
E2-1 Add the vectors as is shown in Fig. 2-4. If ~a has length a = 4 m and ~b has length b = 3 m
then the sum is given by ~s. The cosine law can be used to find the magnitude s of ~s,

s2 = a2 + b2 − 2ab cos θ,

where θ is the angle between sides a and b in the figure.
(a) (7 m)2 = (4 m)2 + (3 m)2 − 2(4 m)(3 m) cos θ, so cos θ = −1.0, and θ = 180◦. This means

that ~a and ~b are pointing in the same direction.
(b) (1 m)2 = (4 m)2 + (3 m)2 − 2(4 m)(3 m) cos θ, so cos θ = 1.0, and θ = 0◦. This means that

~a and ~b are pointing in the opposite direction.
(c) (5 m)2 = (4 m)2 + (3 m)2 − 2(4 m)(3 m) cos θ, so cos θ = 0, and θ = 90◦. This means that ~a

and ~b are pointing at right angles to each other.

E2-2 (a) Consider the figures below.

(b) Net displacement is 2.4 km west, (5.2− 3.1 = 2.1) km south. A bird would fly√
2.42 + 2.12 km = 3.2 km.

E2-3 Consider the figure below.

a

ba+b

a

-b

a-b

E2-4 (a) The components are (7.34) cos(252◦) = −2.27̂i and (7.34) sin(252◦) = −6.98ĵ.
(b) The magnitude is

√
(−25)2 + (43)2 = 50; the direction is θ = tan−1(43/ − 25) = 120◦. We

did need to choose the correct quadrant.

E2-5 The components are given by the trigonometry relations

O = H sin θ = (3.42 km) sin 35.0◦ = 1.96 km

and
A = H cos θ = (3.42 km) cos 35.0◦ = 2.80 km.
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The stated angle is measured from the east-west axis, counter clockwise from east. So O is measured
against the north-south axis, with north being positive; A is measured against east-west with east
being positive.

Since her individual steps are displacement vectors which are only north-south or east-west, she
must eventually take enough north-south steps to equal 1.96 km, and enough east-west steps to
equal 2.80 km. Any individual step can only be along one or the other direction, so the minimum
total will be 4.76 km.

E2-6 Let ~rf = 124̂i km and ~ri = (72.6̂i + 31.4ĵ) km. Then the ship needs to travel

∆~r = ~rf −~ri = (51.4̂i + 31.4ĵ) km.

Ship needs to travel
√

51.42 + 31.42 km = 60.2 km in a direction θ = tan−1(31.4/51.4) = 31.4◦ west
of north.

E2-7 (a) In unit vector notation we need only add the components; ~a+~b = (5̂i+3ĵ)+(−3̂i+2ĵ) =
(5− 3)̂i + (3 + 2)̂j = 2̂i + 5ĵ.

(b) If we define ~c = ~a + ~b and write the magnitude of ~c as c, then c =
√
c2x + c2y =

√
22 + 52 =

5.39. The direction is given by tan θ = cy/cx which gives an angle of 68.2◦, measured counterclock-
wise from the positive x-axis.

E2-8 (a) ~a + ~b = (4− 1)̂i + (−3 + 1)̂j + (1 + 4)k̂ = 3̂i− 2ĵ + 5k̂.
(b) ~a− ~b = (4−−1)̂i + (−3− 1)̂j + (1− 4)k̂ = 5̂i− 4ĵ− 3k̂.
(c) Rearrange, and ~c = ~b− ~a, or ~b− ~a = (−1− 4)̂i + (1−−3)̂j + (4− 1)k̂ = −5̂i + 4ĵ + 3k̂.

E2-9 (a) The magnitude of ~a is
√

4.02 + (−3.0)2 = 5.0; the direction is θ = tan−1(−3.0/4.0) =
323◦.

(b) The magnitude of ~b is
√

6.02 + 8.03 = 10.0; the direction is θ = tan−1(6.0/8.0) = 36.9◦.
(c) The resultant vector is ~a + ~b = (4.0 + 6.0)̂i + (−3.0 + 8.0)̂j. The magnitude of ~a + ~b is√

(10.0)2 + (5.0)2 = 11.2; the direction is θ = tan−1(5.0/10.0) = 26.6◦.
(d) The resultant vector is ~a − ~b = (4.0 − 6.0)̂i + (−3.0 − 8.0)̂j. The magnitude of ~a − ~b is√

(−2.0)2 + (−11.0)2 = 11.2; the direction is θ = tan−1(−11.0/− 2.0) = 260◦.
(e) The resultant vector is ~b − ~a = (6.0 − 4.0)̂i + (8.0 − −3.0)̂j. The magnitude of ~b − ~a is√

(2.0)2 + (11.0)2 = 11.2; the direction is θ = tan−1(11.0/2.0) = 79.7◦.

E2-10 (a) Find components of ~a; ax = (12.7) cos(28.2◦) = 11.2, ay = (12.7) sin(28.2◦) = 6.00.
Find components of ~b; bx = (12.7) cos(133◦) = −8.66, by = (12.7) sin(133◦) = 9.29. Then

~r = ~a + ~b = (11.2− 8.66)̂i + (6.00 + 9.29)̂j = 2.54̂i + 15.29ĵ.

(b) The magnitude of ~r is
√

2.542 + 15.292 = 15.5.
(c) The angle is θ = tan−1(15.29/2.54) = 80.6◦.

E2-11 Consider the figure below.
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E2-12 Consider the figure below.

E2-13 Our axes will be chosen so that î points toward 3 O’clock and ĵ points toward 12 O’clock.
(a)
The two relevant positions are ~ri = (11.3 cm)̂i and ~rf = (11.3 cm)̂j. Then

∆~r = ~rf −~ri

= (11.3 cm)̂j− (11.3 cm)̂i.

(b)
The two relevant positions are now ~ri = (11.3 cm)̂j and ~rf = (−11.3 cm)̂j. Then

∆~r = ~rf −~ri

= (11.3 cm)̂j− (−11.3 cm)̂j

= (22.6 cm)̂j.

(c)
The two relevant positions are now ~ri = (−11.3 cm)̂j and ~rf = (−11.3 cm)̂j. Then

∆~r = ~rf −~ri

= (−11.3 cm)̂j− (−11.3 cm)̂j

= (0 cm)̂j.

E2-14 (a) The components of ~r1 are

r1x = (4.13 m) cos(225◦) = −2.92 m

and
r1y = (4.13 m) sin(225◦) = −2.92 m.
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The components of ~r2 are
r1x = (5.26 m) cos(0◦) = 5.26 m

and
r1y = (5.26 m) sin(0◦) = 0 m.

The components of ~r3 are
r1x = (5.94 m) cos(64.0◦) = 2.60 m

and
r1y = (5.94 m) sin(64.0◦) = 5.34 m.

(b) The resulting displacement is[
(−2.92 + 5.26 + 2.60)̂i + (−2.92 + 0 + 5.34)̂j

]
m = (4.94̂i + 2.42ĵ) m.

(c) The magnitude of the resulting displacement is
√

4.942 + 2.422 m = 5.5 m. The direction of
the resulting displacement is θ = tan−1(2.42/4.94) = 26.1◦. (d) To bring the particle back to the
starting point we need only reverse the answer to (c); the magnitude will be the same, but the angle
will be 206◦.

E2-15 The components of the initial position are

r1x = (12, 000 ft) cos(40◦) = 9200 ft

and
r1y = (12, 000 ft) sin(40◦) = 7700 ft.

The components of the final position are

r2x = (25, 8000 ft) cos(163◦) = −24, 700 ft

and
r2y = (25, 800 ft) sin(163◦) = 7540 ft.

The displacement is

~r = ~r2 −~r1 =
[
(−24, 700− 9, 200)̂i + (7, 540− 9, 200)̂j)

]
= (−33900̂i− 1660ĵ) ft.

E2-16 (a) The displacement vector is ~r = (410̂i − 820ĵ) mi, where positive x is east and positive
y is north. The magnitude of the displacement is

√
(410)2 + (−820)2 mi = 920 mi. The direction is

θ = tan−1(−820/410) = 300◦.
(b) The average velocity is the displacement divided by the total time, 2.25 hours. Then

~vav = (180̂i− 360ĵ) mi/hr.

(c) The average speed is total distance over total time, or (410+820)/(2.25) mi/hr = 550 mi/hr.
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E2-17 (a) Evaluate ~r when t = 2 s.

~r = [(2 m/s3)t3 − (5 m/s)t]̂i + [(6 m)− (7 m/s4)t4 ]̂j

= [(2 m/s3)(2 s)3 − (5 m/s)(2 s)]̂i + [(6 m)− (7 m/s4)(2 s)4 ]̂j

= [(16 m)− (10 m)]̂i + [(6 m)− (112 m)]̂j

= [(6 m)]̂i + [−(106 m)]̂j.

(b) Evaluate:

~v =
d~r
dt

= [(2 m/s3)3t2 − (5 m/s)]̂i + [−(7 m/s4)4t3 ]̂j

= [(6 m/s3)t2 − (5 m/s)]̂i + [−(28 m/s4)t3 ]̂j.

Into this last expression we now evaluate ~v(t = 2 s) and get

~v = [(6 m/s3)(2 s)2 − (5 m/s)]̂i + [−(28 m/s4)(2 s)3 ]̂j

= [(24 m/s)− (5 m/s)]̂i + [−(224 m/s)]̂j

= [(19 m/s)]̂i + [−(224 m/s)]̂j,

for the velocity ~v when t = 2 s.
(c) Evaluate

~a =
d~v
dt

= [(6 m/s3)2t]̂i + [−(28 m/s4)3t2 ]̂j

= [(12 m/s3)t]̂i + [−(84 m/s4)t2 ]̂j.

Into this last expression we now evaluate ~a(t = 2 s) and get

~a = [(12 m/s3)(2 s)]̂i + [−(84 m/s4)(2 2)2 ]̂j

= [(24 m/s2)]̂i + [−(336 m/s2)]̂j.

E2-18 (a) Let ui point north, ĵ point east, and k̂ point up. The displacement is (8.7̂i + 9.7ĵ +
2.9k̂) km. The average velocity is found by dividing each term by 3.4 hr; then

~vav = (2.6̂i + 2.9ĵ + 0.85) km/hr.

The magnitude of the average velocity is
√

2.62 + 2.92 + 0.852 km/hr = 4.0 km/hr.
(b) The horizontal velocity has a magnitude of

√
2.62 + 2.92 km/hr = 3.9 km/hr. The angle with

the horizontal is given by θ = tan−1(0.85/3.9) = 13◦.

E2-19 (a) The derivative of the velocity is

~a = [(6.0 m/s2)− (8.0 m/s3)t]̂i

so the acceleration at t = 3 s is ~a = (−18.0 m/s2)̂i. (b) The acceleration is zero when (6.0 m/s2) −
(8.0 m/s3)t = 0, or t = 0.75 s. (c) The velocity is never zero; there is no way to “cancel” out the
y component. (d) The speed equals 10 m/s when 10 =

√
v2
x + 82, or vx = ±6.0 m/s. This happens

when (6.0 m/s2)− (8.0 m/s3)t = ±6.0 m/s, or when t = 0 s.
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E2-20 If v is constant then so is v2 = v2
x + v2

y. Take the derivative;

2vx
d

dt
vx + 2vy

d

dt
vy = 2(vxax + vyay).

But if the value is constant the derivative is zero.

E2-21 Let the actual flight time, as measured by the passengers, be T . There is some time
difference between the two cities, call it ∆T = Namulevu time - Los Angeles time. The ∆T will be
positive if Namulevu is east of Los Angeles. The time in Los Angeles can then be found from the
time in Namulevu by subtracting ∆T .

The actual time of flight from Los Angeles to Namulevu is then the difference between when the
plane lands (LA times) and when the plane takes off (LA time):

T = (18:50−∆T )− (12:50)
= 6:00−∆T,

where we have written times in 24 hour format to avoid the AM/PM issue. The return flight time
can be found from

T = (18:50)− (1:50−∆T )
= 17:00 + ∆T,

where we have again changed to LA time for the purpose of the calculation.
(b) Now we just need to solve the two equations and two unknowns.

17:00 + ∆T = 6:00−∆T
2∆T = 6:00− 17:00
∆T = −5:30.

Since this is a negative number, Namulevu is located west of Los Angeles.
(a) T = 6:00−∆T = 11 : 30, or eleven and a half hours.
(c) The distance traveled by the plane is given by d = vt = (520 mi/hr)(11.5 hr) = 5980 mi.

We’ll draw a circle around Los Angeles with a radius of 5980 mi, and then we look for where it
intersects with longitudes that would belong to a time zone ∆T away from Los Angeles. Since the
Earth rotates once every 24 hours and there are 360 longitude degrees, then each hour corresponds
to 15 longitude degrees, and then Namulevu must be located approximately 15◦× 5.5 = 83◦ west of
Los Angeles, or at about longitude 160 east. The location on the globe is then latitude 5◦, in the
vicinity of Vanuatu.

When this exercise was originally typeset the times for the outbound and the inbound flights were

inadvertently switched. I suppose that we could blame this on the airlines; nonetheless, when the answers

were prepared for the back of the book the reversed numbers put Namulevu east of Los Angeles. That would

put it in either the North Atlantic or Brazil.

E2-22 There is a three hour time zone difference. So the flight is seven hours long, but it takes
3 hr 51 min for the sun to travel same distance. Look for when the sunset distance has caught up
with plane:

dsunset = dplane,

vsunset(t− 1:35) = vplanet,

(t− 1:35)/3:51 = t/7:00,

so t = 3:31 into flight.
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E2-23 The distance is

d = vt = (112 km/hr)(1 s)/(3600 s/hr) = 31 m.

E2-24 The time taken for the ball to reach the plate is

t =
d

v
=

(18.4 m)
(160 km/hr)

(3600 s/hr)/(1000 m/km) = 0.414 s.

E2-25 Speed is distance traveled divided by time taken; this is equivalent to the inverse of the
slope of the line in Fig. 2-32. The line appears to pass through the origin and through the point
(1600 km, 80× 106 y), so the speed is v = 1600 km/80× 106 y= 2× 10−5 km/y. Converting,

v = 2× 10−5km/y
(

1000 m
1 km

)(
100 cm

1 m

)
= 2 cm/y

E2-26 (a) For Maurice Greene vav = (100 m)/(9.81 m) = 10.2 m/s. For Khalid Khannouchi,

vav =
(26.219 mi)
(2.0950 hr)

(
1609 m
1 mi

)(
1hr

3600 s

)
= 5.594 m/s.

(b) If Maurice Greene ran the marathon with an average speed equal to his average sprint speed
then it would take him

t =
(26.219 mi)

10.2 m/s

(
1609 m
1 mi

)(
1hr

3600 s

)
= 1.149 hr,

or 1 hour, 9 minutes.

E2-27 The time saved is the difference,

∆t =
(700 km)

(88.5 km/hr)
− (700 km)

(104.6 km/hr)
= 1.22 hr,

which is about 1 hour 13 minutes.

E2-28 The ground elevation will increase by 35 m in a horizontal distance of

x = (35.0 m)/ tan(4.3◦) = 465 m.

The plane will cover that distance in

t =
(0.465 km)

(1300 km/hr)

(
3600 s

1hr

)
= 1.3 s.

E2-29 Let v1 = 40 km/hr be the speed up the hill, t1 be the time taken, and d1 be the distance
traveled in that time. We similarly define v2 = 60 km/hr for the down hill trip, as well as t2 and d2.
Note that d2 = d1.
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v1 = d1/t1 and v2 = d2/t2. vav = d/t, where d total distance and t is the total time. The total
distance is d1 + d2 = 2d1. The total time t is just the sum of t1 and t2, so

vav =
d

t

=
2d1

t1 + t2

=
2d1

d1/v1 + d2/v2

=
2

1/v1 + 1/v2
,

Take the reciprocal of both sides to get a simpler looking expression

2
vav

=
1
v1

+
1
v2
.

Then the average speed is 48 km/hr.

E2-30 (a) Average speed is total distance divided by total time. Then

vav =
(240 ft) + (240 ft)

(240 ft)/(4.0 ft/s) + (240 ft)/(10 ft/s)
= 5.7 ft/s.

(b) Same approach, but different information given, so

vav =
(60 s)(4.0 ft/s) + (60 s)(10 ft/s)

(60 s) + (60 s)
= 7.0 ft/s.

E2-31 The distance traveled is the total area under the curve. The “curve” has four regions: (I)
a triangle from 0 to 2 s; (II) a rectangle from 2 to 10 s; (III) a trapezoid from 10 to 12 s; and (IV)
a rectangle from 12 to 16 s.

The area underneath the curve is the sum of the areas of the four regions.

d =
1
2

(2 s)(8 m/s) + (8.0 s)(8 m/s) +
1
2

(2 s)(8 m/s + 4 m/s) + (4.0 s)(4 m/s) = 100 m.

E2-32 The acceleration is the slope of a velocity-time curve,

a =
(8 m/s)− (4 m/s)

(10 s)− (12 s)
= −2 m/s2.

E2-33 The initial velocity is ~vi = (18 m/s)̂i, the final velocity is ~vf = (−30 m/s)̂i. The average
acceleration is then

~aav =
∆~v
∆t

=
~vf − ~vi

∆t
=

(−30 m/s)̂i− (18 m/s)̂i
2.4 s

,

which gives ~aav = (−20.0 m/s2)̂i.
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E2-34 Consider the figure below.

1 2 3 4 5
0

5

10

-5

-10

E2-35 (a) Up to A vx > 0 and is constant. From A to B vx is decreasing, but still positive. From
B to C vx = 0. From C to D vx < 0, but |vx| is decreasing.

(b) No. Constant acceleration would appear as (part of) a parabola; but it would be challenging
to distinguish between a parabola and an almost parabola.

E2-36 (a) Up to A vx > 0 and is decreasing. From A to B vx = 0. From B to C vx > 0 and is
increasing. From C to D vx > 0 and is constant.

(b) No. Constant acceleration would appear as (part of) a parabola; but it would be challenging
to distinguish between a parabola and an almost parabola.

E2-37 Consider the figure below.

v

va

x

E2-38 Consider the figure below.
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E2-39 (a) A must have units of m/s2. B must have units of m/s3.
(b) The maximum positive x position occurs when vx = 0, so

vx =
dx

dt
= 2At− 3Bt2

implies vx = 0 when either t = 0 or t = 2A/3B = 2(3.0 m/s2)/3(1.0 m/s3) = 2.0 s.
(c) Particle starts from rest, then travels in positive direction until t = 2 s, a distance of

x = (3.0 m/s2)(2.0 s)2 − (1.0 m/s3)(2.0 s)3 = 4.0 m.

Then the particle moves back to a final position of

x = (3.0 m/s2)(4.0 s)2 − (1.0 m/s3)(4.0 s)3 = −16.0 m.

The total path followed was 4.0 m + 4.0 m + 16.0 m = 24.0 m.
(d) The displacement is −16.0 m as was found in part (c).
(e) The velocity is vx = (6.0 m/s2)t − (3.0 m/s3)t2. When t = 0, vx = 0.0 m/s. When t = 1.0 s,

vx = 3.0 m/s. When t = 2.0 s, vx = 0.0 m/s. When t = 3.0 s, vx = −9.0 m/s. When t = 4.0 s,
vx = −24.0 m/s.

(f) The acceleration is the time derivative of the velocity,

ax =
dvx
dt

= (6.0 m/s2)− (6.0 m/s3)t.

When t = 0 s, ax = 6.0 m/s2. When t = 1.0 s, ax = 0.0 m/s2. When t = 2.0 s, ax = −6.0 m/s2.
When t = 3.0 s, ax = −12.0 m/s2. When t = 4.0 s, ax = −18.0 m/s2.

(g) The distance traveled was found in part (a) to be −20 m The average speed during the time
interval is then vx,av = (−20 m)/(2.0 s) = −10 m/s.

E2-40 v0x = 0, vx = 360 km/hr = 100 m/s. Assuming constant acceleration the average velocity
will be

vx,av =
1
2

(100 m/s + 0) = 50 m/s.

The time to travel the distance of the runway at this average velocity is

t = (1800 m)/(50 m/s) = 36 s.

The acceleration is
ax = 2x/t2 = 2(1800 m)/(36.0 s)2 = 2.78 m/s2.
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E2-41 (a) Apply Eq. 2-26,

vx = v0x + axt,

(3.0× 107 m/s) = (0) + (9.8 m/s2)t,
3.1× 106 s = t.

(b) Apply Eq. 2-28 using an initial position of x0 = 0,

x = x0 + v0x +
1
2
axt

2,

x = (0) + (0) +
1
2

(9.8 m/s2)(3.1× 106 s)2,

x = 4.7× 1013 m.

E2-42 v0x = 0 and vx = 27.8 m/s. Then

t = (vx − v0x)/a = ((27.8 m/s)− (0)) /(50 m/s2) = 0.56 s.

I want that car.

E2-43 The muon will travel for t seconds before it comes to a rest, where t is given by

t = (vx − v0x)/a =
(
(0)− (5.20× 106m/s)

)
/(−1.30× 1014m/s2) = 4× 10−8s.

The distance traveled will be

x =
1
2
axt

2 + v0xt =
1
2

(−1.30× 1014m/s2)(4× 10−8s)2 + (5.20× 106m/s)(4× 10−8s) = 0.104 m.

E2-44 The average velocity of the electron was

vx,av =
1
2

(1.5× 105 m/s + 5.8× 106 m/s) = 3.0× 106 m/s.

The time to travel the distance of the runway at this average velocity is

t = (0.012 m)/(3.0× 106 m/s) = 4.0× 10−9 s.

The acceleration is

ax = (vx − v0x)/t = ((5.8× 106 m/s)− (1.5× 105 m/s))/(4.0× 10−9 s) = 1.4× 1015m/s2.

E2-45 It will be easier to solve the problem if we change the units for the initial velocity,

v0x = 1020
km
hr

(
1000 m

km

)(
hr

3600 s

)
= 283

m
s
,

and then applying Eq. 2-26,

vx = v0x + axt,

(0) = (283 m/s) + ax(1.4 s),

−202 m/s2 = ax.

The problem asks for this in terms of g, so

−202 m/s2

(
g

9.8 m/s2

)
= 21g.
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E2-46 Change miles to feet and hours to seconds. Then vx = 81 ft/s and v0x = 125 ft/s. The
time is then

t = ((81 ft/s)− (125 ft/s)) /(−17 ft/s2) = 2.6 s.

E2-47 (a) The time to stop is

t = ((0 m/s)− (24.6 m/s)) /(−4.92 m/s2) = 5.00 s.

(b) The distance traveled is

x =
1
2
axt

2 + v0xt =
1
2

(−4.92 m/s2)(5.00 s)2 + (24.6 m/s)(5.00 s) = 62 m.

E2-48 Answer part (b) first. The average velocity of the arrow while decelerating is

vy,av =
1
2

((0) + (260 ft/s)) = 130 ft/s.

The time for the arrow to travel 9 inches (0.75 feet) is

t = (0.75 ft)/(130 ft/s) = 5.8× 10−3s.

(a) The acceleration of the arrow is then

ay = (vy − v0y)/t = ((0)− (260 ft/s))/(5.8× 10−3s) = −4.5× 104 ft/s2
.

E2-49 The problem will be somewhat easier if the units are consistent, so we’ll write the maxi-
mum speed as

1000
ft

min

(
min
60 s

)
= 16.7

ft
s
.

(a) We can find the time required for the acceleration from Eq. 2-26,

vx = v0x + axt,

(16.7 ft/s) = (0) + (4.00 ft/s2)t,
4.18 s = t.

And from this and Eq 2-28 we can find the distance

x = x0 + v0x +
1
2
axt

2,

x = (0) + (0) +
1
2

(4.00 ft/s2)(4.18 s)2,

x = 34.9 ft.

(b) The motion of the elevator is divided into three parts: acceleration from rest, constant speed
motion, and deceleration to a stop. The total distance is given at 624 ft and in part (a) we found
the distance covered during acceleration was 34.9 ft. By symmetry, the distance traveled during
deceleration should also be 34.9 ft. The distance traveled at constant speed is then (624 − 34.9 −
34.9) ft = 554 ft. The time required for the constant speed portion of the trip is found from Eq.
2-22, rewritten as

∆t =
∆x
v

=
554 ft

16.7 ft/s
= 33.2 s.

The total time for the trip is the sum of times for the three parts: accelerating (4.18 s), constant
speed (33.2 s), and decelerating (4.18 s). The total is 41.6 seconds.
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E2-50 (a) The deceleration is found from

ax =
2
t2

(x− v0t) =
2

(4.0 s)2
((34 m)− (16 m/s)(4.0 s)) = −3.75 m/s2.

(b) The impact speed is

vx = v0x + axt = (16 m/s) + (−3.75 m/s2)(4.0 s) = 1.0 m/s.

E2-51 Assuming the drops fall from rest, the time to fall is

t =

√
2y
ay

=

√
2(−1700 m)
(−9.8 m/s2)

= 19 s.

The velocity of the falling drops would be

vy = ayt = (−9.8 m/s2)(19 s) = 190 m/s,

or about 2/3 the speed of sound.

E2-52 Solve the problem out of order.
(b) The time to fall is

t =

√
2y
ay

=

√
2(−120 m)

(−9.8 m/s2)
= 4.9 s.

(a) The speed at which the elevator hits the ground is

vy = ayt = (−9.8 m/s2)(4.9 s) = 48 m/s.

(d) The time to fall half-way is

t =

√
2y
ay

=

√
2(−60 m)

(−9.8 m/s2)
= 3.5 s.

(c) The speed at the half-way point is

vy = ayt = (−9.8 m/s2)(3.5 s) = 34 m/s.

E2-53 The initial velocity of the “dropped” wrench would be zero. I choose vertical to be along
the y axis with up as positive, which is the convention of Eq. 2-29 and Eq. 2-30. It turns out that
it is much easier to solve part (b) before solving part (a).

(b) We solve Eq. 2-29 for the time of the fall.

vy = v0y − gt,
(−24.0 m/s) = (0)− (9.8 m/s2)t,

2.45 s = t.

(a) Now we can use Eq. 2-30 to find the height from which the wrench fell.

y = y0 + v0yt−
1
2
gt2,

(0) = y0 + (0)(2.45 s)− 1
2

(9.8 m/s2)(2.45 s)2,

0 = y0 − 29.4 m

We have set y = 0 to correspond to the final position of the wrench: on the ground. This results in
an initial position of y0 = 29.4 m; it is positive because the wrench was dropped from a point above
where it landed.
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E2-54 (a) It is easier to solve the problem from the point of view of an object which falls from the
highest point. The time to fall from the highest point is

t =

√
2y
ay

=

√
2(−53.7 m)

(−9.81 m/s2)
= 3.31 s.

The speed at which the object hits the ground is

vy = ayt = (−9.81 m/s2)(3.31 s) = −32.5 m/s.

But the motion is symmetric, so the object must have been launched up with a velocity of vy =
32.5 m/s.

(b) Double the previous answer; the time of flight is 6.62 s.

E2-55 (a) The time to fall the first 50 meters is

t =

√
2y
ay

=

√
2(−50 m)

(−9.8 m/s2)
= 3.2 s.

(b) The total time to fall 100 meters is

t =

√
2y
ay

=

√
2(−100 m)

(−9.8 m/s2)
= 4.5 s.

The time to fall through the second 50 meters is the difference, 1.3 s.

E2-56 The rock returns to the ground with an equal, but opposite, velocity. The acceleration is
then

ay = ((−14.6 m/s)− (14.6 m/s))/(7.72 s) = 3.78 m/s2.

That would put them on Mercury.

E2-57 (a) Solve Eq. 2-30 for the initial velocity. Let the distances be measured from the ground
so that y0 = 0.

y = y0 + v0yt−
1
2
gt2,

(36.8 m) = (0) + v0y(2.25 s)− 1
2

(9.8 m/s2)(2.25 s)2,

36.8 m = v0y(2.25 s)− 24.8 m,
27.4 m/s = v0y.

(b) Solve Eq. 2-29 for the velocity, using the result from part (a).

vy = v0y − gt,
vy = (27.4 m/s)− (9.8 m/s2)(2.25 s),
vy = 5.4 m/s.

(c) We need to solve Eq. 2-30 to find the height to which the ball rises, but we don’t know how
long it takes to get there. So we first solve Eq. 2-29, because we do know the velocity at the highest
point (vy = 0).

vy = v0y − gt,
(0) = (27.4 m/s)− (9.8 m/s2)t,

2.8 s = t.
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And then we find the height to which the object rises,

y = y0 + v0yt−
1
2
gt2,

y = (0) + (27.4 m/s)(2.8 s)− 1
2

(9.8 m/s2)(2.8 s)2,

y = 38.3m.

This is the height as measured from the ground; so the ball rises 38.3−36.8 = 1.5 m above the point
specified in the problem.

E2-58 The time it takes for the ball to fall 2.2 m is

t =

√
2y
ay

=

√
2(−2.2 m)

(−9.8 m/s2)
= 0.67 s.

The ball hits the ground with a velocity of

vy = ayt = (−9.8 m/s2)(0.67 s) = −6.6 m/s.

The ball then bounces up to a height of 1.9 m. It is easier to solve the falling part of the motion,
and then apply symmetry. The time is would take to fall is

t =

√
2y
ay

=

√
2(−1.9 m)

(−9.8 m/s2)
= 0.62 s.

The ball hits the ground with a velocity of

vy = ayt = (−9.8 m/s2)(0.62 s) = −6.1 m/s.

But we are interested in when the ball moves up, so vy = 6.1 m/s.
The acceleration while in contact with the ground is

ay = ((6.1 m/s)− (−6.6 m/s))/(0.096 s) = 130 m/s2.

E2-59 The position as a function of time for the first object is

y1 = −1
2
gt2,

The position as a function of time for the second object is

y2 = −1
2
g(t− 1 s)2

The difference,
∆y = y2 − y1 = frac12g ((2 s)t− 1) ,

is the set equal to 10 m, so t = 1.52 s.

E2-60 Answer part (b) first.
(b) Use the quadratic equation to solve

(−81.3 m) =
1
2

(−9.81 m/s2)t2 + (12.4 m/s)t

for time. Get t = −3.0 s and t = 5.53 s. Keep the positive answer.
(a) Now find final velocity from

vy = (−9.8 m/s2)(5.53 s) + (12.4 m/s) = −41.8 m/s.
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E2-61 The total time the pot is visible is 0.54 s; the pot is visible for 0.27 s on the way down.
We’ll define the initial position as the highest point and make our measurements from there. Then
y0 = 0 and v0y = 0. Define t1 to be the time at which the falling pot passes the top of the window
y1, then t2 = t1 + 0.27 s is the time the pot passes the bottom of the window y2 = y1 − 1.1 m. We
have two equations we can write, both based on Eq. 2-30,

y1 = y0 + v0yt1 −
1
2
gt21,

y1 = (0) + (0)t1 −
1
2
gt21,

and

y2 = y0 + v0yt2 −
1
2
gt22,

y1 − 1.1 m = (0) + (0)t2 −
1
2
g(t1 + 0.27 s)2,

Isolate y1 in this last equation and then set the two expressions equal to each other so that we can
solve for t1,

−1
2
gt21 = 1.1 m− 1

2
g(t1 + 0.27 s)2,

−1
2
gt21 = 1.1 m− 1

2
g(t21 + [0.54 s]t1 + 0.073 s2),

0 = 1.1 m− 1
2
g([0.54 s]t1 + 0.073 s2).

This last line can be directly solved to yield t1 = 0.28 s as the time when the falling pot passes the
top of the window. Use this value in the first equation above and we can find y1 = − 1

2 (9.8 m/s2)(0.28
s)2 = −0.38 m. The negative sign is because the top of the window is beneath the highest point, so
the pot must have risen to 0.38 m above the top of the window.

P2-1 (a) The net shift is
√

(22 m)2 + (17 m)2) = 28 m.
(b) The vertical displacement is (17 m) sin(52◦) = 13 m.

P2-2 Wheel “rolls” through half of a turn, or πr = 1.41 m. The vertical displacement is 2r =
0.90 m. The net displacement is√

(1.41 m)2 + (0.90 m)2 = 1.67 m0.

The angle is
θ = tan−1(0.90 m)/(1.41 m) = 33◦.

P2-3 We align the coordinate system so that the origin corresponds to the starting position of
the fly and that all positions inside the room are given by positive coordinates.

(a) The displacement vector can just be written,

∆~r = (10 ft)̂i + (12 ft)̂j + (14 ft)k̂.

(b) The magnitude of the displacement vector is |∆~r| =
√

102 + 122 + 142 ft= 21 ft.
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(c) The straight line distance between two points is the shortest possible distance, so the length
of the path taken by the fly must be greater than or equal to 21 ft.

(d) If the fly walks it will need to cross two faces. The shortest path will be the diagonal across
these two faces. If the lengths of sides of the room are l1, l2, and l3, then the diagonal length across
two faces will be given by √

(l1 + l2)2 + l23,

where we want to choose the li from the set of 10 ft, 12 ft, and 14 ft that will minimize the length.
The minimum distance is when l1 = 10 ft, l2 = 12 ft, and l3 = 14. Then the minimal distance the
fly would walk is 26 ft.

P2-4 Choose vector ~a to lie on the x axis. Then ~a = âi and ~b = bx î + by ĵ where bx = b cos θ and
by = b sin θ. The sum then has components

rx = a+ b cos θ and ry = b sin θ.

Then

r2 = (a+ b cos θ)2 + (b sin θ)2
,

= a2 + 2ab cos θ + b2.

P2-5 (a) Average speed is total distance divided by total time. Then

vav =
(35.0 mi/hr)(t/2) + (55.0 mi/hr)(t/2)

(t/2) + (t/2)
= 45.0 mi/hr.

(b) Average speed is total distance divided by total time. Then

vav =
(d/2) + (d/2)

(d/2)/(35.0 mi/hr) + (d/2)/(55.0 mi/hr)
= 42.8 mi/hr.

(c) Average speed is total distance divided by total time. Then

vav =
d+ d

(d)/(45.0 mi/hr) + (d)/(42.8 mi/hr)
= 43.9 mi/hr

P2-6 (a) We’ll do just one together. How about t = 2.0 s?

x = (3.0 m/s)(2.0 s) + (−4.0 m/s2)(2.0 s)2 + (1.0 m/s3)(2.0 s)3 = −2.0 m.

The rest of the values are, starting from t = 0, x = 0.0 m, 0.0 m, -2.0 m, 0.0 m, and 12.0 m.
(b) Always final minus initial. The answers are xf −xi = −2.0 m− 0.0 m = −2.0 m and xf −xi =

12.0 m− 0.0 m = 12.0 m.
(c) Always displacement divided by (change in) time.

vav =
(12.0 m)− (−2.0 m)

(4.0 s)− (2.0 s)
= 7.0 m/s,

and

vav =
(0.0 m)− (0.0 m)
(3.0 s)− (0.0 s)

= 0.0 m/s.
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P2-7 (a) Assume the bird has no size, the trains have some separation, and the bird is just
leaving one of the trains. The bird will be able to fly from one train to the other before the two
trains collide, regardless of how close together the trains are. After doing so, the bird is now on the
other train, the trains are still separated, so once again the bird can fly between the trains before
they collide. This process can be repeated every time the bird touches one of the trains, so the bird
will make an infinite number of trips between the trains.

(b) The trains collide in the middle; therefore the trains collide after (51 km)/(34 km/hr) = 1.5
hr. The bird was flying with constant speed this entire time, so the distance flown by the bird is (58
km/hr)(1.5 hr) = 87 km.

P2-8 (a) Start with a perfect square:

(v1 − v2)2 > 0,
v2

1 + v2
2 > 2v1v2,

(v2
1 + v2

2)t1t2 > 2v1v2t1t2,

d2
1 + d2

2 + (v2
1 + v2

2)t1t2 > d2
1 + d2

2 + 2v1v2t1t2,

(v2
1t1 + v2

2t2)(t1 + t2) > (d1 + d2)2,

v2
1t1 + v2

2t2
d1 + d2

>
d1 + d2

t1 + t2
,

v1d1 + v2d2

d1 + d2
>

v1t1 + v2t2
t1 + t2

Actually, it only works if d1 + d2 > 0!
(b) If v1 = v2.

P2-9 (a) The average velocity during the time interval is vav = ∆x/∆t, or

vav =
(A+B(3 s)3)− (A+B(2 s)3)

(3 s)− (2 s)
= (1.50 cm/s3)(19 s3)/(1 s) = 28.5 cm/s.

(b) v = dx/dt = 3Bt2 = 3(1.50 cm/s3)(2 s)2 = 18 cm/s.
(c) v = dx/dt = 3Bt2 = 3(1.50 cm/s3)(3 s)2 = 40.5 cm/s.
(d) v = dx/dt = 3Bt2 = 3(1.50 cm/s3)(2.5 s)2 = 28.1 cm/s.
(e) The midway position is (xf + xi)/2, or

xmid = A+B[(3 s)3 + (2 s)3)]/2 = A+ (17.5 s3)B.

This occurs when t = 3
√

(17.5 s3). The instantaneous velocity at this point is

v = dx/dt = 3Bt2 = 3(1.50 cm/s3)( 3
√

(17.5 s3))2 = 30.3 cm/s.

P2-10 Consider the figure below.

1

x

t 1

x

t 1

x

t1

x

t

(c) (d)(b)(a)
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P2-11 (a) The average velocity is displacement divided by change in time,

vav =
(2.0 m/s3)(2.0 s)3 − (2.0 m/s3)(1.0 s)3

(2.0 s)− (1.0 s)
=

14.0 m
1.0 s

= 14.0 m/s.

The average acceleration is the change in velocity. So we need an expression for the velocity, which
is the time derivative of the position,

v =
dx

dt
=

d

dt
(2.0 m/s3)t3 = (6.0 m/s3)t2.

From this we find average acceleration

aav =
(6.0 m/s3)(2.0 s)2 − (6.0 m/s3)(1.0 s)2

(2.0 s)− (1.0 s)
=

18.0 m/s
1.0 s

= 18.0 m/s2
.

(b) The instantaneous velocities can be found directly from v = (6.0 m/s2)t2, so v(2.0 s) = 24.0
m/s and v(1.0 s) = 6.0 m/s. We can get an expression for the instantaneous acceleration by taking
the time derivative of the velocity

a =
dv

dt
=

d

dt
(6.0 m/s3)t2 = (12.0 m/s3)t.

Then the instantaneous accelerations are a(2.0 s) = 24.0 m/s2 and a(1.0 s) = 12.0 m/s2

(c) Since the motion is monotonic we expect the average quantities to be somewhere between
the instantaneous values at the endpoints of the time interval. Indeed, that is the case.

P2-12 Consider the figure below.

0 2 4 6 8 10

t(s)

0 2 4 6 8 10

t(s)

0 2 4 6 8 10

t(s)

0

5

10

15

a(m/s^2)

0

75

50

25

v(m/s) x(m)

P2-13 Start with vf = vi + at, but vf = 0, so vi = −at, then

x =
1
2
at2 + vit =

1
2
at2 − at2 = −1

2
at2,

so t =
√
−2x/a =

√
−2(19.2 ft)/(−32 ft/s2) = 1.10 s. Then vi = −(−32 ft/s2)(1.10 s) = 35.2 ft/s.

Converting,
35.2 ft/s(1/5280 mi/ft)(3600 s/h) = 24 mi/h.
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P2-14 (b) The average speed during while traveling the 160 m is

vav = (33.0 m/s + 54.0 m/s)/2 = 43.5 m/s.

The time to travel the 160 m is t = (160 m)/(43.5 m/s) = 3.68 s.
(a) The acceleration is

a =
2x
t2
− 2vi

t
=

2(160 m)
(3.68 s)2

− 2(33.0 m/s)
(3.68 s)

= 5.69 m/s2.

(c) The time required to get up to a speed of 33 m/s is

t = v/a = (33.0 m/s)/(5.69 m/s2) = 5.80 s.

(d) The distance moved from start is

d =
1
2
at2 =

1
2

(5.69 m/s2)(5.80 s)2 = 95.7 m.

P2-15 (a) The distance traveled during the reaction time happens at constant speed; treac = d/v =
(15 m)/(20 m/s) = 0.75 s.

(b) The braking distance is proportional to the speed squared (look at the numbers!) and in
this case is dbrake = v2/(20 m/s2). Then dbrake = (25 m/s)2/(20 m/s2) = 31.25 m. The reaction time
distance is dreac = (25 m/s)(0.75 s) = 18.75 m. The stopping distance is then 50 m.

P2-16 (a) For the car xc = act
2/2. For the truck xt = vtt. Set both xi to the same value, and

then substitute the time from the truck expression:

x = act
2/2 = ac(x/vt)2/2,

or
x = 2vt

2/ac = 2(9.5 m/s)2/(2.2 m/s) = 82 m.

(b) The speed of the car will be given by vc = act, or

vc = act = acx/vt = (2.2 m/s)(82 m)/(9.5 m/s) = 19 m/s.

P2-17 The runner covered a distance d1 in a time interval t1 during the acceleration phase and
a distance d2 in a time interval t2 during the constant speed phase. Since the runner started from
rest we know that the constant speed is given by v = at1, where a is the runner’s acceleration.

The distance covered during the acceleration phase is given by

d1 =
1
2
at21.

The distance covered during the constant speed phase can also be found from

d2 = vt2 = at1t2.

We want to use these two expressions, along with d1 + d2 = 100 m and t2 = (12.2 s)− t1, to get

100 m = d1 + d2 =
1
2
at21 + at1(12.2 s− t1),

= −1
2
at21 + a(12.2 s)t1,

= −(1.40 m/s2)t21 + (34.2 m/s)t1.
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This last expression is quadratic in t1, and is solved to give t1 = 3.40 s or t1 = 21.0 s. Since the race
only lasted 12.2 s we can ignore the second answer.

(b) The distance traveled during the acceleration phase is then

d1 =
1
2
at21 = (1.40 m/s2)(3.40 s)2 = 16.2 m.

P2-18 (a) The ball will return to the ground with the same speed it was launched. Then the total
time of flight is given by

t = (vf − vi)/g = (−25 m/s− 25 m/s)/(9.8 m/s2) = 5.1 s.

(b) For small quantities we can think in terms of derivatives, so

δt = (δvf − δvi)/g,

or τ = 2ε/g.

P2-19 Use y = −gt2/2, but only keep the absolute value. Then y50 = (9.8 m/s2)(0.05 s)2/2 =
1.2 cm; y100 = (9.8 m/s2)(0.10 s)2/2 = 4.9 cm; y150 = (9.8 m/s2)(0.15 s)2/2 = 11 cm; y200 =
(9.8 m/s2)(0.20 s)2/2 = 20 cm; y250 = (9.8 m/s2)(0.25 s)2/2 = 31 cm.

P2-20 The truck will move 12 m in (12 m)/(55 km/h) = 0.785 s. The apple will fall y = −gt2/2 =
−(9.81 m/s2)(0.785 s)2/2 = −3.02 m.

P2-21 The rocket travels a distance d1 = 1
2at

2
1 = 1

2 (20 m/s2)(60 s)2 = 36, 000 m during the accel-
eration phase; the rocket velocity at the end of the acceleration phase is v = at = (20 m/s2)(60 s) =
1200 m/s. The second half of the trajectory can be found from Eqs. 2-29 and 2-30, with y0 = 36, 000
m and v0y = 1200 m/s.

(a) The highest point of the trajectory occurs when vy = 0, so

vy = v0y − gt,
(0) = (1200 m/s)− (9.8 m/s2)t,

122 s = t.

This time is used to find the height to which the rocket rises,

y = y0 + v0yt−
1
2
gt2,

= (36000 m) + (1200 m/s)(122s)− 1
2

(9.8 m/s2)(122 s)2 = 110000 m.

(b) The easiest way to find the total time of flight is to solve Eq. 2-30 for the time when the
rocket has returned to the ground. Then

y = y0 + v0yt−
1
2
gt2,

(0) = (36000 m) + (1200 m/s)t− 1
2

(9.8 m/s2)t2.

This quadratic expression has two solutions for t; one is negative so we don’t need to worry about
it, the other is t = 270 s. This is the free-fall part of the problem, to find the total time we need to
add on the 60 seconds of accelerated motion. The total time is then 330 seconds.
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P2-22 (a) The time required for the player to “fall” from the highest point a distance of y = 15 cm
is
√

2y/g; the total time spent in the top 15 cm is twice this, or 2
√

2y/g = 2
√

2(0.15 m)/(9.81 m/s) =
0.350 s.

(b) The time required for the player to “fall” from the highest point a distance of 76 cm is√
2(0.76 m)/(9.81 m/s) = 0.394 s, the time required for the player to fall from the highest point a

distance of (76 − 15 = 61) cm is
√

2(0.61 m)/g = 0.353 s. The time required to fall the bottom 15
cm is the difference, or 0.041 s. The time spent in the bottom 15 cm is twice this, or 0.081 s.

P2-23 (a) The average speed between A and B is vav = (v + v/2)/2 = 3v/4. We can also write
vav = (3.0 m)/∆t = 3v/4. Finally, v/2 = v − g∆t. Rearranging, v/2 = g∆t. Combining all of the
above,

v

2
= g

(
4(3.0 m)

3v

)
or v2 = (8.0 m)g.

Then v =
√

(8.0 m)(9.8 m/s2) = 8.85 m/s.
(b) The time to the highest point above B is v/2 = gt, so the distance above B is

y = −g
2
t2 +

v

2
t = −g

2

(
v

2g

)2

+
v

2

(
v

2g

)
=
v2

8g
.

Then y = (8.85 m/s)2/(8(9.8 m/s2)) = 1.00 m.

P2-24 (a) The time in free fall is t =
√
−2y/g =

√
−2(−145 m)/(9.81 m/s2) = 5.44 s.

(b) The speed at the bottom is v = −gt = −(9.81 m/s2)(5.44 s) = −53.4 m/s.
(c) The time for deceleration is given by v = −25gt, or t = −(−53.4 m/s)/(25 × 9.81 /s2) =

0.218 s. The distance through which deceleration occurred is

y =
25g
2
t2 + vt = (123 m/s2)(0.218 s)2 + (−53.4 m/s)(0.218 s) = −5.80 m.

P2-25 Find the time she fell from Eq. 2-30,

(0 ft) = (144 ft) + (0)t− 1
2

(32 ft/s2)t2,

which is a simple quadratic with solutions t = ±3.0 s. Only the positive solution is of interest. Use
this time in Eq. 2-29 to find her speed when she hit the ventilator box,

vy = (0)− (32 ft/s2)(3.0 s) = −96 ft/s.

This becomes the initial velocity for the deceleration motion, so her average speed during deceleration
is given by Eq. 2-27,

vav,y =
1
2

(vy + v0y) =
1
2

((0) + (−96 ft/s)) = −48 ft/s.

This average speed, used with the distance of 18 in (1.5 ft), can be used to find the time of deceleration

vav,y = ∆y/∆t,

and putting numbers into the expression gives ∆t = 0.031 s. We actually used ∆y = −1.5 ft, where
the negative sign indicated that she was still moving downward. Finally, we use this in Eq. 2-26 to
find the acceleration,

(0) = (−96 ft/s) + a(0.031 s),

which gives a = +3100 ft/s2. In terms of g this is a = 97g, which can be found by multiplying
through by 1 = g/(32 ft/s2).

30



P2-26 Let the speed of the disk when it comes into contact with the ground be v1; then the
average speed during the deceleration process is v1/2; so the time taken for the deceleration process
is t1 = 2d/v1, where d = −2 mm. But d is also give by d = at21/2 + v1t1, so

d =
100g

2

(
2d
v1

)2

+ v1

(
2d
v1

)
= 200g

d2

v2
1

+ 2d,

or v2
1 = −200gd. The negative signs are necessary!.
The disk was dropped from a height h = −y and it first came into contact with the ground when

it had a speed of v1. Then the average speed is v1/2, and we can repeat most of the above (except
a = −g instead of 100g), and then the time to fall is t2 = 2y/v1,

y =
g

2

(
2y
v1

)2

+ v1

(
2y
v1

)
= 2g

y2

v2
1

+ 2y,

or v2
1 = −2gy. The negative signs are necessary!.
Equating, y = 100d = 100(−2 mm) = −0.2 m, so h = 0.2 m. Note that although 100g’s sounds

like plenty, you still shouldn’t be dropping your hard disk drive!

P2-27 Measure from the feet! Jim is 2.8 cm tall in the photo, so 1 cm on the photo is 60.7
cm in real-life. Then Jim has fallen a distance y1 = −3.04 m while Clare has fallen a distance
y2 = −5.77 m. Clare jumped first, and the time she has been falling is t2; Jim jumped seconds, the
time he has been falling is t1 = t2 −∆t. Then y2 = −gt22/2 and y1 = −gt21/2, or t2 =

√
−2y2/g =√

−2(−5.77 m)/(9.81 m/s2) = 1.08 s and t1 =
√
−2y1/g =

√
−2(3.04 m)/(9.81 m/s2) = 0.79 s. So

Jim waited 0.29 s.

P2-28 (a) Assuming she starts from rest and has a speed of v1 when she opens her chute, then
her average speed while falling freely is v1/2, and the time taken to fall y1 = −52.0 m is t1 = 2y1/v1.
Her speed v1 is given by v1 = −gt1, or v2

1 = −2gy1. Then v1 = −
√
−2(9.81 m/s2)(−52.0 m) =

−31.9 m/s. We must use the negative answer, because she fall down! The time in the air is then
t1 =

√
−2y1/g =

√
−2(52.0 m)/(9.81 m/s2) = 3.26 s.

Her final speed is v2 = −2.90 m/s, so the time for the deceleration is t2 = (v2 − v1)/a, where
a = 2.10 m/s2. Then t2 = (−2.90 m/s−−31.9 m/s)/(2.10 m/s2) = 13.8 s.

Finally, the total time of flight is t = t1 + t2 = 3.26 s + 13.8 s = 17.1 s.
(b) The distance fallen during the deceleration phase is

y2 = −g
2
t22 + v1t2 = − (2.10 m/s2)

2
(13.8 s)2 + (−31.9 m/s)(13.8 s) = −240 m.

The total distance fallen is y = y1 + y2 = −52.0 m− 240 m = −292 m. It is negative because she was
falling down.

P2-29 Let the speed of the bearing be v1 at the top of the windows and v2 at the bottom.
These speeds are related by v2 = v1 − gt12, where t12 = 0.125 s is the time between when the
bearing is at the top of the window and at the bottom of the window. The average speed is
vav = (v1 + v2)/2 = v1 − gt12/2. The distance traveled in the time t12 is y12 = −1.20 m, so

y12 = vavt12 = v1t12 − gt212/2,

and expression that can be solved for v1 to yield

v1 =
y12 + gt212/2

t12
=

(−1.20 m) + (9.81 m/s2)(0.125 s)2/2
(0.125 s)

= −8.99 m/s.
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Now that we know v1 we can find the height of the building above the top of the window. The time
the object has fallen to get to the top of the window is t1 = −v1/g = −(−8.99 m/s)/(9.81 m/s2) =
0.916 m.

The total time for falling is then (0.916 s)+(0.125 s)+(1.0 s) = 2.04 s. Note that we remembered
to divide the last time by two! The total distance from the top of the building to the bottom is then

y = −gt2/2 = −(9.81 m/s2)(2.04 s)2/2 = 20.4 m.

P2-30 Each ball falls from a highest point through a distance of 2.0 m in

t =
√
−2(2.0 m)/(9.8 m/s2) = 0.639 s.

The time each ball spends in the air is twice this, or 1.28 s. The frequency of tosses per ball is the
reciprocal, f = 1/T = 0.781 s−1. There are five ball, so we multiply this by 5, but there are two
hands, so we then divide that by 2. The tosses per hand per second then requires a factor 5/2, and
the tosses per hand per minute is 60 times this, or 117.

P2-31 Assume each hand can toss n objects per second. Let τ be the amount of time that any
one object is in the air. Then 2nτ is the number of objects that are in the air at any time, where
the “2” comes from the fact that (most?) jugglers have two hands. We’ll estimate n, but τ can be
found from Eq. 2-30 for an object which falls a distance h from rest:

0 = h+ (0)t− 1
2
gt2,

solving, t =
√

2h/g. But τ is twice this, because the object had to go up before it could come down.
So the number of objects that can be juggled is

4n
√

2h/g

We estimate n = 2 tosses/second. So the maximum number of objects one could juggle to a height
h would be

3.6
√
h/meters.

P2-32 (a) We need to look up the height of the leaning tower to solve this! If the height is h = 56 m,
then the time taken to fall a distance h = −y1 is t1 =

√
−2y1/g =

√
−2(−56 m)/(9.81 m/s2) = 3.4 s.

The second object, however, has only fallen a a time t2 = t1−∆t = 3.3 s, so the distance the second
object falls is y2 = −gt22/2 = −(9.81 m/s2)(3.3 s)2/2 = 53.4. The difference is y1 − y2 = 2.9 m.

(b) If the vertical separation is ∆y = 0.01 m, then we can approach this problem in terms of
differentials,

δy = at δt,

so δt = (0.01 m)/[((9.81 m/s2)(3.4 s)] = 3×10−4 s.

P2-33 Use symmetry, and focus on the path from the highest point downward. Then ∆tU = 2tU ,
where tU is the time from the highest point to the upper level. A similar expression exists for
the lower level, but replace U with L. The distance from the highest point to the upper level is
yU = −gt2U/2 = −g(∆tU/2)2/2. The distance from the highest point to the lower level is yL =
−gt2L/2 = −g(∆tL/2)2/2. Now H = yU − yL = −g∆t2U/8−−g∆t2L/8, which can be written as

g =
8H

∆t2L −∆t2U
.
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