
E10-1 l = rp = mvr = (13.7×10−3kg)(380 m/s)(0.12 m) = 0.62 kg ·m2/s.

E10-2 (a) ~l = m~r× ~v, or

~l = m(yvz − zvy )̂i +m(zvx − xvz )̂j +m(xvy − yvx)k̂.

(b) If ~v and ~r exist only in the xy plane then z = vz = 0, so only the uk term survives.

E10-3 If the angular momentum ~l is constant in time, then d~l/dt = 0. Trying this on Eq. 10-1,

d~l
dt

=
d

dt
(~r× ~p) ,

=
d

dt
(~r×m~v) ,

= m
d~r
dt
× ~v +m~r× d~v

dt
,

= m~v × ~v +m~r× ~a.

Now the cross product of a vector with itself is zero, so the first term vanishes. But in the exercise
we are told the particle has constant velocity, so ~a = 0, and consequently the second term vanishes.
Hence, ~l is constant for a single particle if ~v is constant.

E10-4 (a) L =
∑
li; li = rimivi. Putting the numbers in for each planet and then summing (I

won’t bore you with the arithmetic details) yields L = 3.15×1043kg ·m2/s.
(b) Jupiter has l = 1.94×1043kg ·m2/s, which is 61.6% of the total.

E10-5 l = mvr = m(2πr/T )r = 2π(84.3 kg)(6.37×106m)2/(86400 s) = 2.49×1011kg ·m2/s.

E10-6 (a) Substitute and expand:

~L =
∑

(~rcm +~r′i)× (mi~vcm + ~p′i),

=
∑

(mi~rcm × ~vcm +~rcm × ~p′i +mi~r′i × ~vcm +~r′i × ~p′i),

= M~rcm × ~vcm +~rcm × (
∑

~p′i) + (
∑

mi~r′i)× ~vcm +
∑

~r′i × ~p′i.

(b) But
∑
~p′i = 0 and

∑
mi~r′i = 0, because these two quantities are in the center of momentum

and center of mass. Then

~L = M~rcm × ~vcm +
∑

~r′i × ~p′i = ~L′ +M~rcm × ~vcm.

E10-7 (a) Substitute and expand:

~p′i = mi
d~r′i
dt

= mi
d~ri
dt
−mi

d~rcm

dt
= ~pi −mi~vcm.

(b) Substitute and expand:

d~L′

dt
=
∑ d~r′i

dt
× ~p′i +

∑
~r′i ×

d~p′i
dt

=
∑

~r′i ×
d~p′i
dt

.

The first term vanished because ~v′i is parallel to ~p′i.
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(c) Substitute and expand:

d~L′

dt
=

∑
~r′i ×

d(~pi −mi~vcm)
dt

,

=
∑

~r′i × (mi~ai −mi~acm),

=
∑

~r′i ×mi~ai +
(∑

mi~r′i
)
× ~acm)

The second term vanishes because of the definition of the center of mass. Then

d~L′

dt
=
∑

~r′i × ~Fi,

where ~Fi is the net force on the ith particle. The force ~Fi may include both internal and external
components. If there is an internal component, say between the ith and jth particles, then the
torques from these two third law components will cancel out. Consequently,

d~L′

dt
=
∑

~τi = ~τ ext.

E10-8 (a) Integrate. ∫
~τ dt =

∫
d~L
dt
dt =

∫
d~L = ∆~L.

(b) If I is fixed, ∆L = I∆ω. Not only that,∫
τdt =

∫
Fr dt = r

∫
F dt = rF av∆t,

where we use the definition of average that depends on time.

E10-9 (a) ~τ∆t = ∆~l. The disk starts from rest, so ∆~l = ~l −~l0 = ~l. We need only concern
ourselves with the magnitudes, so

l = ∆l = τ∆t = (15.8 N·m)(0.033 s) = 0.521 kg·m2/s.

(b) ω = l/I = (0.521 kg·m2/s)/(1.22×10−3kg·m2) = 427 rad/s.

E10-10 (a) Let v0 be the initial speed; the average speed while slowing to a stop is v0/2; the time
required to stop is t = 2x/v0; the acceleration is a = −v0/t = −v2

0/(2x). Then

a = −(43.3 m/s)2/[2(225 m/s)] = −4.17 m/s2.

(b) α = a/r = (−4.17 m/s2)/(0.247 m) = −16.9 rad/s2
.

(c) τ = Iα = (0.155 kg ·m2)(−16.9 rad/s2) = −2.62 N ·m.

E10-11 Let ~ri = ~z +~r′i. From the figure, ~p1 = −~p2 and ~r′1 = −~r′2. Then

~L = ~l1 +~l2 = ~r1 × ~p1 +~r2 × ~p2,

= (~r1 −~r2)× ~p1,

= (~r′1 −~r′2)× ~p1,

= 2~r′1 × ~p1.

Since ~r′1 and ~p1 both lie in the xy plane then ~L must be along the z axis.
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E10-12 Expand:

~L =
∑

~li =
∑

~ri × ~pi,

=
∑

mi~ri × ~vi =
∑

mi~ri × (~ω ×~ri)

=
∑

mi[(~ri ·~ri)~ω − (~ri · ~ω)~r)i],

=
∑

mi[r2
i ~ω − (z2

i ω)k̂− (zixiω)̂i− (ziyiω)̂j],

but if the body is symmetric about the z axis then the last two terms vanish, leaving

~L =
∑

mi[r2
i ~ω − (z2

i ω)k̂] =
∑

mi(x2
i + y2

i )~ω = I~ω.

E10-13 An impulse of 12.8 N·s will change the linear momentum by 12.8 N·s; the stick starts
from rest, so the final momentum must be 12.8 N·s. Since p = mv, we then can find v = p/m = (12.8
N·s)/(4.42 kg) = 2.90 m/s.

Impulse is a vector, given by
∫
~Fdt. We can take the cross product of the impulse with the

displacement vector ~r (measured from the axis of rotation to the point where the force is applied)
and get

~r×
∫
~Fdt ≈

∫
~r× ~Fdt,

The two sides of the above expression are only equal if~r has a constant magnitude and direction. This
won’t be true, but if the force is of sufficiently short duration then it hopefully won’t change much.
The right hand side is an integral over a torque, and will equal the change in angular momentum of
the stick.

The exercise states that the force is perpendicular to the stick, then |~r×~F| = rF , and the “torque
impulse” is then (0.464 m)(12.8 N·s) = 5.94 kg·m/s. This “torque impulse” is equal to the change
in the angular momentum, but the stick started from rest, so the final angular momentum of the
stick is 5.94 kg·m/s.

But how fast is it rotating? We can use Fig. 9-15 to find the rotational inertia about the center
of the stick: I = 1

12ML2 = 1
12 (4.42 kg)(1.23 m)2 = 0.557 kg·m2. The angular velocity of the stick is

ω = l/I = (5.94 kg·m/s)/(0.557 kg·m2) = 10.7 rad/s.

E10-14 The point of rotation is the point of contact with the plane; the torque about that point
is τ = rmg sin θ. The angular momentum is Iω, so τ = Iα. In this case I = mr2/2 + mr2, the
second term from the parallel axis theorem. Then

a = rα = rτ/I = mr2g sin θ/(3mr2/2) =
2
3
g sin θ.

E10-15 From Exercise 8 we can immediately write

I1(ω1 − ω0)/r1 = I2(ω2 − 0)/r2,

but we also have r1ω1 = −r2ω2. Then

ω2 = − r1r2I1ω0

r2
1I2 − r2

2I1
.
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E10-16 (a) ∆ω/ω = (1/T1 − 1/T2)/(1/T1) = −(T2 − T1)/T2 = −∆T/T , which in this case is
−(6.0×10−3s)(8.64×104s) = −6.9×10−8.

(b) Assuming conservation of angular momentum, ∆I/I = −∆ω/ω. Then the fractional change
would be 6.9×10−8.

E10-17 The rotational inertia of a solid sphere is I = 2
5MR2; so as the sun collapses

~Li = ~Lf ,

I i~ωi = I f~ωf ,
2
5
MRi

2~ωi =
2
5
MRf

2~ωf ,

Ri
2~ωi = Rf

2~ωf .

The angular frequency is inversely proportional to the period of rotation, so

T f = T i
Rf

2

Ri
2

= (3.6×104 min)
(

(6.37×106m)
(6.96×108m)

)2

= 3.0 min.

E10-18 The final angular velocity of the train with respect to the tracks is ωtt = Rv. The
conservation of angular momentum implies

0 = MR2ω +mR2(ωtt + ω),

or
ω =

−mv
(m+M)R

.

E10-19 This is much like a center of mass problem.

0 = Ipφp + Im(φmp + φp),

or

φmp = − (Ip + Im)φp

Im
≈ − (12.6 kg ·m2)(25◦)

(2.47×10−3kg ·m2)
= 1.28×105◦.

That’s 354 rotations!

E10-20 ωf = (I i/I f)ωi = [(6.13 kg ·m2)/(1.97 kg ·m2)](1.22 rev/s) = 3.80 rev/s.

E10-21 We have two disks which are originally not in contact which then come into contact;
there are no external torques. We can write

~l1,i +~l2,i = ~l1,f +~l2,f ,
I1~ω1,i + I2~ω2,i = I1~ω1,f + I2~ω2,f .

The final angular velocities of the two disks will be equal, so the above equation can be simplified
and rearranged to yield

ωf =
I1

I1 + I2
ω1,i =

(1.27 kg ·m2)
(1.27 kg ·m2) + (4.85 kg ·m2)

(824 rev/min) = 171 rev/min

E10-22 l⊥ = l cos θ = mvr cos θ = mvh.
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E10-23 (a) ωf = (I1/I2)ωi, I1 = (3.66 kg)(0.363 m)2 = 0.482 kg ·m2. Then

ωf = [(0.482 kg ·m2)/(2.88 kg ·m2)](57.7 rad/s) = 9.66 rad/s,

with the same rotational sense as the original wheel.
(b) Same answer, since friction is an internal force internal here.

E10-24 (a) Assume the merry-go-round is a disk. Then conservation of angular momentum yields

(
1
2
mmR

2 +mgR
2)ω + (mrR

2)(v/R) = 0,

or

ω = − (1.13 kg)(7.82 m/s)/(3.72 m)
(827 kg)/2 + (50.6 kg)

= −5.12×10−3rad/s.

(b) v = ωR = (−5.12×10−3rad/s)(3.72 m) = −1.90×10−2m/s.

E10-25 Conservation of angular momentum:

(mmk
2 +mgR

2)ω = mgR
2(v/R),

so

ω =
(44.3 kg)(2.92 m/s)/(1.22 m)

(176 kg)(0.916 m)2 + (44.3 kg)(1.22 m)2
= 0.496 rad/s.

E10-26 Use Eq. 10-22:

ωP =
Mgr

Iω
=

(0.492 kg)(9.81 m/s2)(3.88×10−2m)
(5.12×10−4kg ·m2)(2π28.6 rad/s)

= 2.04 rad/s = 0.324 rev/s.

E10-27 The relevant precession expression is Eq. 10-22.
The rotational inertia will be a sum of the contributions from both the disk and the axle, but

the radius of the axle is probably very small compared to the disk, probably as small as 0.5 cm.
Since I is proportional to the radius squared, we expect contributions from the axle to be less than
(1/100)2 of the value for the disk. For the disk only we use

I =
1
2
MR2 =

1
2

(1.14 kg)(0.487 m)2 = 0.135 kg ·m2.

Now for ω,

ω = 975 rev/min
(

2π rad
1 rev

)(
1 min
60 s

)
= 102 rad/s.

Then L = Iω = 13.8 kg·m2/s.
Back to Eq. 10-22,

ωp =
Mgr

L
=

(1.27 kg)(9.81 m/s2)(0.0610 m)
13.8 kg ·m2/s

= 0.0551 rad/s.

The time for one precession is

t =
1rev
ωp

=
2π rad

(0.0551 rad/s)
= 114 s.
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P10-1 Positive z is out of the page.
(a) ~l = rmv sin θk̂ = (2.91 m)(2.13 kg)(4.18 m) sin(147◦)k̂ = 14.1 kg ·m2/sk̂.
(b) ~τ = rF sin θk̂ = (2.91 m)(1.88 N) sin(26◦)k̂ = 2.40 N ·mk̂.

P10-2 Regardless of where the origin is located one can orient the coordinate system so that the
two paths lie in the xy plane and are both parallel to the y axis. The one of the particles travels
along the path x = vt, y = a, z = b; the momentum of this particle is ~p1 = mvî. The other
particle will then travel along a path x = c− vt, y = a+ d, z = b; the momentum of this particle is
~p2 = −mvî. The angular momentum of the first particle is

~l1 = mvb̂j−mvak̂,

while that of the second is
~l2 = −mvb̂j +mv(a+ d)k̂,

so the total is ~l1 +~l2 = mvdk̂.

P10-3 Assume that the cue stick strikes the ball horizontally with a force of constant magnitude
F for a time ∆t. Then the magnitude of the change in linear momentum of the ball is given by
F∆t = ∆p = p, since the initial momentum is zero.

If the force is applied a distance x above the center of the ball, then the magnitude of the torque
about a horizontal axis through the center of the ball is τ = xF . The change in angular momentum
of the ball is given by τ∆t = ∆l = l, since initially the ball is not rotating.

For the ball to roll without slipping we need v = ωR. We can start with this:

v = ωR,

p

m
=

lR

I
,

F∆t
m

=
τ∆tR
I

,

F

m
=

xFR

I
.

Then x = I/mR is the condition for rolling without sliding from the start. For a solid sphere,
I = 2

5mR
2, so x = 2

5R.

P10-4 The change in momentum of the block is M(v2 − v1), this is equal to the magnitude the
impulse delivered to the cylinder. According to E10-8 we can write M(v2 − v1)R = Iωf . But in the
end the box isn’t slipping, so ωf = v2/R. Then

Mv2 −Mv1 = (I/R2)v2,

or
v2 = v1/(1 + I/MR2).

P10-5 Assume that the cue stick strikes the ball horizontally with a force of constant magnitude
F for a time ∆t. Then the magnitude of the change in linear momentum of the ball is given by
F∆t = ∆p = p, since the initial momentum is zero. Consequently, F∆t = mv0.

If the force is applied a distance h above the center of the ball, then the magnitude of the torque
about a horizontal axis through the center of the ball is τ = hF . The change in angular momentum
of the ball is given by τ∆t = ∆l = l0, since initially the ball is not rotating. Consequently, the initial
angular momentum of the ball is l0 = hmv0 = Iω0.
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The ball originally slips while moving, but eventually it rolls. When it has begun to roll without
slipping we have v = Rω. Applying the results from E10-8,

m(v − v0)R+ I(ω − ω0) = 0,

or
m(v − v0)R+

2
5
mR2 v

R
− hmv0 = 0,

then, if v = 9v0/7,

h =
(

9
7
− 1
)
R+

2
5
R

(
9
7

)
=

4
5
R.

P10-6 (a) Refer to the previous answer. We now want v = ω = 0, so

m(v − v0)R+
2
5
mR2 v

R
− hmv0 = 0,

becomes
−v0R− hv0 = 0,

or h = −R. That’ll scratch the felt.
(b) Assuming only a horizontal force then

v =
(h+R)v0

R(1 + 2/5)
,

which can only be negative if h < −R, which means hitting below the ball. Can’t happen. If instead
we allow for a downward component, then we can increase the “reverse English” as much as we want
without increasing the initial forward velocity, and as such it would be possible to get the ball to
move backwards.

P10-7 We assume the bowling ball is solid, so the rotational inertia will be I = (2/5)MR2 (see
Figure 9-15).

The normal force on the bowling ball will be N = Mg, where M is the mass of the bowling ball.
The kinetic friction on the bowling ball is Ff = µkN = µkMg. The magnitude of the net torque on
the bowling ball while skidding is then τ = µkMgR.

Originally the angular momentum of the ball is zero; the final angular momentum will have
magnitude l = Iω = Iv/R, where v is the final translational speed of the ball.

(a) The time requires for the ball to stop skidding is the time required to change the angular
momentum to l, so

∆t =
∆l
τ

=
(2/5)MR2v/R

µkMgR
=

2v
5µkg

.

Since we don’t know v, we can’t solve this for ∆t. But the same time through which the angular
momentum of the ball is increasing the linear momentum of the ball is decreasing, so we also have

∆t =
∆p
−Ff

=
Mv −Mv0

−µkMg
=
v0 − v
µkg

.

Combining,

∆t =
v0 − v
µkg

,

=
v0 − 5µkg∆t/2

µkg
,
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2µkg∆t = 2v0 − 5µkg∆t,

∆t =
2v0

7µkg
,

=
2(8.50 m/s)

7(0.210)(9.81 m/s2)
= 1.18 s.

(d) Use the expression for angular momentum and torque,

v = 5µkg∆t/2 = 5(0.210)(9.81 m/s2)(1.18 s)/2 = 6.08 m/s.

(b) The acceleration of the ball is F/M = −µg. The distance traveled is then given by

x =
1
2
at2 + v0t,

= −1
2

(0.210)(9.81 m/s2)(1.18 s)2 + (8.50 m/s)(1.18 s) = 8.6 m,

(c) The angular acceleration is τ/I = 5µkg/(2R). Then

θ =
1
2
αt2 + ω0t,

=
5(0.210)(9.81 m/s2)

4(0.11 m)
(1.18 s)2 = 32.6 rad = 5.19 revolutions.

P10-8 (a) l = Iω0 = (1/2)MR2ω0.
(b) The initial speed is v0 = Rω0. The chip decelerates in a time t = v0/g, and during this time

the chip travels with an average speed of v0/2 through a distance of

y = vavt =
v0

2
v0

g
=
R2ω2

2g
.

(c) Loosing the chip won’t change the angular velocity of the wheel.

P10-9 Since L = Iω = 2πI/T and L is constant, then I ∝ T . But I ∝ R2, so R2 ∝ T and

∆T
T

=
2R∆R
R2

=
2∆R
R

.

Then

∆T = (86400 s)
2(30 m)

(6.37×106m)
≈ 0.8 s.

P10-10 Originally the rotational inertia was

I i =
2
5
MR2 =

8π
15
ρ0R

5.

The average density can be found from Appendix C. Now the rotational inertia is

I f =
8π
15

(ρ1 − ρ2)R5
1 +

8π
15
ρ2R

5,

where ρ1 is the density of the core, R1 is the radius of the core, and ρ2 is the density of the mantle.
Since the angular momentum is constant we have ∆T/T = ∆I/I. Then

∆T
T

=
ρ1 − ρ2

ρ0

R5
1

R5
+
ρ2

ρ0
− 1 =

10.3− 4.50
5.52

35705

63705
+

4.50
5.52

− 1 = −0.127,

so the day is getting longer.
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P10-11 The cockroach initially has an angular speed of ωc,i = −v/r. The rotational inertia of
the cockroach about the axis of the turntable is Ic = mR2. Then conservation of angular momentum
gives

lc,i + ls,i = lc,f + ls,f ,

Icωc,i + Isωs,i = Icωc,f + Isωs,f ,

−mR2v/r + Iω = (mR2 + I)ωf ,

ωf =
Iω −mvR
I +mR2

.

P10-12 (a) The skaters move in a circle of radius R = (2.92 m)/2 = 1.46 m centered midway
between the skaters. The angular velocity of the system will be ωi = v/R = (1.38 m/s)/(1.46 m) =
0.945 rad/s.

(b) Moving closer will decrease the rotational inertia, so

ωf =
2MRi

2

2MRf
2
ωi =

(1.46 m)2

(0.470 m)2
(0.945 rad/s) = 9.12 rad/s.
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