SOLUTIONS TO CONCEPTS

CHAPTER 12

1. Given, $r=10 \mathrm{~cm}$.

At $t=0, x=5 \mathrm{~cm}$.
$\mathrm{T}=6 \mathrm{sec}$.
So, $w=\frac{2 \pi}{T}=\frac{2 \pi}{6}=\frac{\pi}{3} \sec ^{-1}$
At, $t=0, x=5 \mathrm{~cm}$.
So, $5=10 \sin (w \times 0+\phi)=10 \sin \phi \quad[y=r \sin w t]$
$\operatorname{Sin} \phi=1 / 2 \Rightarrow \phi=\frac{\pi}{6}$
\therefore Equation of displacement $\mathrm{x}=(10 \mathrm{~cm}) \sin \left(\frac{\pi}{3}\right)$
(ii) At $t=4$ second
$x=10 \sin \left[\frac{\pi}{3} \times 4+\frac{\pi}{6}\right]=10 \sin \left[\frac{8 \pi+\pi}{6}\right]$
$=10 \sin \left(\frac{3 \pi}{2}\right)=10 \sin \left(\pi+\frac{\pi}{2}\right)=-10 \sin \left(\frac{\pi}{2}\right)=-10$
Acceleration $\mathrm{a}=-\mathrm{w}^{2} \mathrm{x}=-\left(\frac{\pi^{2}}{9}\right) \times(-10)=10.9 \approx 0.11 \mathrm{~cm} / \mathrm{sec}$.
2. Given that, at a particular instant,
$X=2 \mathrm{~cm}=0.02 \mathrm{~m}$
$\mathrm{V}=1 \mathrm{~m} / \mathrm{sec}$
$A=10 \mathrm{msec}^{-2}$
We know that $a=\omega^{2} x$
$\Rightarrow \omega=\sqrt{\frac{a}{x}}=\sqrt{\frac{10}{0.02}}=\sqrt{500}=10 \sqrt{5}$
$\mathrm{T}=\frac{2 \pi}{\omega}=\frac{2 \pi}{10 \sqrt{5}}=\frac{2 \times 3.14}{10 \times 2.236}=0.28$ seconds.
Again, amplitude r is given by $v=\omega\left(\sqrt{r^{2}-x^{2}}\right)$
$\Rightarrow v^{2}=\omega^{2}\left(r^{2}-x^{2}\right)$
$1=500\left(r^{2}-0.0004\right)$
$\Rightarrow r=0.0489 \approx 0.049 \mathrm{~m}$
$\therefore r=4.9 \mathrm{~cm}$.
3. $r=10 \mathrm{~cm}$

Because, K.E. = P.E.
So (1/2) $m \omega^{2}\left(r^{2}-y^{2}\right)=(1 / 2) m \omega^{2} y^{2}$
$r^{2}-y^{2}=y^{2} \Rightarrow 2 y^{2}=r^{2} \Rightarrow y=\frac{r}{\sqrt{2}}=\frac{10}{\sqrt{2}}=5 \sqrt{2} \mathrm{~cm}$ form the mean position.
4. $v_{\max }=10 \mathrm{~cm} / \mathrm{sec}$.
$\Rightarrow \mathrm{r} \omega=10$
$\Rightarrow \omega^{2}=\frac{100}{r^{2}}$
$A_{\text {max }}=\omega^{2} r=50 \mathrm{~cm} / \mathrm{sec}$
$\Rightarrow \omega^{2}=\frac{50}{y}=\frac{50}{r}$
$\therefore \frac{100}{r^{2}}=\frac{50}{r} \Rightarrow r=2 \mathrm{~cm}$.
$\therefore \omega=\sqrt{\frac{100}{\mathrm{r}^{2}}}=5 \mathrm{sec}^{2}$
Again, to find out the positions where the speed is $8 \mathrm{~m} / \mathrm{sec}$,
$v^{2}=\omega^{2}\left(r^{2}-y^{2}\right)$
$\Rightarrow 64=25\left(4-y^{2}\right)$
$\Rightarrow 4-y^{2}=\frac{64}{25} \Rightarrow y^{2}=1.44 \Rightarrow y=\sqrt{1.44} \Rightarrow y= \pm 1.2 \mathrm{~cm}$ from mean position.
5. $x=(2.0 \mathrm{~cm}) \sin \left[\left(100 \mathrm{~s}^{-1}\right) t+(\pi / 6)\right]$
$\mathrm{m}=10 \mathrm{~g}$.
a) Amplitude $=2 \mathrm{~cm}$.
$\omega=100 \mathrm{sec}^{-1}$
$\therefore \mathrm{T}=\frac{2 \pi}{100}=\frac{\pi}{50} \mathrm{sec}=0.063 \mathrm{sec}$.
We know that $\mathrm{T}=2 \pi \sqrt{\frac{\mathrm{~m}}{\mathrm{k}}} \Rightarrow \mathrm{T}^{2}=4 \pi^{2} \times \frac{\mathrm{m}}{\mathrm{k}} \Rightarrow \mathrm{k}=\frac{4 \pi^{2}}{\mathrm{~T}^{2}} \mathrm{~m}$
$=10^{5}$ dyne $/ \mathrm{cm}=100 \mathrm{~N} / \mathrm{m} . \quad$ [because $\left.\omega=\frac{2 \pi}{\mathrm{~T}}=100 \mathrm{sec}^{-1}\right]$
b) At $t=0$
$x=2 \mathrm{~cm} \sin \left(\frac{\pi}{6}\right)=2 \times(1 / 2)=1 \mathrm{~cm}$. from the mean position.
We know that $x=A \sin (\omega t+\phi)$
$v=A \cos (\omega t+\phi)$
$=2 \times 100 \cos (0+\pi / 6)=200 \times \frac{\sqrt{3}}{2}=100 \sqrt{3} \mathrm{sec}^{-1}=1.73 \mathrm{~m} / \mathrm{s}$
c) $a=-\omega^{2} x=100^{2} \times 1=100 \mathrm{~m} / \mathrm{s}^{2}$
6. $x=5 \sin (20 t+\pi / 3)$
a) Max. displacement from the mean position = Amplitude of the particle.

At the extreme position, the velocity becomes ' 0 '.
$\therefore \mathrm{x}=5=$ Amplitude.
$\therefore 5=5 \sin (20 \mathrm{t}+\pi / 3)$
$\sin (20 t+\pi / 3)=1=\sin (\pi / 2)$
$\Rightarrow 20 \mathrm{t}+\pi / 3=\pi / 2$
$\Rightarrow t=\pi / 120 \mathrm{sec}$., So at $\pi / 120 \mathrm{sec}$ it first comes to rest.
b) $a=\omega^{2} x=\omega^{2}[5 \sin (20 t+\pi / 3)]$

For $\mathrm{a}=0,5 \sin (20 \mathrm{t}+\pi / 3)=0 \Rightarrow \sin (20 \mathrm{t}+\pi / 3)=\sin (\pi)$
$\Rightarrow 20 t=\pi-\pi / 3=2 \pi / 3$
$\Rightarrow t=\pi / 30 \mathrm{sec}$.
c) $v=A \omega \cos (\omega t+\pi / 3)=20 \times 5 \cos (20 t+\pi / 3)$
when, v is maximum i.e. $\cos (20 t+\pi / 3)=-1=\cos \pi$
$\Rightarrow 20 \mathrm{t}=\pi-\pi / 3=2 \pi / 3$
$\Rightarrow t=\pi / 30 \mathrm{sec}$.
7. a) $x=2.0 \cos \left(50 \pi t+\tan ^{-1} 0.75\right)=2.0 \cos (50 \pi t+0.643)$
$v=\frac{d x}{d t}=-100 \sin (50 \pi t+0.643)$
$\Rightarrow \sin (50 \pi t+0.643)=0$
As the particle comes to rest for the $1^{\text {st }}$ time
$\Rightarrow 50 \pi \mathrm{t}+0.643=\pi$
$\Rightarrow \mathrm{t}=1.6 \times 10^{-2} \mathrm{sec}$.
b) Acceleration $\mathrm{a}=\frac{\mathrm{dv}}{\mathrm{dt}}=-100 \pi \times 50 \pi \cos (50 \pi \mathrm{t}+0.643)$

For maximum acceleration $\cos (50 \pi t+0.643)=-1 \cos \pi(\max)$ (so a is max) $\Rightarrow \mathrm{t}=1.6 \times 10^{-2} \mathrm{sec}$.
c) When the particle comes to rest for second time,

$$
50 \pi t+0.643=2 \pi
$$

$$
\Rightarrow \mathrm{t}=3.6 \times 10^{-2} \mathrm{~s}
$$

8. $y_{1}=\frac{r}{2}, y_{2}=r$ (for the two given position)

Now, $y_{1}=r \sin \omega t_{1}$
$\Rightarrow \frac{\mathrm{r}}{2}=\mathrm{r} \sin \omega \mathrm{t}_{1} \Rightarrow \sin \omega \mathrm{t}_{1}=\frac{1}{2} \Rightarrow \omega \mathrm{t}_{1}=\frac{\pi}{2} \Rightarrow \frac{2 \pi}{\mathrm{t}} \times \mathrm{t}_{1}=\frac{\pi}{6} \Rightarrow \mathrm{t}_{1}=\frac{\mathrm{t}}{12}$
Again, $\mathrm{y}_{2}=\mathrm{r} \sin \omega_{2}$
$\Rightarrow r=r \sin \omega t_{2} \Rightarrow \sin \omega t_{2}=1 \Rightarrow \omega t_{2}=\pi / 2 \Rightarrow\left(\frac{2 \pi}{t}\right) t_{2}=\frac{\pi}{2} \Rightarrow t_{2}=\frac{t}{4}$
So, $\mathrm{t}_{2}-\mathrm{t}_{1}=\frac{\mathrm{t}}{4}-\frac{\mathrm{t}}{12}=\frac{\mathrm{t}}{6}$
9. $k=0.1 \mathrm{~N} / \mathrm{m}$
$\mathrm{T}=2 \pi \sqrt{\frac{\mathrm{~m}}{\mathrm{k}}}=2 \sec$ [Time period of pendulum of a clock $=2 \mathrm{sec}$]
So, $4 \pi^{2+}\left(\frac{m}{k}\right)=4$
$\therefore \mathrm{m}=\frac{\mathrm{k}}{\pi^{2}}=\frac{0.1}{10}=0.01 \mathrm{~kg} \approx 10 \mathrm{gm}$.
10. Time period of simple pendulum $=2 \pi \sqrt{\frac{1}{g}}$

Time period of spring is $2 \pi \sqrt{\frac{\mathrm{~m}}{\mathrm{k}}}$
$T_{p}=T_{s}$ [Frequency is same]
$\Rightarrow \sqrt{\frac{1}{\mathrm{~g}}}=\sqrt{\frac{\mathrm{m}}{\mathrm{k}}} \quad \Rightarrow \frac{1}{\mathrm{~g}}=\frac{\mathrm{m}}{\mathrm{k}}$

$\Rightarrow 1=\frac{\mathrm{mg}}{\mathrm{k}}=\frac{\mathrm{F}}{\mathrm{k}}=\mathrm{x}$. (Because, restoring force $=$ weight $=\mathrm{F}=\mathrm{mg}$)
$\Rightarrow 1=x$ (proved)
11. $x=r=0.1 \mathrm{~m}$
$\mathrm{T}=0.314 \mathrm{sec}$
$\mathrm{m}=0.5 \mathrm{~kg}$.
Total force exerted on the block $=$ weight of the block + spring force.
$\mathrm{T}=2 \pi \sqrt{\frac{\mathrm{~m}}{\mathrm{k}}} \Rightarrow 0.314=2 \pi \sqrt{\frac{0.5}{\mathrm{k}}} \Rightarrow \mathrm{k}=200 \mathrm{~N} / \mathrm{m}$

\therefore Force exerted by the spring on the block is
$F=k x=201.1 \times 0.1=20 \mathrm{~N}$
\therefore Maximum force $=\mathrm{F}+$ weight $=20+5=25 \mathrm{~N}$
12. $\mathrm{m}=2 \mathrm{~kg}$.
$\mathrm{T}=4 \mathrm{sec}$.
$\mathrm{T}=2 \pi \sqrt{\frac{\mathrm{~m}}{\mathrm{k}}} \Rightarrow 4=2 \pi \sqrt{\frac{2}{\mathrm{~K}}} \Rightarrow 2=\pi \sqrt{\frac{2}{\mathrm{~K}}}$
$\Rightarrow 4=\pi^{2}\left(\frac{2}{\mathrm{k}}\right) \Rightarrow \mathrm{k}=\frac{2 \pi^{2}}{4} \Rightarrow \mathrm{k}=\frac{\pi^{2}}{2}=5 \mathrm{~N} / \mathrm{m}$
But, we know that $F=m g=k x$
$\Rightarrow \mathrm{x}=\frac{\mathrm{mg}}{\mathrm{k}}=\frac{2 \times 10}{5}=4$
\therefore Potential Energy $=(1 / 2) \mathrm{kx}^{2}=(1 / 2) \times 5 \times 16=5 \times 8=40 \mathrm{~J}$
13. $x=25 \mathrm{~cm}=0.25 \mathrm{~m}$
$E=5 \mathrm{~J}$
$\mathrm{f}=5$
So, $T=1 / 5 \mathrm{sec}$.
Now P.E. $=(1 / 2) k x^{2}$
$\Rightarrow(1 / 2) \mathrm{kx}^{2}=5 \Rightarrow(1 / 2) \mathrm{k}(0.25)^{2}=5 \Rightarrow \mathrm{k}=160 \mathrm{~N} / \mathrm{m}$.
Again, $\mathrm{T}=2 \pi \sqrt{\frac{\mathrm{~m}}{\mathrm{k}}} \Rightarrow \frac{1}{5}=2 \pi \sqrt{\frac{\mathrm{~m}}{160}} \Rightarrow \mathrm{~m}=0.16 \mathrm{~kg}$.
14. a) From the free body diagram,
$\therefore \mathrm{R}+\mathrm{m} \omega^{2} \mathrm{x}-\mathrm{mg}=0$
Resultant force $m \omega^{2} x=m g-R$
$\Rightarrow m \omega^{2} x=m\left(\frac{k}{M+m}\right) \Rightarrow x=\frac{m k x}{M+m}$
$[\omega=\sqrt{k /(M+m)}$ for spring mass system]
b) $R=m g-m \omega^{2} x=m g-m \frac{k}{M+m} x=m g-\frac{m k x}{M+m}$

For R to be smallest, $m \omega^{2} x$ should be max. i.e. x is maximum.
The particle should be at the high point.
c) We have $R=m g-m \omega^{2} x$

The tow blocks may oscillates together in such a way that R is greater than 0 . At limiting condition, R $=0, m g=m \omega^{2} x$
$X=\frac{m g}{m \omega^{2}}=\frac{m g(M+m)}{m k}$
So, the maximum amplitude is $=\frac{g(M+m)}{k}$
15. a) At the equilibrium condition,
$k x=\left(m_{1}+m_{2}\right) g \sin \theta$
$\Rightarrow x=\frac{\left(m_{1}+m_{2}\right) g \sin \theta}{k}$
b) $\mathrm{x}_{1}=\frac{2}{\mathrm{k}}\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right) \mathrm{g} \sin \theta$ (Given)

when the system is released, it will start to make SHM
where $\omega=\sqrt{\frac{k}{m_{1}+m_{2}}}$
When the blocks lose contact, $\mathrm{P}=0$
So $m_{2} g \sin \theta=m_{2} x_{2} \omega^{2}=m_{2} x_{2}\left(\frac{k}{m_{1}+m_{2}}\right)$
$\Rightarrow x_{2}=\underline{\left(m_{1}+m_{2}\right) g \sin \theta} k$

So the blocks will lose contact with each other when the springs attain its natural length.
c) Let the common speed attained by both the blocks be v.
$1 / 2\left(m_{1}+m_{2}\right) v^{2}-0=1 / 2 k\left(x_{1}+x_{2}\right)^{2}-\left(m_{1}+m_{2}\right) g \sin \theta\left(x+x_{1}\right)$
[$x+x_{1}=$ total compression]
$\Rightarrow(1 / 2)\left(m_{1}+m_{2}\right) v^{2}=\left[(1 / 2) k(3 / k)\left(m_{1}+m_{2}\right) g \sin \theta-\left(m_{1}+m_{2}\right) g \sin \theta\right]\left(x+x_{1}\right)$
$\Rightarrow(1 / 2)\left(m_{1}+m_{2}\right) v^{2}=(1 / 2)\left(m_{1}+m_{2}\right) g \sin \theta \times(3 / k)\left(m_{1}+m_{2}\right) g \sin \theta$
$\Rightarrow v=\sqrt{\frac{3}{k\left(m_{1}+m_{2}\right)}} g \sin \theta$.
16. Given, $k=100 \mathrm{~N} / \mathrm{m}, \quad \mathrm{M}=1 \mathrm{~kg}$ and $\mathrm{F}=10 \mathrm{~N}$
a) In the equilibrium position,
compression $\delta=F / \mathrm{k}=10 / 100=0.1 \mathrm{~m}=10 \mathrm{~cm}$
b) The blow imparts a speed of $2 \mathrm{~m} / \mathrm{s}$ to the block towards left.
\therefore P.E. + K.E. $=1 / 2 \mathrm{k}^{2}+1 / 2 \mathrm{Mv}^{2}$
$=(1 / 2) \times 100 \times(0.1)^{2}+(1 / 2) \times 1 \times 4=0.5+2=2.5 \mathrm{~J}$

c) Time period $=2 \pi \sqrt{\frac{M}{\mathrm{k}}}=2 \pi \sqrt{\frac{1}{100}}=\frac{\pi}{5} \mathrm{sec}$
d) Let the amplitude be ' x ' which means the distance between the mean position and the extreme position.
So, in the extreme position, compression of the spring is $(x+\delta)$.
Since, in SHM, the total energy remains constant.
$(1 / 2) k(x+\delta)^{2}=(1 / 2) k \delta^{2}+(1 / 2) m v^{2}+F x=2.5+10 x$
[because $\left.(1 / 2) \mathrm{k} \delta^{2}+(1 / 2) \mathrm{mv}^{2}=2.5\right]$
So, $50(\mathrm{x}+0.1)^{2}=2.5+10 \mathrm{x}$
$\therefore 50 \mathrm{x}^{2}+0.5+10 \mathrm{x}=2.5+10 \mathrm{x}$
$\therefore 50 \mathrm{x}^{2}=2 \Rightarrow \mathrm{x}^{2}=\frac{2}{50}=\frac{4}{100} \Rightarrow \mathrm{x}=\frac{2}{10} \mathrm{~m}=20 \mathrm{~cm}$.
e) Potential Energy at the left extreme is given by,
P.E. $=(1 / 2) k(x+\delta)^{2}=(1 / 2) \times 100(0.1+0.2)^{2}=50 \times 0.09=4.5 \mathrm{~J}$
f) Potential Energy at the right extreme is given by,
P.E. $=(1 / 2) k(x+\delta)^{2}-F(2 x) \quad[2 x=$ distance between two extremes $]$
$=4.5-10(0.4)=0.5 \mathrm{~J}$
The different values in (b) (e) and (f) do not violate law of conservation of energy as the work is done by the external force 10 N .
17. a) Equivalent spring constant $\mathrm{k}=\mathrm{k}_{1}+\mathrm{k}_{2}$ (parallel)

$$
\mathrm{T}=2 \pi \sqrt{\frac{\mathrm{M}}{\mathrm{k}}}=2 \pi \sqrt{\frac{\mathrm{~m}}{\mathrm{k}_{1}+\mathrm{k}_{2}}}
$$

b) Let us, displace the block m towards left through displacement ' x '

Resultant force $F=F_{1}+F_{2}=\left(k_{1}+k_{2}\right) x$

(a)

The equivalent spring constant $k=k_{1}+k_{2}$
c) In series conn equivalent spring constant be k.

So, $\frac{1}{k}=\frac{1}{k_{1}}+\frac{1}{k_{2}}=\frac{k_{2}+k_{1}}{k_{1} k_{2}} \Rightarrow k=\frac{k_{1} k_{2}}{k_{1}+k_{2}}$
$\mathrm{T}=2 \pi \sqrt{\frac{\mathrm{M}}{\mathrm{k}}}=2 \pi \sqrt{\frac{\mathrm{~m}\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)}{\mathrm{k}_{1} \mathrm{k}_{2}}}$

18. a) We have $F=k x \Rightarrow x=\frac{F}{k}$

Acceleration $=\frac{F}{m}$
Time period $T=2 \pi \sqrt{\frac{\text { displacement }}{\text { Acceleration }}}=2 \pi \sqrt{\frac{F / k}{F / m}}=2 \pi \sqrt{\frac{m}{k}}$

Amplitude $=$ max displacement $=F / k$
b) The energy stored in the spring when the block passes through the equilibrium position $(1 / 2) k x^{2}=(1 / 2) k(F / k)^{2}=(1 / 2) k\left(F^{2} / k^{2}\right)=(1 / 2)\left(F^{2} / k\right)$
c) At the mean position, P.E. is 0 . K.E. is $(1 / 2) k x^{2}=(1 / 2)\left(F^{2} / x\right)$
19. Suppose the particle is pushed slightly against the spring ' C ' through displacement ' x '.

Total resultant force on the particle is $k x$ due to spring C and $\frac{k x}{\sqrt{2}}$ due to spring A and B.
\therefore Total Resultant force $=k x+\sqrt{\left(\frac{k x}{\sqrt{2}}\right)^{2}+\left(\frac{\mathrm{kx}}{\sqrt{2}}\right)^{2}}=\mathrm{kx}+\mathrm{kx}=2 \mathrm{kx}$.
Acceleration $=\frac{2 \mathrm{kx}}{\mathrm{m}}$

Time period $\mathrm{T}=2 \pi \sqrt{\frac{\text { displacement }}{\text { Acceleration }}}=2 \pi \sqrt{\frac{\mathrm{x}}{\frac{2 \mathrm{kx}}{\mathrm{m}}}}=2 \pi \sqrt{\frac{\mathrm{~m}}{2 \mathrm{k}}}$
[Cause:- When the body pushed against ' C ' the spring C, tries to pull the block towards
$X L$. At that moment the spring A and B tries to pull the block with force $\frac{k x}{\sqrt{2}}$ and
 $\frac{\mathrm{kx}}{\sqrt{2}}$ respectively towards $x y$ and $x z$ respectively. So the total force on the block is due to the spring force
' C ' as well as the component of two spring force A and B.]
20. In this case, if the particle ' m ' is pushed against ' C ' a by distance ' x '.

Total resultant force acting on man ' m ' is given by,
$F=k x+\frac{k x}{2}=\frac{3 k x}{2}$
[Because net force A \& B $=\sqrt{\left(\frac{k x}{2}\right)^{2}+\left(\frac{k x}{2}\right)^{2}+2\left(\frac{k x}{2}\right)\left(\frac{k x}{2}\right) \cos 120^{\circ}}=\frac{k x}{2}$

$\therefore a=\frac{F}{m}=\frac{3 k x}{2 m}$
$\Rightarrow \frac{\mathrm{a}}{\mathrm{x}}=\frac{3 \mathrm{k}}{2 \mathrm{~m}}=\omega^{2} \quad \Rightarrow \omega=\sqrt{\frac{3 \mathrm{k}}{2 \mathrm{~m}}}$
\therefore Time period $\mathrm{T}=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{2 \mathrm{~m}}{3 \mathrm{k}}}$

21. K_{2} and K_{3} are in series.

Let equivalent spring constant be K_{4}
$\therefore \frac{1}{\mathrm{~K}_{4}}=\frac{1}{\mathrm{~K}_{2}}+\frac{1}{\mathrm{~K}_{3}}=\frac{\mathrm{K}_{2}+\mathrm{K}_{3}}{\mathrm{~K}_{2} \mathrm{~K}_{3}} \Rightarrow \mathrm{~K}_{4}=\frac{\mathrm{K}_{2} \mathrm{~K}_{3}}{\mathrm{~K}_{2}+\mathrm{K}_{3}}$

Now K_{4} and K_{1} are in parallel.
So equivalent spring constant $k=k_{1}+k_{4}=\frac{K_{2} K_{3}}{K_{2}+K_{3}}+k_{1}=\frac{k_{2} k_{3}+k_{1} k_{2}+k_{1} k_{3}}{k_{2}+k_{3}}$
$\therefore \mathrm{T}=2 \pi \sqrt{\frac{\mathrm{M}}{\mathrm{k}}}=2 \pi \sqrt{\frac{\mathrm{M}\left(\mathrm{k}_{2}+\mathrm{k}_{3}\right)}{\mathrm{k}_{2} \mathrm{k}_{3}+\mathrm{k}_{1} \mathrm{k}_{2}+\mathrm{k}_{1} \mathrm{k}_{3}}}$
b) frequency $=\frac{1}{T}=\frac{1}{2 \pi} \sqrt{\frac{k_{2} k_{3}+k_{1} k_{2}+k_{1} k_{3}}{M\left(k_{2}+k_{3}\right)}}$
c) Amplitude $x=\frac{F}{k}=\frac{F\left(k_{2}+k_{3}\right)}{k_{1} k_{2}+k_{2} k_{3}+k_{1} k_{3}}$
22. k_{1}, k_{2}, k_{3} are in series,
$\frac{1}{\mathrm{k}}=\frac{1}{\mathrm{k}_{1}}+\frac{1}{\mathrm{k}_{2}}+\frac{1}{\mathrm{k}_{3}} \quad \Rightarrow \mathrm{k}=\frac{\mathrm{k}_{1} \mathrm{k}_{2} \mathrm{k}_{3}}{\mathrm{k}_{1} \mathrm{k}_{2}+\mathrm{k}_{2} \mathrm{k}_{3}+\mathrm{k}_{1} \mathrm{k}_{3}}$
Time period $T=2 \pi \sqrt{\frac{m}{k}}=2 \pi \sqrt{\frac{m\left(k_{1} k_{2}+k_{2} k_{3}+k_{1} k_{3}\right)}{k_{1} k_{2} k_{3}}}=2 \pi \sqrt{m\left(\frac{1}{k_{1}}+\frac{1}{k_{2}}+\frac{1}{k_{3}}\right)}$
Now, Force $=$ weight $=\mathrm{mg}$.
\therefore At k_{1} spring, $\mathrm{x}_{1}=\frac{\mathrm{mg}}{\mathrm{k}_{1}}$
Similarly $\mathrm{x}_{2}=\frac{\mathrm{mg}}{\mathrm{k}_{2}}$ and $\mathrm{x}_{3}=\frac{\mathrm{mg}}{\mathrm{k}_{3}}$

$\therefore \mathrm{PE}_{1}=(1 / 2) \mathrm{k}_{1} \mathrm{x}_{1}{ }^{2}=\frac{1}{2} \mathrm{k}_{1}\left(\frac{\mathrm{Mg}}{\mathrm{k}_{1}}\right)^{2}=\frac{1}{2} \mathrm{k}_{1} \frac{\mathrm{~m}^{2} \mathrm{~g}^{2}}{\mathrm{k}_{1}{ }^{2}}=\frac{\mathrm{m}^{2} \mathrm{~g}^{2}}{2 \mathrm{k}_{1}}$
Similarly $\mathrm{PE}_{2}=\frac{\mathrm{m}^{2} \mathrm{~g}^{2}}{2 \mathrm{k}_{2}}$ and $\mathrm{PE}_{3}=\frac{\mathrm{m}^{2} \mathrm{~g}^{2}}{2 \mathrm{k}_{3}}$
23. When only ' m ' is hanging, let the extension in the spring be ' ℓ '

So $T_{1}=k \ell=m g$.
When a force F is applied, let the further extension be ' x '
$\therefore \mathrm{T}_{2}=\mathrm{k}(\mathrm{x}+\ell)$
\therefore Driving force $=\mathrm{T}_{2}-\mathrm{T}_{1}=\mathrm{k}(\mathrm{x}+\ell)-\mathrm{k} \ell=\mathrm{kx}$
\therefore Acceleration $=\frac{\mathrm{K} \ell}{\mathrm{m}}$
$\mathrm{T}=2 \pi \sqrt{\frac{\text { displacement }}{\text { Acceleration }}}=2 \pi \sqrt{\frac{\mathrm{x}}{\frac{\mathrm{kx}}{\mathrm{m}}}}=2 \pi \sqrt{\frac{\mathrm{~m}}{\mathrm{k}}}$

24. Let us solve the problem by 'energy method'.

Initial extension of the sprig in the mean position,
$\delta=\frac{\mathrm{mg}}{\mathrm{k}}$
During oscillation, at any position ' x ' below the equilibrium position, let the velocity of ' m ' be v and angular velocity of the pulley be ' ω '. If r is the radius of the pulley, then $v=r \omega$.
At any instant, Total Energy = constant (for SHM)
$\therefore(1 / 2) \mathrm{mv}^{2}+(1 / 2) \mathrm{I} \omega^{2}+(1 / 2) \mathrm{k}\left[(\mathrm{x}+\delta)^{2}-\delta^{2}\right]-\mathrm{mgx}=$ Cosntant
$\Rightarrow(1 / 2) m v^{2}+(1 / 2) I \omega^{2}+(1 / 2) k x^{2}-k x \delta-m g x=$ Cosntant
$\Rightarrow(1 / 2) m v^{2}+(1 / 2) I\left(v^{2} / r^{2}\right)+(1 / 2) k x^{2}=$ Constant

$$
(\delta=\mathrm{mg} / \mathrm{k})
$$

Taking derivative of both sides eith respect to ' t ',
$m v \frac{d v}{d t}+\frac{I}{r^{2}} v \frac{d v}{d t}+k \times \frac{d v}{d t}=0$
$\Rightarrow \mathrm{a}\left(\mathrm{m}+\frac{\mathrm{I}}{\mathrm{r}^{2}}\right)=\mathrm{kx} \quad\left(\therefore \mathrm{x}=\frac{\mathrm{dx}}{\mathrm{dt}}\right.$ and $\left.\mathrm{a}=\frac{\mathrm{dx}}{\mathrm{dt}}\right)$

$\Rightarrow \frac{a}{x}=\frac{k}{m+\frac{I}{r^{2}}}=\omega^{2} \Rightarrow T=2 \pi \sqrt{\frac{m+\frac{I}{r^{2}}}{k}}$
25. The centre of mass of the system should not change during the motion. So, if the block ' m ' on the left moves towards right a distance ' x ', the block on the right moves towards left a distance ' x '. So, total compression of the spring is 2 x .
By energy method, $\frac{1}{2} \mathrm{k}(2 \mathrm{x})^{2}+\frac{1}{2} m v^{2}+\frac{1}{2} m v^{2}=C \Rightarrow m v^{2}+2 k x^{2}=C$.
Taking derivative of both sides with respect to ' t '.
$\mathrm{m} \times 2 \mathrm{v} \frac{\mathrm{dv}}{\mathrm{dt}}+2 \mathrm{k} \times 2 \mathrm{x} \frac{\mathrm{dx}}{\mathrm{dt}}=0$
$\therefore \mathrm{ma}+2 \mathrm{kx}=0 \quad[$ because $\mathrm{v}=\mathrm{dx} / \mathrm{dt}$ and $\mathrm{a}=\mathrm{dv} / \mathrm{dt}]$

$\Rightarrow \frac{a}{x}=-\frac{2 k}{m}=\omega^{2} \Rightarrow \omega=\sqrt{\frac{2 k}{m}}$
\Rightarrow Time period $\mathrm{T}=2 \pi \sqrt{\frac{\mathrm{~m}}{2 \mathrm{k}}}$
26. Here we have to consider oscillation of centre of mass

Driving force $\mathrm{F}=\mathrm{mg} \sin \theta$
Acceleration $=\mathrm{a}=\frac{\mathrm{F}}{\mathrm{m}}=\mathrm{g} \sin \theta$.
For small angle $\theta, \sin \theta=\theta$.
$\therefore a=g \theta=g\left(\frac{x}{L}\right) \quad$ [where g and L are constant]
$\therefore \mathrm{a} \propto \mathrm{x}$,
So the motion is simple Harmonic
Time period $\mathrm{T}=2 \pi \sqrt{\frac{\text { Displacement }}{\text { Acceleration }}}=2 \pi \sqrt{\frac{\mathrm{X}}{\left(\frac{g x}{L}\right)}}=2 \pi \sqrt{\frac{L}{g}}$
27. Amplitude $=0.1 \mathrm{~m}$

Total mass $=3+1=4 \mathrm{~kg}$ (when both the blocks are moving together)
$\therefore \mathrm{T}=2 \pi \sqrt{\frac{\mathrm{M}}{\mathrm{k}}}=2 \pi \sqrt{\frac{4}{100}}=\frac{2 \pi}{5} \mathrm{sec}$.

Again at the mean position, let 1 kg block has velocity v .
KE. $=(1 / 2) \mathrm{mv}^{2}=(1 / 2) \mathrm{mx}^{2} \quad$ where $\mathrm{x} \rightarrow$ Amplitude $=0.1 \mathrm{~m}$.
$\therefore(1 / 2) \times\left(1 \times v^{2}\right)=(1 / 2) \times 100(0.1)^{2}$
$\Rightarrow \mathrm{v}=1 \mathrm{~m} / \mathrm{sec}$
After the 3 kg block is gently placed on the 1 kg , then let, $1 \mathrm{~kg}+3 \mathrm{~kg}=4 \mathrm{~kg}$ block and the spring be one system. For this mass spring system, there is so external force. (when oscillation takes place). The momentum should be conserved. Let, 4 kg block has velocity v^{\prime}.
\therefore Initial momentum $=$ Final momentum
$\therefore 1 \times \mathrm{v}=4 \times \mathrm{v}^{\prime} \Rightarrow \mathrm{v}^{\prime}=1 / 4 \mathrm{~m} / \mathrm{s} \quad$ (As $\mathrm{v}=1 \mathrm{~m} / \mathrm{s}$ from equation (1))
Now the two blocks have velocity $1 / 4 \mathrm{~m} / \mathrm{s}$ at its mean poison.
$\mathrm{KE}_{\text {mass }}=(1 / 2) \mathrm{m}^{\prime} \mathrm{v}^{2}=(1 / 2) 4 \times(1 / 4)^{2}=(1 / 2) \times(1 / 4)$.
When the blocks are going to the extreme position, there will be only potential energy.
$\therefore \mathrm{PE}=(1 / 2) \mathrm{k} \delta^{2}=(1 / 2) \times(1 / 4)$ where $\delta \rightarrow$ new amplitude.
$\therefore 1 / 4=100 \delta^{2} \Rightarrow \delta=\sqrt{\frac{1}{400}}=0.05 \mathrm{~m}=5 \mathrm{~cm}$.
So Amplitude $=5 \mathrm{~cm}$.
28. When the block A moves with velocity ' V ' and collides with the block B, it transfers all energy to the block B. (Because it is a elastic collision). The block A will move a distance ' x ' against the spring, again the block B will return to the original point and completes half of the oscillation.

So, the time period of B is $\frac{2 \pi \sqrt{\frac{m}{k}}}{2}=\pi \sqrt{\frac{m}{k}}$
The block B collides with the block A and comes to rest at that point. The block A again moves a further distance ' L ' to return to its original position.
\therefore Time taken by the block to move from $\mathrm{M} \rightarrow \mathrm{N}$ and $\mathrm{N} \rightarrow \mathrm{M}$
is $\frac{L}{V}+\frac{L}{V}=2\left(\frac{L}{V}\right)$

\therefore So time period of the periodic motion is $2\left(\frac{L}{V}\right)+\pi \sqrt{\frac{\mathrm{m}}{\mathrm{k}}}$
29. Let the time taken to travel $A B$ and $B C$ be t_{1} and t_{2} respectively

Fro part $A B, a_{1}=g \sin 45^{\circ} . s_{1}=\frac{0.1}{\sin 45^{\circ}}=2 m$
Let, $\mathrm{v}=$ velocity at B
$\therefore \mathrm{v}^{2}-\mathrm{u}^{2}=2 \mathrm{a}_{1} \mathrm{~s}_{1}$
$\Rightarrow v^{2}=2 \times g \sin 45^{\circ} \times \frac{0.1}{\sin 45^{\circ}}=2$
$\Rightarrow \mathrm{v}=\sqrt{2} \mathrm{~m} / \mathrm{s}$
$\therefore \mathrm{t}_{1}=\frac{\mathrm{v}-\mathrm{u}}{\mathrm{a}_{1}}=\frac{\sqrt{2}-0}{\frac{\mathrm{~g}}{\sqrt{2}}}=\frac{2}{\mathrm{~g}}=\frac{2}{10}=0.2 \mathrm{sec}$

Again for part $B C, a_{2}=-g \sin 60^{\circ}, u=\sqrt{2}, \quad v=0$
$\therefore \mathrm{t}_{2}=\frac{0-\sqrt{2}}{-\mathrm{g}\left(\frac{\sqrt{3}}{2}\right)}=\frac{2 \sqrt{2}}{\sqrt{3} g}=\frac{2 \times(1.414)}{(1.732) \times 10}=0.165 \mathrm{sec}$.
So, time period $=2\left(t_{1}+t_{2}\right)=2(0.2+0.155)=0.71 \mathrm{sec}$
30. Let the amplitude of oscillation of ' m ' and ' M ' be x_{1} and x_{2} respectively.
a) From law of conservation of momentum,
$\mathrm{mx}_{1}=\mathrm{Mx}_{2} \quad \ldots$ (1) [because only internal forces are present]
Again, (1/2) $k x_{0}{ }^{2}=(1 / 2) k\left(x_{1}+x_{2}\right)^{2}$
$\therefore \mathrm{x}_{0}=\mathrm{x}_{1}+\mathrm{x}_{2} \quad \ldots$ (2)
[Block and mass oscillates in opposite direction. But $x \rightarrow$ stretched part]
From equation (1) and (2)
$\therefore \mathrm{x}_{0}=\mathrm{x}_{1}+\frac{\mathrm{m}}{\mathrm{M}} \mathrm{x}_{1}=\left(\frac{\mathrm{M}+\mathrm{m}}{\mathrm{M}}\right) \mathrm{x}_{1}$

$\therefore \mathrm{x}_{1} \frac{\mathrm{Mx}_{0}}{\mathrm{M}+\mathrm{m}}$
So, $x_{2}=x_{0}-x_{1}=x_{0}\left[1-\frac{M}{M+m}\right]=\frac{m x_{0}}{M+m}$ respectively.
b) At any position, let the velocities be v_{1} and v_{2} respectively.

Here, $v_{1}=$ velocity of ' m ' with respect to M.
By energy method
Total Energy = Constant
$(1 / 2) M v^{2}+(1 / 2) m\left(v_{1}-v_{2}\right)^{2}+(1 / 2) k\left(x_{1}+x_{2}\right)^{2}=$ Constant \ldots (i)
[$\mathrm{v}_{1}-\mathrm{v}_{2}=$ Absolute velocity of mass ' m ' as seen from the road.]
Again, from law of conservation of momentum,
$m x_{2}=m x_{1} \Rightarrow x_{1}=\frac{M}{m} x_{2}$
$m v_{2}=m\left(v_{1}-v_{2}\right) \Rightarrow\left(v_{1}-v_{2}\right)=\frac{M}{m} v_{2}$
Putting the above values in equation (1), we get
$\frac{1}{2} M v_{2}{ }^{2}+\frac{1}{2} m \frac{M^{2}}{m^{2}} v_{2}{ }^{2}+\frac{1}{2} k x_{2}{ }^{2}\left(1+\frac{M}{m}\right)^{2}=$ constant
$\therefore M\left(1+\frac{M}{m}\right) v_{2}+k\left(1+\frac{M}{m}\right)^{2} x_{2}{ }^{2}=$ Constant.
$\Rightarrow \mathrm{mv}_{2}{ }^{2}+\mathrm{k}\left(1+\frac{\mathrm{M}}{\mathrm{m}}\right) \mathrm{x}_{2}{ }^{2}=$ constant

Taking derivative of both sides,
$M \times 2 v_{2} \frac{d v_{2}}{d t}+k \frac{(M+m)}{m}-e x_{2}^{2} \frac{d x_{2}}{d t}=0$
$\Rightarrow \mathrm{ma}_{2}+\mathrm{k}\left(\frac{\mathrm{M}+\mathrm{m}}{\mathrm{m}}\right) \mathrm{x}_{2}=0$ [because, $\left.\mathrm{v}_{2}=\frac{\mathrm{dx}_{2}}{\mathrm{dt}}\right]$
$\Rightarrow \frac{\mathrm{a}_{2}}{\mathrm{x}_{2}}=-\frac{\mathrm{k}(M+m)}{M m}=\omega^{2}$
$\therefore \omega=\sqrt{\frac{k(M+m)}{M m}}$
So, Time period, $T=2 \pi \sqrt{\frac{M m}{k(M+m)}}$
31. Let ' x ' be the displacement of the plank towards left. Now the centre of gravity is also displaced through ' x ' In displaced position
$\mathrm{R}_{1}+\mathrm{R}_{2}=\mathrm{mg}$.
Taking moment about G, we get
$R_{1}(\ell / 2-x)=R_{2}(\ell / 2+x)=\left(m g-R_{1}\right)(\ell / 2+x) \ldots(1) \backslash$
So, $R_{1}(\ell / 2-x)=\left(m g-R_{1}\right)(\ell / 2+x)$
$\Rightarrow R_{1} \frac{\ell}{2}-R_{1} x=m g \frac{\ell}{2}-R_{1} x+m g x-R_{1} \frac{\ell}{2}$
$\Rightarrow R_{1} \frac{\ell}{2}+R_{1} \frac{\ell}{2}=m g\left(x+\frac{\ell}{2}\right)$
$\Rightarrow \mathrm{R}_{1}\left(\frac{\ell}{2}+\frac{\ell}{2}\right)=\mathrm{mg}\left(\frac{2 \mathrm{x}+\ell}{2}\right)$
$\Rightarrow R_{1} \ell=\frac{m g(2 x+\ell)}{2}$
$\Rightarrow R_{1}=\frac{m g(2 x+\ell)}{2 \ell}$.
Now $F_{1}=\mu R_{1}=\frac{\mu m g(\ell+2 x)}{2 \ell}$
Similarly $F_{2}=\mu R_{2}=\frac{\mu m g(\ell-2 x)}{2 \ell}$
Since, $F_{1}>F_{2} \Rightarrow F_{1}-F_{2}=m a=\frac{2 \mu m g}{\ell} x$
$\Rightarrow \frac{\mathrm{a}}{\mathrm{x}}=\frac{2 \mu \mathrm{~g}}{\ell}=\omega^{2} \Rightarrow \omega=\sqrt{\frac{2 \mu \mathrm{~g}}{\ell}}$
\therefore Time period $=2 \pi \sqrt{\frac{\ell}{2 \mathrm{rg}}}$
32. $\mathrm{T}=2 \mathrm{sec}$.
$T=2 \pi \sqrt{\frac{\ell}{g}}$
$\Rightarrow 2=2 \pi \sqrt{\frac{\ell}{10}} \Rightarrow \frac{\ell}{10}=\frac{1}{\pi^{2}} \Rightarrow \ell=1 \mathrm{~cm} \quad\left(\therefore \pi^{2} \approx 10\right)$
33. From the equation,
$\theta=\pi \sin \left[\pi \sec ^{-1} t\right]$
$\therefore \omega=\pi \sec ^{-1}$ (comparing with the equation of SHM)
$\Rightarrow \frac{2 \pi}{\mathrm{~T}}=\pi \Rightarrow \mathrm{T}=2 \mathrm{sec}$.
We know that $\mathrm{T}=2 \pi \sqrt{\frac{\ell}{\mathrm{~g}}} \quad \Rightarrow 2=2 \sqrt{\frac{\ell}{\mathrm{~g}}} \quad \Rightarrow 1=\sqrt{\frac{\ell}{\mathrm{g}}} \quad \Rightarrow \ell=1 \mathrm{~m}$.
\therefore Length of the pendulum is 1 m .
34. The pendulum of the clock has time period 2.04 sec .

Now, No. or oscillation in 1 day $=\frac{24 \times 3600}{2}=43200$
But, in each oscillation it is slower by $(2.04-2.00)=0.04 \mathrm{sec}$.
So, in one day it is slower by,
$=43200 \times(0.04)=12 \mathrm{sec}=28.8 \mathrm{~min}$
So, the clock runs 28.8 minutes slower in one day.
35. For the pendulum, $\frac{T_{1}}{T_{2}}=\sqrt{\frac{g_{2}}{g_{1}}}$

Given that, $\mathrm{T}_{1}=2 \mathrm{sec}, \mathrm{g}_{1}=9.8 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{T}_{2}=\frac{24 \times 3600}{\left(\frac{24 \times 3600-24}{2}\right)}=2 \times \frac{3600}{3599}$
Now, $\frac{g^{2}}{g_{1}}=\left(\frac{T_{1}}{T_{2}}\right)^{2}$
$\therefore g_{2}=(9.8)\left(\frac{3599}{3600}\right)^{2}=9.795 \mathrm{~m} / \mathrm{s}^{2}$
36. $L=5 m$.
a) $\mathrm{T}=2 \pi \sqrt{\frac{\ell}{\mathrm{~g}}}=2 \pi \sqrt{0.5}=2 \pi(0.7)$
$\therefore \ln 2 \pi(0.7) \mathrm{sec}$, the body completes 1 oscillation,
In 1 second, the body will complete $\frac{1}{2 \pi(0.7)}$ oscillation

$$
\therefore f=\frac{1}{2 \pi(0.7)}=\frac{10}{14 \pi}=\frac{0.70}{\pi} \text { times }
$$

b) When it is taken to the moon

$$
\begin{aligned}
& T=2 \pi \sqrt{\frac{\ell}{g^{\prime}}} \quad \quad \text { where } g^{\prime} \rightarrow \text { Acceleration in the moon. } \\
& =2 \pi \sqrt{\frac{5}{1.67}} \\
& \therefore f=\frac{1}{T}=\frac{1}{2 \pi} \sqrt{\frac{1.67}{5}}=\frac{1}{2 \pi}(0.577)=\frac{1}{2 \pi \sqrt{3}} \text { times. }
\end{aligned}
$$

37. The tension in the pendulum is maximum at the mean position and minimum on the extreme position.

Here $(1 / 2) m v^{2}-0=m g \ell(1-\cos \theta)$
$v^{2}=2 g l(1-\cos \theta)$
Now, $\mathrm{T}_{\text {max }}=\mathrm{mg}+2 \mathrm{mg}(1-\cos \theta)$
$\left[\mathrm{T}=\mathrm{mg}+\left(\mathrm{mv}^{2} / \ell\right)\right]$

$\Rightarrow 3 \mathrm{mg}=4 \mathrm{mg} \cos \theta$
$\Rightarrow \cos \theta=3 / 4$
$\Rightarrow \theta=\cos ^{-1}(3 / 4)$
38. Given that, $\mathrm{R}=$ radius.

Let $N=$ normal reaction.
Driving force $F=m g \sin \theta$.
Acceleration $=a=g \sin \theta$
As, $\sin \theta$ is very small, $\sin \theta \rightarrow \theta$
\therefore Acceleration $\mathrm{a}=\mathrm{g} \theta$
Let ' x ' be the displacement from the mean position of the body,
$\therefore \theta=\mathrm{x} / \mathrm{R}$
$\Rightarrow a=g \theta=g(x / R) \Rightarrow(a / x)=(g / R)$
So the body makes S.H.M.

$\therefore \mathrm{T}=2 \pi \sqrt{\frac{\text { Displacement }}{\text { Acceleration }}}=2 \pi \sqrt{\frac{\mathrm{x}}{\mathrm{gx} / \mathrm{R}}}=2 \pi \sqrt{\frac{R}{\mathrm{~g}}}$
39. Let the angular velocity of the system about the point os suspension at any time be ' ω '

So, $v_{c}=(R-r) \omega$
Again $v_{c}=r \omega_{1}$ [where, $\omega_{1}=$ rotational velocity of the sphere]
$\omega_{1}=\frac{v_{c}}{r}=\left(\frac{R+-r}{r}\right) \omega$
By Energy method, Total energy in SHM is constant.
So, $m g(R-r)(1-\cos \theta)+(1 / 2) m v_{c}{ }^{2}+(1 / 2) l \omega_{1}{ }^{2}=$ constant
$\therefore m g(R-r)(1-\cos \theta)+(1 / 2) m(R-r)^{2} \omega^{2}+(1 / 2){m r^{2}}^{2}\left(\frac{R-r}{r}\right)^{2} \omega^{2}=$ constant
$\Rightarrow g(R-r) 1-\cos \theta)+(R-r)^{2} \omega^{2}\left[\frac{1}{2}+\frac{1}{5}\right]=$ constant
Taking derivative, $g(R-r) \sin \theta \frac{d \theta}{d t}=\frac{7}{10}(R-r)^{2} 2 \omega \frac{d \omega}{d t}$
$\Rightarrow g \sin \theta=2 \times \frac{7}{10}(R-r) \alpha$
$\Rightarrow g \sin \theta=\frac{7}{5}(R-r) \alpha$
$\Rightarrow \alpha=\frac{5 g \sin \theta}{7(R-r)}=\frac{5 g \theta}{7(R-r)}$

$\therefore \frac{\alpha}{\theta}=\omega^{2}=\frac{5 g \theta}{7(R-r)}=$ constant
So the motion is S.H.M. Again $\omega=\omega \sqrt{\frac{5 g}{7(R-r)}} \Rightarrow T=2 \pi \sqrt{\frac{7(R-r)}{5 g}}$
40. Length of the pendulum $=40 \mathrm{~cm}=0.4 \mathrm{~m}$.

Let acceleration due to gravity be g at the depth of 1600 km .
$\therefore g d=g(1-d / R)=9.8\left(1-\frac{1600}{6400}\right)=9.8\left(1-\frac{1}{4}\right)=9.8 \times \frac{3}{4}=7.35 \mathrm{~m} / \mathrm{s}^{2}$
\therefore Time period $\mathrm{T}^{\prime}=2 \pi \sqrt{\frac{\ell}{\mathrm{~g} \delta}}$
$=2 \pi \sqrt{\frac{0.4}{7.35}}=2 \pi \sqrt{0.054}=2 \pi \times 0.23=2 \times 3.14 \times 0.23=1.465 \approx 1.47 \mathrm{sec}$.
41. Let M be the total mass of the earth.

At any position x,
$\therefore \frac{M^{\prime}}{M}=\frac{\rho \times\left(\frac{4}{3}\right) \pi \times x^{3}}{\rho \times\left(\frac{4}{3}\right) \pi \times R^{3}}=\frac{x^{3}}{R^{3}} \Rightarrow M^{\prime}=\frac{M x^{3}}{R^{3}}$
So force on the particle is given by,
$\therefore \mathrm{F}_{\mathrm{X}}=\frac{\mathrm{GM}^{\prime} \mathrm{m}}{\mathrm{x}^{2}}=\frac{\mathrm{GMm}}{\mathrm{R}^{3}} \mathrm{x}$
So, acceleration of the mass ' M ' at that position is given by,

$a_{x}=\frac{G M}{R^{2}} x \Rightarrow \frac{a_{x}}{x}=w^{2}=\frac{G M}{R^{3}}=\frac{g}{R} \quad\left(\because g=\frac{G M}{R^{2}}\right)$
So, $T=2 \pi \sqrt{\frac{R}{g}}=$ Time period of oscillation.
a) Now, using velocity - displacement equation.
$V=\omega \sqrt{\left(\mathrm{A}^{2}-\mathrm{R}^{2}\right)}$ [Where, $\mathrm{A}=$ amplitude]
Given when, $y=R, v=\sqrt{g R}, \omega=\sqrt{\frac{g}{R}}$
$\Rightarrow \sqrt{g R}=\sqrt{\frac{g}{R}} \sqrt{\left(A^{2}-R^{2}\right)} \quad\left[\right.$ because $\left.\omega=\sqrt{\frac{g}{R}}\right]$
$\Rightarrow R^{2}=A^{2}-R^{2} \Rightarrow A=\sqrt{2} R$
[Now, the phase of the particle at the point P is greater than $\pi / 2$ but less than π and at Q is greater than π but less than $3 \pi / 2$. Let the times taken by the particle to reach the positions P and Q be $t_{1} \& t_{2}$ respectively, then using displacement time equation]
$y=r \sin \omega t$
We have, $R=\sqrt{2} R \sin \omega t_{1} \quad \Rightarrow \omega t_{1}=3 \pi / 4$

$$
\&-R=\sqrt{2} R \sin \omega t_{2} \quad \Rightarrow \omega t_{2}=5 \pi / 4
$$

So, $\omega\left(t_{2}-t_{1}\right)=\pi / 2 \Rightarrow t_{2}-t_{1}=\frac{\pi}{2 \omega}=\frac{\pi}{2 \sqrt{(R / g)}}$
Time taken by the particle to travel from P to Q is $t_{2}-t_{1}=\frac{\pi}{2 \sqrt{(R / g)}}$ sec.
b) When the body is dropped from a height R , then applying conservation of energy, change in P.E. $=$ gain in K.E.
$\Rightarrow \frac{G M m}{R}-\frac{G M m}{2 R}=\frac{1}{2} \mathrm{mv}^{2} \quad \Rightarrow v=\sqrt{g R}$
Since, the velocity is same at P, as in part (a) the body will take same time to travel PQ.
c) When the body is projected vertically upward from P with a velocity $\sqrt{g R}$, its velocity will be Zero at the highest point.
The velocity of the body, when reaches P, again will be $v=\sqrt{g R}$, hence, the body will take same time $\frac{\pi}{2 \sqrt{(R / g)}}$ to travel PQ.
42. $M=4 / 3 \pi R^{3} \rho$.
$M^{1}=4 / 3 \pi x_{1}{ }^{3} \rho$
$M^{1}=\left(\frac{M}{R^{3}}\right) x_{1}{ }^{3}$
a) $F=$ Gravitational force exerted by the earth on the particle of mass ' x ' is,

$$
\mathrm{F}=\frac{\mathrm{GM}^{1} \mathrm{~m}}{\mathrm{x}_{1}{ }^{2}}=\frac{\mathrm{GMm}}{\mathrm{R}^{3}} \frac{\mathrm{x}_{1}{ }^{3}}{\mathrm{x}_{1}{ }^{2}}=\frac{\mathrm{GMm}}{\mathrm{R}^{3}} \mathrm{x}_{1}=\frac{\mathrm{GMm}}{\mathrm{R}^{3}} \sqrt{\mathrm{x}^{2}+\left(\frac{\mathrm{R}^{2}}{4}\right)}
$$

b) $F_{y}=F \cos \theta=\frac{G M m x_{1}}{R^{3}} \frac{x}{x_{1}}=\frac{G M m x}{R^{3}}$

$$
\mathrm{F}_{\mathrm{x}}=\mathrm{F} \sin \theta=\frac{\mathrm{GMmx}}{\mathrm{R}^{3}} \frac{\mathrm{R}}{2 \mathrm{x}_{1}}=\frac{\mathrm{GMm}}{2 \mathrm{R}^{2}}
$$

c) $F_{x}=\frac{G M m}{2 R^{2}}$ [since Normal force exerted by the wall $N=F_{x}$]

d) Resultant force $=\frac{G M m x}{R^{3}}$
e) Acceleration $=\frac{\text { Driving force }}{\text { mass }}=\frac{G M m x}{R^{3} m}=\frac{G M x}{R^{3}}$

So, a $\alpha \times$ (The body makes SHM)

$$
\begin{equation*}
\therefore \frac{a}{x}=w^{2}=\frac{G M}{R^{3}} \Rightarrow w=\sqrt{\frac{G M}{R^{3}}} \Rightarrow T=2 \pi \sqrt{\frac{\mathrm{R}^{3}}{G M}} \tag{1}
\end{equation*}
$$

43. Here driving force $F=m\left(g+a_{0}\right) \sin \theta$

(Because when θ is small $\sin \theta \rightarrow \theta=x / \ell$)
$\therefore \mathrm{a}=\frac{\left(\mathrm{g}+\mathrm{a}_{0}\right) \mathrm{x}}{\ell}$.
\therefore acceleration is proportional to displacement.
So, the motion is SHM.
Now $\omega^{2}=\frac{\left(g+a_{0}\right)}{\ell}$
$\therefore \mathrm{T}=2 \pi \sqrt{\frac{\ell}{\mathrm{~g}+\mathrm{a}_{0}}}$
b) When the elevator is going downwards with acceleration a_{0}

Driving force $=F=m\left(g-a_{0}\right) \sin \theta$.
Acceleration $=\left(g-a_{0}\right) \sin \theta=\frac{\left(g-a_{0}\right) x}{\ell}=\omega^{2} x$
$\mathrm{T}=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{\ell}{\mathrm{~g}-\mathrm{a}_{0}}}$
c) When moving with uniform velocity $\mathrm{a}_{0}=0$.

For, the simple pendulum, driving force $=\frac{\mathrm{mgx}}{\ell}$
$\Rightarrow \mathrm{a}=\frac{\mathrm{gx}}{\ell} \Rightarrow \frac{\mathrm{x}}{\mathrm{a}}=\frac{\ell}{\mathrm{g}}$
$\mathrm{T}=2 \pi \sqrt{\frac{\text { displacement }}{\text { acceleration }}}=2 \pi \sqrt{\frac{\ell}{\mathrm{~g}}}$
44. Let the elevator be moving upward accelerating ' a_{0} '

Here driving force $F=m\left(g+a_{0}\right) \sin \theta$
Acceleration $=\left(g+a_{0}\right) \sin \theta$
$=\left(g+a_{0}\right) \theta$
$(\sin \theta \rightarrow \theta)$
$=\frac{\left(g+a_{0}\right) x}{\ell}=\omega^{2} x$
$T=2 \pi \sqrt{\frac{\ell}{g+\mathrm{a}_{0}}}$
Given that, $\mathrm{T}=\pi / 3 \mathrm{sec}, \ell=1 \mathrm{ft}$ and $\mathrm{g}=32 \mathrm{ft} / \mathrm{sec}^{2}$

$\frac{\pi}{3}=2 \pi \sqrt{\frac{1}{32+\mathrm{a}_{0}}}$
$\frac{1}{9}=4\left(\frac{1}{32+a}\right)$
$\Rightarrow 32+\mathrm{a}=36 \quad \Rightarrow \mathrm{a}=36-32=4 \mathrm{ft} / \mathrm{sec}^{2}$
45. When the car moving with uniform velocity
$\mathrm{T}=2 \pi \sqrt{\frac{\ell}{\mathrm{~g}}} \Rightarrow 4=2 \pi \sqrt{\frac{\ell}{\mathrm{~g}}}$
When the car makes accelerated motion, let the acceleration be a_{0}
$\mathrm{T}=2 \pi \sqrt{\frac{\ell}{\mathrm{~g}^{2}+\mathrm{a}_{0}{ }^{2}}}$
$\Rightarrow 3.99=2 \pi \sqrt{\frac{\ell}{\mathrm{~g}^{2}+\mathrm{a}_{0}{ }^{2}}}$
Now $\frac{\mathrm{T}}{\mathrm{T}^{\prime}}=\frac{4}{3.99}=\frac{\left(\mathrm{g}^{2}+\mathrm{a}_{0}{ }^{2}\right)^{1 / 4}}{\sqrt{\mathrm{~g}}}$
Solving for ' a_{0} ' we can get $\mathrm{a}_{0}=\mathrm{g} / 10 \mathrm{~ms}^{-2}$
46. From the freebody diagram,
$T=\sqrt{(m g)^{2}+\left(\frac{m v^{2}}{r^{2}}\right)}$
$=m \sqrt{g^{2}+\frac{v^{4}}{r^{2}}}=m a$, where $a=$ acceleration $=\left(g^{2}+\frac{v^{4}}{r^{2}}\right)^{1 / 2}$
The time period of small accellations is given by,
$\mathrm{T}=2 \pi \sqrt{\frac{\ell}{\mathrm{~g}}}=2 \pi \sqrt{\frac{\ell}{\left(g^{2}+\frac{v^{4}}{\mathrm{r}^{2}}\right)^{1 / 2}}}$

47. a) $\ell=3 \mathrm{~cm}=0.03 \mathrm{~m}$.
$\mathrm{T}=2 \pi \sqrt{\frac{\ell}{\mathrm{~g}}}=2 \pi \sqrt{\frac{0.03}{9.8}}=0.34$ second.
b) When the lady sets on the Merry-go-round the ear rings also experience centrepetal acceleration

$$
a=\frac{v^{2}}{r}=\frac{4^{2}}{2}=8 \mathrm{~m} / \mathrm{s}^{2}
$$

Resultant Acceleration $A=\sqrt{g^{2}+a^{2}}=\sqrt{100+64}=12.8 \mathrm{~m} / \mathrm{s}^{2}$
Time period $T=2 \pi \sqrt{\frac{\ell}{\mathrm{~A}}}=2 \pi \sqrt{\frac{0.03}{12.8}}=0.30$ second.
48. a) M.I. about the pt $A=I=I_{\text {C.G. }}+\mathrm{Mh}^{2}$

$$
\begin{aligned}
& =\frac{\mathrm{m} \ell^{2}}{12}+\mathrm{MH}_{2}=\frac{\mathrm{m} \ell^{2}}{12}+\mathrm{m}(0.3)^{2}=\mathrm{M}\left(\frac{1}{12}+0.09\right)=\mathrm{M}\left(\frac{1+1.08}{12}\right)=\mathrm{M}\left(\frac{2.08}{12}\right) \\
& \therefore \mathrm{T}=2 \pi \sqrt{\frac{\mathrm{I}}{\mathrm{mg} \ell^{\prime}}}=2 \pi \sqrt{\frac{2.08 \mathrm{~m}}{\mathrm{~m} \times 9.8 \times 0.3}}\left(\ell^{\prime}=\text { dis. between C.G. and pt. of suspension }\right)
\end{aligned}
$$

$$
\approx 1.52 \mathrm{sec}
$$

b) Moment of in isertia about A

$$
\begin{aligned}
& I=I_{\text {C.G. }}+\mathrm{mr}^{2}=\mathrm{mr}^{2}+\mathrm{mr}^{2}=2 \mathrm{mr}^{2} \\
& \therefore \text { Time period }=2 \pi \sqrt{\frac{\mathrm{I}}{\mathrm{mg} \ell}}=2 \pi \sqrt{\frac{2 \mathrm{mr}^{2}}{\mathrm{mgr}}}=2 \pi \sqrt{\frac{2 r}{\mathrm{~g}}}
\end{aligned}
$$

c) $I_{z z}$ (corner) $=m\left(\frac{a^{2}+a^{2}}{3}\right)=\frac{2 m a^{2}}{3}$

In the $\triangle A B C, \ell^{2}+\ell^{2}=a^{2}$

$$
\begin{aligned}
& \therefore \ell=\frac{a}{\sqrt{2}} \\
& \therefore \mathrm{~T}=2 \pi \sqrt{\frac{\mathrm{l}}{\mathrm{mg} \ell}}=2 \pi \sqrt{\frac{2 \mathrm{ma}^{2}}{3 \mathrm{mg} \ell}}=2 \pi \sqrt{\frac{2 \mathrm{a}^{2}}{3 \mathrm{ga} \sqrt{2}}}=2 \pi \sqrt{\frac{\sqrt{8 a}}{3 \mathrm{~g}}}
\end{aligned}
$$

d) $h=r / 2, \quad \ell=r / 2=$ Dist. Between C.G and suspension point.
M.I. about $A, I=I_{\text {C.G. }}+\mathrm{Mh}^{2}=\frac{\mathrm{mc}^{2}}{2}+\mathrm{n}\left(\frac{\mathrm{r}}{2}\right)^{2}=\mathrm{mr}^{2}\left(\frac{1}{2}+\frac{1}{4}\right)=\frac{3}{4} \mathrm{mr}^{2}$
$\therefore \mathrm{T}=2 \pi \sqrt{\frac{\mathrm{I}}{\mathrm{mg} \ell}}=2 \pi \sqrt{\frac{3 \mathrm{mr}^{2}}{4 \mathrm{mg} \ell}}=2 \pi \sqrt{\frac{3 \mathrm{r}^{2}}{4 \mathrm{~g}\left(\frac{\mathrm{r}}{2}\right)}}=2 \pi \sqrt{\frac{3 \mathrm{r}}{2 \mathrm{~g}}}$
49. Let $\mathrm{A} \rightarrow$ suspension of point.
$B \rightarrow$ Centre of Gravity.
$\ell^{\prime}=\ell / 2, \quad h=\ell / 2$
Moment of inertia about A is
$\mathrm{I}=\mathrm{I}_{\text {C.G. }}+\mathrm{mh}^{2}=\frac{\mathrm{m} \ell^{2}}{12}+\frac{\mathrm{m} \ell^{2}}{4}=\frac{\mathrm{m} \ell^{2}}{3}$
$\Rightarrow \mathrm{T}=2 \pi \sqrt{\frac{\mathrm{l}}{\mathrm{mg}\left(\frac{\ell}{2}\right)}}=2 \pi \sqrt{\frac{2 \mathrm{~m} \ell^{2}}{3 \mathrm{mgl}}}=2 \pi \sqrt{\frac{2 \ell}{3 \mathrm{~g}}}$
Let, the time period ' T ' is equal to the time period of simple pendulum of length ' x '.
$\therefore \mathrm{T}=2 \pi \sqrt{\frac{\mathrm{x}}{\mathrm{g}}}$. So, $\frac{2 \ell}{3 \mathrm{~g}}=\frac{\mathrm{x}}{\mathrm{g}} \Rightarrow \mathrm{x}=\frac{2 \ell}{3}$
\therefore Length of the simple pendulum $=\frac{2 \ell}{3}$
50. Suppose that the point is ' x ' distance from C.G.

Let $m=$ mass of the disc., Radius $=r$
Here $\ell=\mathrm{x}$
M.I. about $A=I_{\text {C.G. }}+m x^{2}=m r^{2} / 2+m x^{2}=m\left(r^{2} / 2+x^{2}\right)$
$\mathrm{T}=2 \pi \sqrt{\frac{\mathrm{l}}{\mathrm{mg} \ell}}=2 \pi \sqrt{\frac{\mathrm{~m}\left(\frac{r^{2}}{2}+x^{2}\right)}{m g x}}=2 \pi \sqrt{\frac{m\left(r^{2}+2 x^{2}\right)}{2 m g x}}=2 \pi \sqrt{\frac{r^{2}+2 x^{2}}{2 g x}}$

For T is minimum $\frac{\mathrm{dt}^{2}}{\mathrm{dx}}=0$
$\therefore \frac{\mathrm{d}}{\mathrm{dx}} \mathrm{T}^{2}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{4 \pi^{2} \mathrm{r}^{2}}{2 \mathrm{gx}}+\frac{4 \pi^{2} 2 \mathrm{x}^{2}}{2 \mathrm{gx}}\right)$
$\Rightarrow \frac{2 \pi^{2} r^{2}}{g}\left(-\frac{1}{x^{2}}\right)+\frac{4 \pi^{2}}{g}=0$
$\Rightarrow-\frac{\pi^{2} r^{2}}{g x^{2}}+\frac{2 \pi^{2}}{g}=0$
$\Rightarrow \frac{\pi^{2} \mathrm{r}^{2}}{\mathrm{gx}^{2}}=\frac{2 \pi^{2}}{\mathrm{~g}} \Rightarrow 2 \mathrm{x}^{2}=\mathrm{r}^{2} \Rightarrow \mathrm{x}=\frac{\mathrm{r}}{\sqrt{2}}$
So putting the value of equation (1)
$\mathrm{T}=2 \pi \sqrt{\frac{r^{2}+2\left(\frac{r^{2}}{2}\right)}{2 g x}}=2 \pi \sqrt{\frac{2 r^{2}}{2 g x}}=2 \pi \sqrt{\frac{r^{2}}{\left(\frac{r}{\sqrt{2}}\right)}}=2 \pi \sqrt{\frac{\sqrt{2} r^{2}}{g r}}=2 \pi \sqrt{\frac{\sqrt{2} r}{g}}$
51. According to Energy equation,
$\mathrm{mgl}(1-\cos \theta)+(1 / 2) l \omega^{2}=$ const.
$m g(0.2)(1-\cos \theta)+(1 / 2) l \omega^{2}=C$.
Again, $I=2 / 3 \mathrm{~m}(0.2)^{2}+\mathrm{m}(0.2)^{2}$
$=m\left[\frac{0.008}{3}+0.04\right]$
$=\mathrm{m}\left(\frac{0.1208}{3}\right) \mathrm{m}$. Where $\mathrm{I} \rightarrow$ Moment of Inertia about the pt of suspension A

From equation
Differenting and putting the value of I and 1 is
$\frac{\mathrm{d}}{\mathrm{dt}}\left[\mathrm{mg}(0.2)(1-\cos \theta)+\frac{1}{2} \frac{0.1208}{3} m \omega^{2}\right]=\frac{\mathrm{d}}{\mathrm{dt}}(C)$
$\Rightarrow m g(0.2) \sin \theta \frac{d \theta}{d t}+\frac{1}{2}\left(\frac{0.1208}{3}\right) m 2 \omega \frac{d \omega}{d t}=0$
$\Rightarrow 2 \sin \theta=\frac{0.1208}{3} \alpha\left[\right.$ because, $\left.g=10 \mathrm{~m} / \mathrm{s}^{2}\right]$
$\Rightarrow \frac{\alpha}{\theta}=\frac{6}{0.1208}=\omega^{2}=58.36$
$\Rightarrow \omega=7.3$. So $T=\frac{2 \pi}{\omega}=0.89 \mathrm{sec}$.
For simple pendulum $\mathrm{T}=2 \pi \sqrt{\frac{0.19}{10}}=0.86 \mathrm{sec}$.
$\%$ more $=\frac{0.89-0.86}{0.89}=0.3$.
\therefore It is about 0.3% larger than the calculated value.
52. (For a compound pendulum)
a) $\mathrm{T}=2 \pi \sqrt{\frac{\mathrm{I}}{\mathrm{mg} \ell}}=2 \pi \sqrt{\frac{\mathrm{l}}{\mathrm{mgr}}}$

The MI of the circular wire about the point of suspension is given by $\therefore \mathrm{I}=\mathrm{mr}^{2}+\mathrm{mr}^{2}=2 \mathrm{mr}^{2}$ is Moment of inertia about A.

$\therefore 2=2 \pi \sqrt{\frac{2 m r^{2} \mathrm{mgr}}{}}=2 \pi \sqrt{\frac{2 r}{g}}$
$\Rightarrow \frac{2 r}{g}=\frac{1}{\pi^{2}} \Rightarrow r=\frac{\mathrm{g}}{2 \pi^{2}}=0.5 \pi=50 \mathrm{~cm}$. (Ans)
b) $(1 / 2) \omega^{2}-0=\operatorname{mgr}(1-\cos \theta)$
$\Rightarrow(1 / 2) 2 \mathrm{mr}^{2}-\omega^{2}=\operatorname{mgr}\left(1-\cos 2^{\circ}\right)$
$\Rightarrow \omega^{2}=g / r\left(1-\cos 2^{\circ}\right)$
$\Rightarrow \omega=0.11 \mathrm{rad} / \mathrm{sec}$ [putting the values of g and r]
$\Rightarrow \mathrm{v}=\omega \times 2 \mathrm{r}=11 \mathrm{~cm} / \mathrm{sec}$.
c) Acceleration at the end position will be centripetal.
$=a_{n}=\omega^{2}(2 r)=(0.11)^{2} \times 100=1.2 \mathrm{~cm} / \mathrm{s}^{2}$
The direction of ' a_{n} ' is towards the point of suspension.
d) At the extreme position the centrepetal acceleration will be zero. But, the particle will still have acceleration due to the SHM.
Because, $\mathrm{T}=2 \mathrm{sec}$.
Angular frequency $\omega=\frac{2 \pi}{T} \quad(\pi=3.14)$
So, angular acceleration at the extreme position,
$\alpha=\omega^{2} \theta=\pi^{2} \times \frac{2 \pi}{180}=\frac{2 \pi^{3}}{180}\left[1^{\circ}=\frac{\pi}{180}\right.$ radious $]$
So, tangential acceleration $=\alpha(2 r)=\frac{2 \pi^{3}}{180} \times 100=34 \mathrm{~cm} / \mathrm{s}^{2}$.
53. M.I. of the centre of the disc. $=\mathrm{mr}^{2} / 2$
$\mathrm{T}=2 \pi \sqrt{\frac{\mathrm{l}}{\mathrm{k}}}=2 \pi \sqrt{\frac{\mathrm{mr}^{2}}{2 \mathrm{~K}}}$ [where $\mathrm{K}=$ Torsional constant]
$\mathrm{T}^{2}=4 \pi^{2} \frac{\mathrm{mr}^{2}}{2 \mathrm{~K}}=2 \pi^{2} \frac{\mathrm{mr}^{2}}{\mathrm{~K}}$
$\Rightarrow 2 \pi^{2} \mathrm{mr}^{2}=\mathrm{KT}^{2} \Rightarrow \mathrm{~K}=\frac{2 \mathrm{mr}^{2} \pi^{2}}{\mathrm{~T}^{2}}$

\therefore Torsional constant $\mathrm{K}=\frac{2 \mathrm{mr}^{2} \pi^{2}}{\mathrm{~T}^{2}}$
54. The M.I of the two ball system
$\mathrm{I}=2 \mathrm{~m}(\mathrm{~L} / 2)^{2}=\mathrm{mL}^{2} / 2$
At any position θ during the oscillation, [fig-2]
Torque $=k \theta$
So, work done during the displacement 0 to θ_{0},
$W=\int_{0}^{\theta} k \theta d \theta=k \theta_{0}{ }^{2} / 2$
By work energy method,
$(1 / 2) l \omega^{2}-0=$ Work done $=k \theta_{0}{ }^{2} / 2$
$\therefore \omega^{2}=\frac{\mathrm{k} \theta_{0}{ }^{2}}{2 \mathrm{l}}=\frac{\mathrm{k} \theta_{0}{ }^{2}}{\mathrm{~mL}^{2}}$

Now, from the freebody diagram of the rod,
$\mathrm{T}_{2}=\sqrt{\left(\mathrm{m} \omega^{2} \mathrm{~L}\right)^{2}+(\mathrm{mg})^{2}}$
$=\sqrt{\left(m \frac{k \theta_{0}{ }^{2}}{m L^{2}} \times L\right)^{2}+m^{2} g^{2}}=\frac{k^{2} \theta_{0}{ }^{4}}{L^{2}}+m^{2} g^{2}$
55. The particle is subjected to two SHMs of same time period in the same direction/

Given, $\mathrm{r}_{1}=3 \mathrm{~cm}, \mathrm{r}_{2}=4 \mathrm{~cm}$ and $\phi=$ phase difference.
Resultant amplitude $=R=\sqrt{r_{1}{ }^{2}+r_{2}{ }^{2}+2 r_{1} r_{2} \cos \phi}$
a) When $\phi=0^{\circ}$,

$$
R=\sqrt{\left(3^{2}+4^{2}+2 \times 3 \times 4 \cos 0^{\circ}\right.}=7 \mathrm{~cm}
$$

b) When $\phi=60^{\circ}$

$$
R=\sqrt{\left(3^{2}+4^{2}+2 \times 3 \times 4 \cos 60^{\circ}\right.}=6.1 \mathrm{~cm}
$$

c) When $\phi=90^{\circ}$

$$
R=\sqrt{\left(3^{2}+4^{2}+2 \times 3 \times 4 \cos 90^{\circ}\right.}=5 \mathrm{~cm}
$$

56. Three SHMs of equal amplitudes ' A ' and equal time periods in the same dirction combine. The vectors representing the three SHMs are shown it the figure.
Using vector method,
Resultant amplitude $=$ Vector sum of the three vectors
$=A+A \cos 60^{\circ}+A \operatorname{cso} 60^{\circ}=A+A / 2+A / 2=2 A$
So the amplitude of the resultant motion is 2 A .
57. $x_{1}=2 \sin 100 \pi t$
$x_{2}=w \sin (120 \pi t+\pi / 3)$
So, resultant displacement is given by,
$x=x_{1}+x_{2}=2[\sin (100 \pi t)+\sin (120 \pi t+\pi / 3)]$
a) At $t=0.0125 \mathrm{~s}$,
$x=2[\sin (100 \pi \times 0.0125)+\sin (120 \pi \times 0.0125+\pi / 3)]$
$=2[\sin 5 \pi / 4+\sin (3 \pi / 2+\pi / 3)]$
$=2[(-0.707)+(-0.5)]=-2.41 \mathrm{~cm}$.
b) At $t=0.025 \mathrm{~s}$.

$$
\begin{aligned}
& x=2[\sin (100 \pi \times 0.025)+\sin (120 \pi \times 0.025+\pi / 3)] \\
& =2[\sin 5 \pi / 2+\sin (3 \pi+\pi / 3)] \\
& =2[1+(-0.8666)]=0.27 \mathrm{~cm} .
\end{aligned}
$$

58. The particle is subjected to two simple harmonic motions represented by,
$\mathrm{x}=\mathrm{x}_{0} \sin \mathrm{wt}$
$s=s_{0} \sin w t$
and, angle between two motions $=\theta=45^{\circ}$
\therefore Resultant motion will be given by,
$R=\sqrt{\left(x^{2}+s^{2}+2 x \cos 45^{\circ}\right)}$
$=\sqrt{\left\{x_{0}{ }^{2} \sin ^{2} w t+s_{0}{ }^{2} \sin ^{2} w t+2 x_{0} s_{0} \sin ^{2} w t x(1 / \sqrt{2})\right\}}$
$=\left[\mathrm{x}_{0}{ }^{2}+\mathrm{s}_{0}{ }^{2}=\sqrt{2} \mathrm{x}_{0} \mathrm{~s}_{0}\right]^{1 / 2} \sin \mathrm{wt}$
\therefore Resultant amplitude $=\left[\mathrm{x}_{0}{ }^{2}+\mathrm{s}_{0}{ }^{2}=\sqrt{2} \mathrm{x}_{0} \mathrm{~s}_{0}\right]^{1 / 2}$
