17×1012W) = 4.17×1016s, or 1.3 billion years.

E11-40 (a) The velocities relative to the center of mass are m1v1 = m2v2; combine with v1 + v2 =
910.0 m/s and get

(290.0 kg)v1 = (150.0 kg)(910 m/s− v1),

or
v1 = (150 kg)(910 m/s)/(290 kg + 150 kg) = 310 m/s

and v2 = 600 m/s. The rocket case was sent back, so vc = 7600 m/s − 310 m/s = 7290 m/s. The
payload capsule was sent forward, so vp = 7600 m/s + 600 m/s = 8200 m/s.

(b) Before,

K i =
1
2

(290 kg + 150 kg)(7600 m/s)2 = 1.271×1010J.

After,

Kf =
1
2

(290 kg)(7290 m/s)2 +
1
2

(150 kg)(8200 m/s)2 = 1.275×1010J.

The “extra” energy came from the spring.
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E11-41 Let the mass of the freight car be M and the initial speed be vi. Let the mass of the
caboose be m and the final speed of the coupled cars be vf . The caboose is originally at rest, so the
expression of momentum conservation is

Mvi = Mvf +mvf = (M +m)vf

The decrease in kinetic energy is given by

K i −Kf =
1
2
Mvi

2 −
(

1
2
Mvf

2 +
1
2
mvf

2

)
,

=
1
2
(
Mvi

2 − (M +m)vf
2
)

What we really want is (K i −Kf)/K i, so

K i −Kf

K i
=

Mvi
2 − (M +m)vf

2

Mvi
2

,

= 1− M +m

M

(
vf

vi

)2

,

= 1− M +m

M

(
M

M +m

)2

,

where in the last line we substituted from the momentum conservation expression.
Then

K i −Kf

K i
= 1− M

M +m
= 1− Mg

Mg +mg
.

The left hand side is 27%. We want to solve this for mg, the weight of the caboose. Upon rearranging,

mg =
Mg

1− 0.27
−Mg =

(35.0 ton)
(0.73)

− (35.0 ton) = 12.9 ton.

E11-42 Since the body splits into two parts with equal mass then the velocity gained by one is
identical to the velocity “lost” by the other. The initial kinetic energy is

K i =
1
2

(8.0 kg)(2.0 m/s)2 = 16 J.

The final kinetic energy is 16 J greater than this, so

Kf = 32 J =
1
2

(4.0 kg)(2.0 m/s + v)2 +
1
2

(4.0 kg)(2.0 m/s− v)2,

=
1
2

(8.0 kg)[(2.0 m/s)2 + v2],

so 16.0 J = (4.0 kg)v2. Then v = 2.0 m/s; one chunk comes to a rest while the other moves off at a
speed of 4.0 m/s.

E11-43 The initial velocity of the neutron is v0 î, the final velocity is v1ĵ. By momentum conser-
vation the final momentum of the deuteron is mn(v0 î− v1ĵ). Then mdv2 = mn

√
v2

0 + v2
1 .

There is also conservation of kinetic energy:
1
2
mnv

2
0 =

1
2
mnv

2
1 +

1
2
mdv

2
2 .

Rounding the numbers slightly we have md = 2mn, then 4v2
2 = v2

0 + v2
1 is the momentum expression

and v2
0 = v2

1 + 2v2
2 is the energy expression. Combining,

2v2
0 = 2v2

1 + (v2
0 + v2

1),

or v2
1 = v2

0/3. So the neutron is left with 1/3 of its original kinetic energy.
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E11-44 (a) The third particle must have a momentum

~p3 = −(16.7×10−27kg)(6.22×106m/s)̂i + (8.35×10−27kg)(7.85×106m/s)̂j

= (−1.04̂i + 0.655ĵ)×10−19kg ·m/s.

(b) The kinetic energy can also be written as K = 1
2mv

2 = 1
2m(p/m)2 = p2/2m. Then the

kinetic energy appearing in this process is

K =
1
2

(16.7×10−27kg)(6.22×106m/s)2 +
1
2

(8.35×10−27kg)(7.85×106m/s)2

+
1

2(11.7×10−27kg)
(1.23×10−19kg ·m/s)2 = 1.23×10−12J.

This is the same as 7.66 MeV.

P11-1 Change your units! Then

F =
W

s
=

(4.5 eV)(1.6×10−19 J/eV)
(3.4×10−9 m)

= 2.1×10−10 N.

P11-2 (a) If the acceleration is −g/4 the the net force on the block is −Mg/4, so the tension in
the cord must be T = 3Mg/4.

(a) The work done by the cord is W = ~F ·~s = (3Mg/4)(−d) = −(3/4)Mgd.
(b) The work done by gravity is W = ~F ·~s = (−Mg)(−d) = Mgd.

P11-3 (a) There are four cords which are attached to the bottom load L. Each supports a tension
F , so to lift the load 4F = (840 lb) + (20.0 lb), or F = 215 lb.

(b) The work done against gravity is W = ~F ·~s = (840 lb)(12.0 ft) = 10100 ft · lb.
(c) To lift the load 12 feet each segment of the cord must be shortened by 12 ft; there are four

segments, so the end of the cord must be pulled through a distance of 48.0 ft.
(d) The work done by the applied force is W = ~F ·~s = (215 lb)(48.0 ft) = 10300 ft · lb.

P11-4 The incline has a height h where h = W/mg = (680 J)/[(75 kg)(9.81 m/s2)]. The work
required to lift the block is the same regardless of the path, so the length of the incline l is l =
W/F = (680 J)/(320 N). The angle of the incline is then

θ = arcsin
h

l
= arcsin

F

mg
= arcsin

(320 N)
(75 kg)(9.81 m/s2)

= 25.8◦.

P11-5 (a) In 12 minutes the horse moves x = (5280 ft/mi)(6.20 mi/h)(0.200 h) = 6550 ft. The
work done by the horse in that time is W = ~F ·~s = (42.0 lb)(6550 ft) cos(27.0◦) = 2.45×105 ft · lb.

(b) The power output of the horse is

P =
(2.45×105 ft · lb)

(720 s)
= 340 ft · lb/s

1 hp
550 ft · lb/s

= 0.618 hp.

P11-6 In this problem θ = arctan(28.2/39.4) = 35.5◦.
The weight of the block has components W|| = mg sin θ and W⊥ = mg cos θ. The force of friction

on the block is f = µkN = µkmg cos θ. The tension in the rope must then be

T = mg(sin θ + µk cos θ)

in order to move the block up the ramp. The power supplied by the winch will be P = Tv, so

P = (1380 kg)(9.81 m/s2)[sin(35.5◦) + (0.41) cos(35.5◦)](1.34 m/s) = 1.66×104W.
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P11-7 If the power is constant then the force on the car is given by F = P/v. But the force is
related to the acceleration by F = ma and to the speed by F = mdv

dt for motion in one dimension.
Then

F =
P

v
,

m
dv

dt
=

P

v
,

m
dx

dt

dv

dx
=

P

v
,

mv
dv

dx
=

P

v
,∫ v

0

mv2dv =
∫ x

0

Pdx,

1
3
mv3 = Px.

We can rearrange this final expression to get v as a function of x, v = (3xP/m)1/3.

P11-8 (a) If the drag is D = bv2, then the force required to move the plane forward at constant
speed is F = D = bv2, so the power required is P = Fv = bv3.

(b) P ∝ v3, so if the speed increases to 125% then P increases by a factor of 1.253 = 1.953, or
increases by 95.3%.

P11-9 (a) P = mgh/t, but m/t is the persons per minute times the average mass, so

P = (100 people/min)(75.0kg)(9.81 m/s2)(8.20 m) = 1.01×104W.

(b) In 9.50 s the Escalator has moved (0.620 m/s)(9.50 s) = 5.89 m; so the Escalator has “lifted”
the man through a distance of (5.89 m)(8.20 m/13.3 m) = 3.63 m. The man did the rest himself.

The work done by the Escalator is then W = (83.5 kg)(9.81 m/s2)(3.63 m) = 2970 J.
(c) Yes, because the point of contact is moving in a direction with at least some non-zero com-

ponent of the force. The power is

P = (83.5 m/s2)(9.81 m/s2)(0.620 m/s)(8.20 m/13.3 m) = 313 W.

(d) If there is a force of contact between the man and the Escalator then the Escalator is doing
work on the man.

P11-10 (a) dP/dv = ab− 3av2, so Pmax occurs when 3v2 = b, or v =
√
b/3.

(b) F = P/v, so dF/dv = −2v, which means F is a maximum when v = 0.
(c) No; P = 0, but F = ab.

P11-11 (b) Integrate,

W =
∫ 3x0

0

~F · d~s =
F0

x0

∫ 3x0

0

(x− x0)dx = F0x0

(
9
2
− 3
)
,

or W = 3F0x0/2.

136



P11-12 (a) Simpson’s rule gives

W =
1
3

[(10 N) + 4(2.4 N) + (0.8 N)] (1.0 m) = 6.8 J.

(b) W =
∫
F ds =

∫
(A/x2)dx = −A/x, evaluating this between the limits of integration gives

W = (9 N ·m2)(1/1 m− 1/3 m) = 6 J.

P11-13 The work required to stretch the spring from xi to xf is given by

W =
∫ xf

xi

kx3dx =
k

4
xf

4 − k

4
xi

4.

The problem gives

W0 =
k

4
(l)4 − k

4
(0)4 =

k

4
l4.

We then want to find the work required to stretch from x = l to x = 2l, so

Wl→2l =
k

4
(2l)4 − k

4
(l)4,

= 16
k

4
l4 − k

4
l4,

= 15
k

4
l4 = 15W0.

P11-14 (a) The spring extension is δl =
√
l20 + x2 − l0. The force from one spring has magnitude

kδl, but only the x component contributes to the problem, so

F = 2k
(√

l20 + x2 − l0
)

x√
l20 + x2

is the force required to move the point.
The work required is the integral, W =

∫ x
0
F dx, which is

W = kx2 − 2kl0
√
l20 + x2 + 2kl20

Note that it does reduce to the expected behavior for x� l0.
(b) Binomial expansion of square root gives√

l20 + x2 = l0

(
1 +

1
2
x2

l20
− 1

8
x4

l40
· · ·
)
,

so the first term in the above expansion cancels with the last term in W ; the second term cancels
with the first term in W , leaving

W =
1
4
k
x4

l20
.

P11-15 Number the springs clockwise from the top of the picture. Then the four forces on each
spring are

F1 = k(l0 −
√
x2 + (l0 − y)2),

F2 = k(l0 −
√

(l0 − x)2 + y2),

F3 = k(l0 −
√
x2 + (l0 + y)2),

F4 = k(l0 −
√

(l0 + x)2 + y2).
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The directions are much harder to work out, but for small x and y we can assume that

~F1 = k(l0 −
√
x2 + (l0 − y)2)̂j,

~F2 = k(l0 −
√

(l0 − x)2 + y2)̂i,
~F3 = k(l0 −

√
x2 + (l0 + y)2)̂j,

~F4 = k(l0 −
√

(l0 + x)2 + y2)̂i.

Then
W =

∫
~F · d~s =

∫
(F1 + F3)dy +

∫
(F2 + F4)dx,

Since x and y are small, expand the force(s) in a binomial expansion:

F1(x, y) ≈ F1(0, 0) +
∂F1

∂x

∣∣∣∣
x,y=0

x+
∂F1

∂y

∣∣∣∣
x,y=0

y = ky;

there will be similar expression for the other four forces. Then

W =
∫

2ky dy +
∫

2kx dx = k(x2 + y2) = kd2.

P11-16 (a) K i = 1
2 (1100 kg)(12.8 m/s)2 = 9.0×104J. Removing 51 kJ leaves 39 kJ behind, so

vf =
√

2Kf/m =
√

2(3.9×104J)/(1100 kg) = 8.4 m/s,

or 30 km/h.
(b) 39 kJ, as was found above.

P11-17 Let M be the mass of the man and m be the mass of the boy. Let vM be the original
speed of the man and vm be the original speed of the boy. Then

1
2
Mv2

M =
1
2

(
1
2
mv2

m

)
and

1
2
M(vM + 1.0 m/s)2 =

1
2
mv2

m.

Combine these two expressions and solve for vM ,

1
2
Mv2

M =
1
2

(
1
2
M(vM + 1.0 m/s)2

)
,

v2
M =

1
2

(vM + 1.0 m/s)2,

0 = −v2
M + (2.0 m/s)vM + (1.0 m/s)2.

The last line can be solved as a quadratic, and vM = (1.0 m/s) ± (1.41 m/s). Now we use the very
first equation to find the speed of the boy,

1
2
Mv2

M =
1
2

(
1
2
mv2

m

)
,

v2
M =

1
4
v2
m,

2vM = vm.
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P11-18 (a) The work done by gravity on the projectile as it is raised up to 140 m is W =
−mgy = −(0.550 kg)(9.81 m/s2)(140 m) = −755 J. Then the kinetic energy at the highest point is
1550 J − 755 J = 795 J. Since the projectile must be moving horizontally at the highest point, the
horizontal velocity is vx =

√
2(795 J)/(0.550 kg) = 53.8 m/s.

(b) The magnitude of the velocity at launch is v =
√

2(1550 J)/(0.550 kg) = 75.1 m/s. Then
vy =

√
(75.1 m/s)2 − (53.8 m/s)2 = 52.4 m/s.

(c) The kinetic energy at that point is 1
2 (0.550 kg)[(65.0 m/s)2 + (53.8 m/s)2] = 1960 J. Since it

has extra kinetic energy, it must be below the launch point, and gravity has done 410 J of work on
it. That means it is y = (410 J)/[(0.550 kg)(9.81 m/s2)] = 76.0 m below the launch point.

P11-19 (a) K = 1
2mv

2 = 1
2 (8.38× 1011kg)(3.0× 104m/s)2 = 3.77× 1020J. In terms of TNT,

K = 9.0×104 megatons.
(b) The diameter will be 3

√
8.98×104 = 45 km.

P11-20 (a) W g = −(0.263 kg)(9.81 m/s2)(−0.118 m) = 0.304 J.
(b) W s = − 1

2 (252 N/m)(−0.118 m)2 = −1.75 J.
(c) The kinetic energy just before hitting the block would be 1.75 J−0.304 J = 1.45 J. The speed

is then v =
√

2(1.45 J)/(0.263 kg) = 3.32 m/s.
(d) Doubling the speed quadruples the initial kinetic energy to 5.78 J. The compression will then

be given by

−5.78 J = −1
2

(252 N/m)y2 − (0.263 kg)(9.81 m/s2)y,

with solution y = 0.225 m.

P11-21 (a) We can solve this with a trick of integration.

W =
∫ x

0

F dx,

=
∫ x

0

max
dt

dt
dx = max

∫ t

0

dx

dt
dt

= max

∫ t

0

vx dt = max

∫ t

0

at dt,

=
1
2
ma2

xt
2.

Basically, we changed the variable of integration from x to t, and then used the fact the the accel-
eration was constant so vx = v0x + axt. The object started at rest so v0x = 0, and we are given in
the problem that vf = atf . Combining,

W =
1
2
ma2

xt
2 =

1
2
m

(
vf

tf

)2

t2.

(b) Instantaneous power will be the derivative of this, so

P =
dW

dt
= m

(
vf

tf

)2

t.
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P11-22 (a) α = (−39.0 rev/s)(2π rad/rev)/(32.0 s) = −7.66 rad/s2
.

(b) The total rotational inertia of the system about the axis of rotation is

I = (6.40 kg)(1.20 m)2/12 + 2(1.06 kg)(1.20 m/2)2 = 1.53 kg ·m2.

The torque is then τ = (1.53 kg ·m2)(7.66 rad/s2) = 11.7 N ·m.
(c) K = 1

2 (1.53 kg ·m2)(245 rad/s)2 = 4.59×104J.
(d) θ = ωavt = (39.0 rev/s/2)(32.0 s) = 624 rev.
(e) Only the loss in kinetic energy is independent of the behavior of the frictional torque.

P11-23 The wheel turn with angular speed ω = v/r, where r is the radius of the wheel and v the
speed of the car. The total rotational kinetic energy in the four wheels is then

Kr = 4
1
2
Iω2 = 2

[
1
2

(11.3 kg)r2

] [v
r

]2
= (11.3 kg)v2.

The translational kinetic energy is Kt = 1
2 (1040 kg)v2, so the fraction of the total which is due to

the rotation of the wheels is
11.3

520 + 11.3
= 0.0213 or 2.13%.

P11-24 (a) Conservation of angular momentum: ωf = (6.13 kg · m2/1.97 kg · m2)(1.22 rev/s) =
3.80 rev/s.

(b) Kr ∝ Iω2 ∝ l2/I, so

Kf/K i = I i/I f = (6.13 kg ·m2)/(1.97 kg ·m2) = 3.11.

P11-25 We did the first part of the solution in Ex. 10-21. The initial kinetic energy is (again,
ignoring the shaft),

K i =
1
2
I1~ω1,i

2,

since the second wheel was originally at rest. The final kinetic energy is

Kf =
1
2

(I1 + I2)~ωf
2,

since the two wheels moved as one. Then

K i −Kf

K i
=

1
2I1~ω1,i

2 − 1
2 (I1 + I2)~ωf

2

1
2I1~ω1,i

2
,

= 1− (I1 + I2)~ωf
2

I1~ω1,i
2

,

= 1− I1
I1 + I2

,

where in the last line we substituted from the results of Ex. 10-21.
Using the numbers from Ex. 10-21,

K i −Kf

K i
= 1− (1.27 kg·m2)

(1.27 kg·m2) + (4.85 kg·m2)
= 79.2%.
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P11-26 See the solution to P10-11.

K i =
I

2
ω2 +

m

2
v2

while
Kf =

1
2

(I +mR2)ωf
2

according to P10-11,

ωf =
Iω −mvR
I +mR2

.

Then

Kf =
1
2

(Iω −mvR)2

I +mR2
.

Finally,

∆K =
1
2

(Iω −mvR)2 − (I +mR2)(Iω2 +mv2)
I +mR2

,

= −1
2
ImR2ω2 + 2mvRIω + Imv2

I +mR2
,

= −Im
2

(Rω + v)2

I +mR2
.

P11-27 See the solution to P10-12.
(a) K i = 1

2I iωi
2, so

K i =
1
2
(
2(51.2 kg)(1.46 m)2

)
(0.945 rad/s)2 = 97.5 J.

(b) Kf = 1
2

(
2(51.2 kg)(0.470 m)2

)
(9.12 rad/s)2 = 941 J. The energy comes from the work they

do while pulling themselves closer together.

P11-28 K = 1
2mv

2 = 1
2mp

2 = 1
2m
~p · ~p. Then

Kf =
1

2m
(~pi + ∆~p) · (~pi + ∆~p),

=
1

2m
(
pi

2 + 2~pi ·∆~p + (∆p)2
)
,

∆K =
1

2m
(
2~pi ·∆~p + (∆p)2

)
.

In all three cases ∆p = (3000 N)(65.0 s) = 1.95×105N · s and pi = (2500 kg)(300 m/s) = 7.50×105kg ·
m/s.

(a) If the thrust is backward (pushing rocket forward),

∆K =
+2(7.50×105kg ·m/s)(1.95×105N · s) + (1.95×105N · s)2

2(2500 kg)
= +6.61×107J.

(b) If the thrust is forward,

∆K =
−2(7.50×105kg ·m/s)(1.95×105N · s) + (1.95×105N · s)2

2(2500 kg)
= −5.09×107J.

(c) If the thrust is sideways the first term vanishes,

∆K =
+(1.95×105N · s)2

2(2500 kg)
= 7.61×106J.
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P11-29 There’s nothing to integrate here! Start with the work-energy theorem

W = Kf −K i =
1
2
mvf

2 − 1
2
mvi

2,

=
1
2
m
(
vf

2 − vi
2
)
,

=
1
2
m (vf − vi) (vf + vi) ,

where in the last line we factored the difference of two squares. Continuing,

W =
1
2

(mvf −mvi) (vf + vi) ,

=
1
2

(∆p) (vf + vi) ,

but ∆p = J , the impulse. That finishes this problem.

P11-30 Let M be the mass of the helicopter. It will take a force Mg to keep the helicopter
airborne. This force comes from pushing the air down at a rate ∆m/∆t with a speed of v; so
Mg = v∆m/∆t. The blades sweep out a cylinder of cross sectional area A, so ∆m/∆t = ρAv.
The force is then Mg = ρAv2; the speed that the air must be pushed down is v =

√
Mg/ρA. The

minimum power is then

P = Fv = Mg

√
Mg

ρA
=

√
(1820 kg)3(9.81 m/s2)3

(1.23 kg/m3)π(4.88 m)2
= 2.49×105W.

P11-31 (a) Inelastic collision, so vf = mvi/(m+M).
(b) K = 1

2mv
2 = p2/2m, so

∆K
K i

=
1/m− 1/(m+M)

1/m
=

M

m+M
.

P11-32 Inelastic collision, so

vf =
(1.88 kg)(10.3 m/s) + (4.92 kg)(3.27 m/s)

(1.88 kg) + (4.92 kg)
= 5.21 m/s.

The loss in kinetic energy is

∆K =
(1.88 kg)(10.3 m/s)2

2
+

(4.92 kg)(3.27 m/s)2

2
− (1.88 kg + 4.92 kg)(5.21 m/s)2

2
= 33.7 J.

This change is because of work done on the spring, so

x =
√

2(33.7 J)/(1120 N/m) = 0.245 m

P11-33 ~pf ,B = ~pi,A + ~pi,B − ~pf ,A, so

~pf ,B = [(2.0 kg)(15 m/s) + (3.0 kg)(−10 m/s)− (2.0 kg)(−6.0 m/s)]̂i

+[(2.0 kg)(30 m/s) + (3.0 kg)(5.0 m/s)− (2.0 kg)(30 m/s)]̂j,

= (12 kg ·m/s)̂i + (15 kg ·m/s)̂j.
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Then ~vf ,B = (4.0 m/s)̂i + (5.0 m/s)̂j. Since K = m
2 (v2

x + v2
y), the change in kinetic energy is

∆K =
(2.0 kg)[(−6.0 m/s)2 + (30 m/s)2 − (15 m/s)2 − (30 m/s)2]

2

+
(3.0 kg)[(4.0 m/s)2 + (5 m/s)2 − (−10 m/s)2 − (5.0 m/s)2]

2
= −315 J.

P11-34 For the observer on the train the acceleration of the particle is a, the distance traveled is
xt = 1

2at
2, so the work done as measured by the train is W t = maxt = 1

2a
2t2. The final speed of

the particle as measured by the train is vt = at, so the kinetic energy as measured by the train is
K = 1

2mv
2 = 1

2m(at)2. The particle started from rest, so ∆Kt = W t.
For the observer on the ground the acceleration of the particle is a, the distance traveled is

xg = 1
2at

2 + ut, so the work done as measured by the ground is W g = maxg = 1
2a

2t2 + maut.
The final speed of the particle as measured by the ground is vg = at + u, so the kinetic energy as
measured by the ground is

Kg =
1
2
mv2 =

1
2
m(at+ u)2 =

1
2
a2t2 +maut+

1
2
mu2.

But the initial kinetic energy as measured by the ground is 1
2mu

2, so W g = ∆Kg.

P11-35 (a) K i = 1
2m1v1,i

2.
(b) After collision vf = m1v1,i/(m1 +m2), so

Kf =
1
2

(m1 +m2)
(

m1v1,i

m1 +m2

)2

=
1
2
m1v1,i

2

(
m1

m1 +m2

)
.

(c) The fraction lost was
1− m1

m1 +m2
=

m2

m1 +m2
.

(d) Note that vcm = vf . The initial kinetic energy of the system is

K i =
1
2
m1v

′
1,i

2 +
1
2
m2v

′
2,i

2.

The final kinetic energy is zero (they stick together!), so the fraction lost is 1. The amount lost,
however, is the same.

P11-36 Only consider the first two collisions, the one between m and m′, and then the one between
m′ and M .

Momentum conservation applied to the first collision means the speed of m′ will be between
v′ = mv0/(m+m′) (completely inelastic)and v′ = 2mv0/(m+m′) (completely elastic). Momentum
conservation applied to the second collision means the speed ofM will be between V = m′v′/(m′+M)
and V = 2m′v′/(m′+M). The largest kinetic energy for M will occur when it is moving the fastest,
so

v′ =
2mv0

m+m′
and V =

2m′v′

m′ +M
=

4m′mv0

(m+m′)(m′ +M)
.

We want to maximize V as a function of m′, so take the derivative:

dV

dm′
=

4mv0(mM −m′2)
(m′ +M)2(m+m′)2

.

This vanishes when m′ =
√
mM .
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