SOLUTIONS TO CONCEPTS

CHAPTER - 20

1. Given that,

Refractive index of flint glass $=\mu_{f}=1.620$
Refractive index of crown glass $=\mu_{\mathrm{c}}=1.518$
Refracting angle of flint prism $=A_{f}=6.0^{\circ}$
For zero net deviation of mean ray
$\left(\mu_{f}-1\right) A_{f}=\left(\mu_{c}-1\right) A_{c}$
$\Rightarrow A_{c}=\frac{\mu_{f}-1}{\mu_{c}-1} A_{f}=\frac{1.620-1}{1.518-1}(6.0)^{\circ}=7.2^{\circ}$
2. Given that
$\mu_{r}=1.56, \quad \mu_{y}=1.60$, and $\mu_{v}=1.68$
(a) Dispersive power $=\omega=\frac{\mu_{v}-\mu_{r}}{\mu_{y}-1}=\frac{1.68-1.56}{1.60-1}=0.2$
(b) Angular dispersion $=\left(\mu_{v}-\mu_{r}\right) A=0.12 \times 6^{\circ}=7.2^{\circ}$
3. The focal length of a lens is given by
$\frac{1}{f}=(\mu-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
$\Rightarrow(\mu-1)=\frac{1}{f} \times \frac{1}{\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)}=\frac{K}{f}$
So, $\mu_{\mathrm{r}}-1=\frac{\mathrm{K}}{100}$
$\mu_{y}-1=\frac{K}{98}$
And $\mu_{v}-1=\frac{K}{96}$
So, Dispersive power $=\omega=\frac{\mu_{v}-\mu_{r}}{\mu_{y}-1}=\frac{\left(\mu_{v}-1\right)-\left(\mu_{r}-1\right)}{\left(\mu_{y}-1\right)}=\frac{\frac{K}{96}-\frac{K}{100}}{\frac{K}{98}}=\frac{98 \times 4}{9600}=0.0408$
4. Given that, $\mu_{v}-\mu_{r}=0.014$

Again, $\mu_{y}=\frac{\text { Real depth }}{\text { Apparent depth }}=\frac{2.00}{1.30}=1.515$
So, dispersive power $=\frac{\mu_{v}-\mu_{\mathrm{r}}}{\mu_{\mathrm{y}}-1}=\frac{0.014}{1.515-1}=0.027$
5. Given that, $\mu_{\mathrm{r}}=1.61, \mu_{\mathrm{v}}=1.65, \omega=0.07$ and $\delta_{\mathrm{y}}=4^{\circ}$

Now, $\omega=\frac{\mu_{v}-\mu_{r}}{\mu_{y}-1}$
$\Rightarrow 0.07=\frac{1.65-1.61}{\mu_{\mathrm{y}}-1}$
$\Rightarrow \mu_{y}-1=\frac{0.04}{0.07}=\frac{4}{7}$
Again, $\delta=(\mu-1) \mathrm{A}$
$\Rightarrow A=\frac{\delta_{y}}{\mu_{y}-1}=\frac{4}{(4 / 7)}=7^{\circ}$
6. Given that, $\delta_{\mathrm{r}}=38.4^{\circ}, \delta_{\mathrm{y}}=38.7^{\circ}$ and $\delta_{\mathrm{v}}=39.2^{\circ}$

Dispersive power $=\frac{\mu_{v}-\mu_{r}}{\mu_{y}-1}=\frac{\left(\mu_{v}-1\right)-\left(\mu_{r}-1\right)}{\left(\mu_{y}-1\right)}=\frac{\left(\frac{\delta_{v}}{A}\right)-\left(\frac{\delta_{r}}{A}\right)}{\left(\frac{\delta_{v}}{A}\right)} \quad[\because \delta=(\mu-1) A]$
$=\frac{\delta_{v}-\delta_{r}}{\delta_{y}}=\frac{39.2-38.4}{38.7}=0.0204$
7. Two prisms of identical geometrical shape are combined.

Let $A=$ Angle of the prisms
$\mu_{v}^{\prime}=1.52$ and $\mu_{v}=1.62, \delta_{v}=1^{\circ}$
$\delta_{v}=\left(\mu_{v}-1\right) \mathrm{A}-\left(\mu_{v}^{\prime}-1\right) \mathrm{A} \quad\left[\right.$ since $\left.\mathrm{A}=\mathrm{A}^{\prime}\right]$
$\Rightarrow \delta_{\mathrm{v}}=\left(\mu_{\mathrm{v}}-\mu_{\mathrm{v}}^{\prime}\right) \mathrm{A}$
$\Rightarrow A=\frac{\delta_{v}}{\mu_{v}-\mu_{v}^{\prime}}=\frac{1}{1.62-1.52}=10^{\circ}$

8. Total deviation for yellow ray produced by the prism combination is
$\delta_{\mathrm{y}}=\delta_{\mathrm{cy}}-\delta_{\mathrm{fy}}+\delta_{\mathrm{cy}}=2 \delta_{\mathrm{cy}}-\delta_{\mathrm{fy}}=2\left(\mu_{\mathrm{cy}}-1\right) \mathrm{A}-\left(\mu_{\mathrm{cy}}-1\right) \mathrm{A}^{\prime}$
Similarly the angular dispersion produced by the combination is
$\left.\delta_{v}-\delta_{r}=\left[\left(\mu_{v c}-1\right) A-\left(\mu_{v f}-1\right) A^{\prime}+\left(\mu_{v c}-1\right) A\right]-\left[\left(\mu_{r c}-1\right) A-\left(\mu_{r f}-1\right) A^{\prime}+\left(\mu_{r}-1\right) A\right)\right]$
$=2\left(\mu_{v c}-1\right) A-\left(\mu_{v f}-1\right) A^{\prime}$
(a) For net angular dispersion to be zero,

$$
\begin{aligned}
& \delta_{\mathrm{v}}-\delta_{\mathrm{r}}=0 \\
& \Rightarrow 2\left(\mu_{\mathrm{vc}}-1\right) \mathrm{A}=\left(\mu_{\mathrm{vf}}-1\right) \mathrm{A}^{\prime} \\
& \Rightarrow \frac{\mathrm{A}^{\prime}}{\mathrm{A}}=\frac{2\left(\mu_{\mathrm{cv}}-\mu_{\mathrm{rc}}\right)}{\left(\mu_{\mathrm{vf}}-\mu_{\mathrm{rf}}\right)}=\frac{2\left(\mu_{\mathrm{v}}-\mu_{\mathrm{r}}\right)}{\left(\mu_{\mathrm{v}}^{\prime}-\mu_{\mathrm{r}}^{\prime}\right)}
\end{aligned}
$$

(b) For net deviation in the yellow ray to be zero,
$\delta_{y}=0$
$\Rightarrow 2\left(\mu_{\mathrm{cy}}-1\right) \mathrm{A}=\left(\mu_{\mathrm{fy}}-1\right) \mathrm{A}^{\prime}$
$\Rightarrow \frac{A^{\prime}}{A}=\frac{2\left(\mu_{c y}-1\right)}{\left(\mu_{\mathrm{fy}}-1\right)}=\frac{2\left(\mu_{\mathrm{y}}-1\right)}{\left(\mu_{\mathrm{y}}^{\prime}-1\right)}$
9. Given that, $\mu_{\mathrm{cr}}=1.515, \mu_{\mathrm{cv}}=1.525$ and $\mu_{\mathrm{fr}}=1.612, \mu_{\mathrm{fv}}=1.632$ and $\mathrm{A}=5^{\circ}$

Since, they are similarly directed, the total deviation produced is given by,
$\delta=\delta_{c}+\delta_{r}=\left(\mu_{c}-1\right) A+\left(\mu_{r}-1\right) A=\left(\mu_{c}+\mu_{r}-2\right) A$
So, angular dispersion of the combination is given by,
$\delta_{\mathrm{v}}-\delta_{\mathrm{y}}=\left(\mu_{\mathrm{cv}}+\mu_{\mathrm{fv}}-2\right) \mathrm{A}-\left(\mu_{\mathrm{cr}}+\mu_{\mathrm{fr}}-2\right) \mathrm{A}$

$=\left(\mu_{\mathrm{cv}}+\mu_{\mathrm{fv}}-\mu_{\mathrm{cr}}-\mu_{\mathrm{fr}}\right) \mathrm{A}=(1.525+1.632-1.515-1.612) 5=0.15^{\circ}$
10. Given that, $A^{\prime}=6^{\circ}, \quad \omega^{\prime}=0.07, \quad \mu_{y}^{\prime}=1.50$
$A=? \quad \omega=0.08, \quad \mu_{y}=1.60$
The combination produces no deviation in the mean ray.
(a) $\delta_{y}=\left(\mu_{y}-1\right) \mathrm{A}-\left(\mu_{y}^{\prime}-1\right) \mathrm{A}^{\prime}=0 \quad$ [Prism must be oppositely directed]

$$
\begin{aligned}
& \Rightarrow(1.60-1) \mathrm{A}=\left((1.50-1) \mathrm{A}^{\prime}\right. \\
& \Rightarrow A=\frac{0.50 \times 6^{\circ}}{0.60}=5^{\circ}
\end{aligned}
$$

(b) When a beam of white light passes through it,

Net angular dispersion $=\left(\mu_{y}-1\right) \omega A-\left(\mu_{y}^{\prime}-1\right) \omega^{\prime} A^{\prime}$
$\Rightarrow(1.60-1)(0.08)\left(5^{\circ}\right)-(1.50-1)(0.07)\left(6^{\circ}\right)$
$\Rightarrow 0.24^{\circ}-0.21^{\circ}=0.03^{\circ}$
(c) If the prisms are similarly directed,

$$
\begin{aligned}
& \delta_{y}=\left(\mu_{y}-1\right) A+\left(\mu_{y}^{\prime}-1\right) A \\
& =(1.60-1) 5^{\circ}+(1.50-1) 6^{\circ}=3^{\circ}+3^{\circ}=6^{\circ}
\end{aligned}
$$

(d) Similarly, if the prisms are similarly directed, the net angular dispersion is given by,

$$
\delta_{v}-\delta_{r}=\left(\mu_{y}-1\right) \omega \mathrm{A}-\left(\mu_{y}^{\prime}-1\right) \omega^{\prime} \mathrm{A}^{\prime}=0.24^{\circ}+0.21^{\circ}=0.45^{\circ}
$$

11. Given that, $\mu_{v}^{\prime}-\mu_{r}^{\prime}=0.014$ and $\mu_{v}-\mu_{r}=0.024$
$A^{\prime}=5.3^{\circ}$ and $A=3.7^{\circ}$
(a) When the prisms are oppositely directed, angular dispersion $=\left(\mu_{v}-\mu_{r}\right) A-\left(\mu_{v}^{\prime}-\mu_{r}^{\prime}\right) A^{\prime}$ $=0.024 \times 3.7^{\circ}-0.014 \times 5.3^{\circ}=0.0146^{\circ}$

(b) When they are similarly directed, angular dispersion $=\left(\mu_{v}-\mu_{r}\right) A+\left(\mu_{v}^{\prime}-\mu_{r}^{\prime}\right) A^{\prime}$ $=0.024 \times 3.7^{\circ}+0.014 \times 5.3^{\circ}=0.163^{\circ}$

