SOLUTIONS TO CONCEPTS

CHAPTER 21

1. In the given Fizeau' apparatus,
$D=12 \mathrm{~km}=12 \times 10^{3} \mathrm{~m}$
$\mathrm{n}=180$
$\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{sec}$
We know, $\mathrm{c}=\frac{2 \mathrm{Dn} \omega}{\pi}$
$\Rightarrow \omega=\frac{\pi \mathrm{c}}{2 \mathrm{Dn}} \mathrm{rad} / \mathrm{sec}=\frac{\pi \mathrm{c}}{2 \mathrm{Dn}} \times \frac{180}{\pi} \mathrm{deg} / \mathrm{sec}$
$\Rightarrow \omega=\frac{180 \times 3 \times 10^{8}}{24 \times 10^{3} \times 180}=1.25 \times 10^{4} \mathrm{deg} / \mathrm{sec}$
2. In the given Focault experiment,
$\mathrm{R}=$ Distance between fixed and rotating mirror $=16 \mathrm{~m}$
$\omega=$ Angular speed $=356 \mathrm{rev} /{ }^{\prime}=356 \times 2 \pi \mathrm{rad} / \mathrm{sec}$
$b=$ Distance between lens and rotating mirror $=6 \mathrm{~m}$
a $=$ Distance between source and lens $=2 \mathrm{~m}$
$\mathrm{s}=$ shift in image $=0.7 \mathrm{~cm}=0.7 \times 10^{-3} \mathrm{~m}$
So, speed of light is given by,
$\mathrm{C}=\frac{4 \mathrm{R}^{2} \omega \mathrm{a}}{\mathrm{s}(\mathrm{R}+\mathrm{b})}=\frac{4 \times 16^{2} \times 356 \times 2 \pi \times 2}{0.7 \times 10^{-3}(16+6)}=2.975 \times 10^{8} \mathrm{~m} / \mathrm{s}$
3. In the given Michelson experiment,
$\mathrm{D}=4.8 \mathrm{~km}=4.8 \times 10^{3} \mathrm{~m}$
$\mathrm{N}=8$
We know, $c=\frac{D \omega N}{2 \pi}$
$\Rightarrow \omega=\frac{2 \pi \mathrm{c}}{\mathrm{DN}} \mathrm{rad} / \mathrm{sec}=\frac{\mathrm{c}}{\mathrm{DN}} \mathrm{rev} / \mathrm{sec}=\frac{3 \times 10^{8}}{4.8 \times 10^{3} \times 8}=7.8 \times 10^{3} \mathrm{rev} / \mathrm{sec}$
