ELECTROMAGNETIC INDUCTION CHAPTER - 38

1. (a) $\int E . d l=M L T^{-3} I^{-1} \times L=M L^{2} I^{-1} T^{-3}$
(b) $\vartheta \mathrm{BI}=\mathrm{LT}^{-1} \times \mathrm{MI}^{-1} \mathrm{~T}^{-2} \times \mathrm{L}=\mathrm{ML}^{2} \mathrm{I}^{-1} \mathrm{~T}^{-3}$
(c) $\mathrm{d} \phi_{\mathrm{s}} / \mathrm{dt}=\mathrm{MI}^{-1} \mathrm{~T}^{-2} \times \mathrm{L}^{2}=\mathrm{ML}^{2} \mathrm{I}^{-1} \mathrm{~T}^{-2}$
2. $\phi=a t^{2}+b t+c$
(a) $a=\left[\frac{\phi}{t^{2}}\right]=\left[\frac{\phi / t}{t}\right]=\frac{\text { Volt }}{\text { Sec }}$

$$
\mathrm{b}=\left[\frac{\phi}{\mathrm{t}}\right]=\text { Volt }
$$

$$
c=[\phi]=\text { Weber }
$$

(b) $\mathrm{E}=\frac{\mathrm{d} \phi}{\mathrm{dt}} \quad[\mathrm{a}=0.2, \mathrm{~b}=0.4, \mathrm{c}=0.6, \mathrm{t}=2 \mathrm{~s}]$

$$
=2 a t+b
$$

$$
=2 \times 0.2 \times 2+0.4=1.2 \text { volt }
$$

3. (a) $\phi_{2}=$ B.A. $=0.01 \times 2 \times 10^{-3}=2 \times 10^{-5}$.

$$
\begin{aligned}
& \phi_{1}=0 \\
& \mathrm{e}=-\frac{\mathrm{d} \phi}{\mathrm{dt}}=\frac{-2 \times 10^{-5}}{10 \times 10^{-3}}=-2 \mathrm{mV} \\
& \phi_{3}=\mathrm{B} \cdot \mathrm{~A} .=0.03 \times 2 \times 10^{-3}=6 \times 10^{-5} \\
& \mathrm{~d} \phi=4 \times 10^{-5} \\
& \mathrm{e}=-\frac{\mathrm{d} \phi}{\mathrm{dt}}=-4 \mathrm{mV} \\
& \phi_{4}=\text { B.A. }=0.01 \times 2 \times 10^{-3}=2 \times 10^{-5} \\
& \mathrm{~d} \phi=-4 \times 10^{-5} \\
& \mathrm{e}=-\frac{\mathrm{d} \phi}{\mathrm{dt}}=4 \mathrm{mV} \\
& \phi_{5}=\text { B.A. }=0 \\
& \mathrm{~d} \phi=-2 \times 10^{-5} \\
& \mathrm{e}=-\frac{\mathrm{d} \phi}{\mathrm{dt}}=2 \mathrm{mV}
\end{aligned}
$$

(b) emf is not constant in case of $\rightarrow 10-20 \mathrm{~ms}$ and $20-30 \mathrm{~ms}$ as -4 mV and 4 mV .
4. $\phi_{1}=B A=0.5 \times \pi\left(5 \times 10^{-2}\right)^{2}=5 \pi 25 \times 10^{-5}=125 \times 10^{-5}$
$\phi_{2}=0$
$E=\frac{\phi_{1}-\phi_{2}}{t}=\frac{125 \pi \times 10^{-5}}{5 \times 10^{-1}}=25 \pi \times 10^{-4}=7.8 \times 10^{-3}$.
5. $A=1 \mathrm{~mm}^{2} ; i=10 \mathrm{~A}, \mathrm{~d}=20 \mathrm{~cm} ; \mathrm{dt}=0.1 \mathrm{~s}$
$\mathrm{e}=\frac{\mathrm{d} \phi}{\mathrm{dt}}=\frac{\mathrm{BA}}{\mathrm{dt}}=\frac{\mu_{0} \mathrm{i}}{2 \pi \mathrm{~d}} \times \frac{\mathrm{A}}{\mathrm{dt}}$

$$
=\frac{4 \pi \times 10^{-7} \times 10}{2 \pi \times 2 \times 10^{-1}} \times \frac{10^{-6}}{1 \times 10^{-1}}=1 \times 10^{-10} \mathrm{~V}
$$

6. (a) During removal,
$\phi_{1}=$ B.A. $=1 \times 50 \times 0.5 \times 0.5-25 \times 0.5=12.5$ Tesla m 2
$\phi_{2}=0, \tau=0.25$
$\mathrm{e}=-\frac{\mathrm{d} \phi}{\mathrm{dt}}=\frac{\phi_{2}-\phi_{1}}{\mathrm{dt}}=\frac{12.5}{0.25}=\frac{125 \times 10^{-1}}{25 \times 10^{-2}}=50 \mathrm{~V}$
(b) During its restoration

$$
\begin{aligned}
& \phi_{1}=0 ; \phi_{2}=12.5 \text { Tesla }-\mathrm{m}^{2} ; \mathrm{t}=0.25 \mathrm{~s} \\
& E=\frac{12.5-0}{0.25}=50 \mathrm{~V}
\end{aligned}
$$

(c) During the motion

$$
\begin{aligned}
& \phi_{1}=0, \phi_{2}=0 \\
& E=\frac{d \phi}{d t}=0
\end{aligned}
$$

7. $\mathrm{R}=25 \Omega$
(a) $\mathrm{e}=50 \mathrm{~V}, \mathrm{~T}=0.25 \mathrm{~s}$
$i=e / R=2 A, H=i^{2} R T$
$=4 \times 25 \times 0.25=25 \mathrm{~J}$
(b) $e=50 \mathrm{~V}, \mathrm{~T}=0.25 \mathrm{~s}$
$i=e / R=2 A, H=i^{2} R T=25 \mathrm{~J}$
(c) Since energy is a scalar quantity

Net thermal energy developed $=25 \mathrm{~J}+25 \mathrm{~J}=50 \mathrm{~J}$.
8. $A=5 \mathrm{~cm}^{2}=5 \times 10^{-4} \mathrm{~m}^{2}$
$B=B_{0} \sin \omega t=0.2 \sin (300 t)$
$\theta=60^{\circ}$
a) Max emf induced in the coil
$E=-\frac{d \phi}{d t}=\frac{d}{d t}(B A \cos \theta)$
$=\frac{\mathrm{d}}{\mathrm{dt}}\left(\mathrm{B}_{0} \sin \omega \mathrm{t} \times 5 \times 10^{-4} \times \frac{1}{2}\right)$
$=\mathrm{B}_{0} \times \frac{5}{2} \times 10^{-4} \frac{\mathrm{~d}}{\mathrm{dt}}(\sin \omega \mathrm{t})=\frac{\mathrm{B}_{0} 5}{2} \times 10^{-4} \cos \omega \mathrm{t} \cdot \omega$
$=\frac{0.2 \times 5}{2} \times 300 \times 10^{-4} \times \cos \omega \mathrm{t}=15 \times 10^{-3} \cos \omega \mathrm{t}$

$$
E_{\max }=15 \times 10^{-3}=0.015 \mathrm{~V}
$$

b) Induced emf at $t=(\pi / 900) \mathrm{s}$
$E=15 \times 10^{-3} \times \cos \omega t$
$=15 \times 10^{-3} \times \cos (300 \times \pi / 900)=15 \times 10^{-3} \times 1 / 2$
$=0.015 / 2=0.0075=7.5 \times 10^{-3} \mathrm{~V}$
c) Induced emf at $t=\pi / 600 \mathrm{~s}$

$$
\begin{aligned}
& E=15 \times 10^{-3} \times \cos (300 \times \pi / 600) \\
& =15 \times 10^{-3} \times 0=0 \mathrm{~V}
\end{aligned}
$$

9. $\vec{B}=0.10 \mathrm{~T}$
$\mathrm{A}=1 \mathrm{~cm}^{2}=10^{-4} \mathrm{~m}^{2}$
$\mathrm{T}=1 \mathrm{~s}$
$\phi=$ B.A. $=10^{-1} \times 10^{-4}=10^{-5}$
$\mathrm{e}=\frac{\mathrm{d} \phi}{\mathrm{dt}}=\frac{10^{-5}}{1}=10^{-5}=10 \mu \mathrm{~V}$

10. $\mathrm{E}=20 \mathrm{mV}=20 \times 10^{-3} \mathrm{~V}$
$A=\left(2 \times 10^{-2}\right)^{2}=4 \times 10^{-4}$
$D t=0.2 \mathrm{~s}, \theta=180^{\circ}$
$\phi_{1}=B A, \phi_{2}=-B A$
$\mathrm{d} \phi=2 \mathrm{BA}$
$E=\frac{\mathrm{d} \phi}{\mathrm{dt}}=\frac{2 \mathrm{BA}}{\mathrm{dt}}$
$\Rightarrow 20 \times 10^{-3}=\frac{2 \times \mathrm{B} \times 2 \times 10^{-4}}{2 \times 10^{-1}}$
$\Rightarrow 20 \times 10^{-3}=4 \times \mathrm{B} \times 10^{-3}$
$\Rightarrow B=\frac{20 \times 10^{-3}}{42 \times 10^{-3}}=5 \mathrm{~T}$
11. Area $=A$, Resistance $=R, B=$ Magnetic field
$\phi=\mathrm{BA}=\mathrm{Ba} \cos 0^{\circ}=\mathrm{BA}$
$e=\frac{d \phi}{d t}=\frac{B A}{1} ; i=\frac{e}{R}=\frac{B A}{R}$
$\phi=\mathrm{iT}=\mathrm{BA} / \mathrm{R}$
12. $r=2 \mathrm{~cm}=2 \times 10^{-2} \mathrm{~m}$
$\mathrm{n}=100$ turns $/ \mathrm{cm}=10000$ turns $/ \mathrm{m}$
$\mathrm{i}=5 \mathrm{~A}$
$B=\mu_{0} n i$
$=4 \pi \times 10^{-7} \times 10000 \times 5=20 \pi \times 10^{-3}=62.8 \times 10^{-3} \mathrm{~T}$
$\mathrm{n}_{2}=100$ turns
$\mathrm{R}=20 \Omega$
$r=1 \mathrm{~cm}=10^{-2} \mathrm{~m}$
Flux linking per turn of the second coil $=B \pi r^{2}=B \pi \times 10^{-4}$
$\phi_{1}=$ Total flux linking $=\mathrm{Bn}_{2} \pi \mathrm{r}^{2}=100 \times \pi \times 10^{-4} \times 20 \pi \times 10^{-3}$
When current is reversed.
$\phi_{2}=-\phi_{1}$
$\mathrm{d} \phi=\phi_{2}-\phi_{1}=2 \times 100 \times \pi \times 10^{-4} \times 20 \pi \times 10^{-3}$
$E=-\frac{\mathrm{d} \phi}{\mathrm{dt}}=\frac{4 \pi^{2} \times 10^{-4}}{\mathrm{dt}}$
$I=\frac{E}{R}=\frac{4 \pi^{2} \times 10^{-4}}{\mathrm{dt} \times 20}$
$q=I d t=\frac{4 \pi^{2} \times 10^{-4}}{d t \times 20} \times d t=2 \times 10^{-4} C$.
13. Speed $=u$

Magnetic field $=B$
Side $=\mathrm{a}$
a) The perpendicular component i.e. a $\sin \theta$ is to be taken which is $\perp r$ to velocity.
So, $\mathrm{I}=\mathrm{a} \sin \theta 30^{\circ}=\mathrm{a} / 2$.
Net ' a ' charge $=4 \times a / 2=2 a$
So, induced emf $=\mathrm{B} 9 \mathrm{I}=2 \mathrm{auB}$

b) Current $=\frac{E}{R}=\frac{2 a u B}{R}$
14. $\phi_{1}=0.35$ weber, $\phi_{2}=0.85$ weber
$\mathrm{D} \phi=\phi_{2}-\phi_{1}=(0.85-0.35)$ weber $=0.5$ weber
$\mathrm{dt}=0.5 \mathrm{sec}$
$\mathrm{E}=\frac{\mathrm{d} \phi}{\mathrm{dt}^{\prime}}=\frac{0.5}{0.5}=1 \mathrm{v}$.
The induced current is anticlockwise as seen from above.
15. $i=v(B \times I)$

$$
=\mathrm{v} \mathrm{BI} \cos \theta
$$

θ is angle between normal to plane and $\vec{B}=90^{\circ}$.

$$
=\mathrm{v} \operatorname{BI} \cos 90^{\circ}=0
$$

16. $u=1 \mathrm{~cm} /{ }^{\prime}, B=0.6 \mathrm{~T}$
a) At $=2 \mathrm{sec}$, distance moved $=2 \times 1 \mathrm{~cm} / \mathrm{s}=2 \mathrm{~cm}$

$$
\mathrm{E}=\frac{\mathrm{d} \phi}{\mathrm{dt}}=\frac{0.6 \times(2 \times 5-0) \times 10^{-4}}{2}=3 \times 10^{-4} \mathrm{~V}
$$

b) At $t=10 \mathrm{sec}$
distance moved $=10 \times 1=10 \mathrm{~cm}$
The flux linked does not change with time
$\therefore \mathrm{E}=0$
c) At t $=22 \mathrm{sec}$

distance $=22 \times 1=22 \mathrm{~cm}$
The loop is moving out of the field and 2 cm outside.
$E=\frac{d \phi}{d t}=B \times \frac{d A}{d t}$

$$
=\frac{0.6 \times\left(2 \times 5 \times 10^{-4}\right)}{2}=3 \times 10^{-4} \mathrm{~V}
$$

d) Att $=30 \mathrm{sec}$

The loop is total outside and flux linked $=0$

$$
\therefore \mathrm{E}=0 .
$$

17. As heat produced is a scalar prop.

So, net heat produced $=\mathrm{H}_{\mathrm{a}}+\mathrm{H}_{\mathrm{b}}+\mathrm{H}_{\mathrm{c}}+\mathrm{H}_{\mathrm{d}}$
$R=4.5 \mathrm{~m} \Omega=4.5 \times 10^{-3} \Omega$
a) $e=3 \times 10^{-4} \mathrm{~V}$
$i=\frac{e}{R}=\frac{3 \times 10^{-4}}{4.5 \times 10^{-3}}=6.7 \times 10^{-2} \mathrm{Amp}$.
$H_{a}=\left(6.7 \times 10^{-2}\right)^{2} \times 4.5 \times 10^{-3} \times 5$
$H_{b}=H_{d}=0$ [since emf is induced for 5 sec]
$H_{c}=\left(6.7 \times 10^{-2}\right)^{2} \times 4.5 \times 10^{-3} \times 5$
So Total heat $=\mathrm{H}_{\mathrm{a}}+\mathrm{H}_{\mathrm{c}}$

$$
=2 \times\left(6.7 \times 10^{-2}\right)^{2} \times 4.5 \times 10^{-3} \times 5=2 \times 10^{-4} \mathrm{~J}
$$

18. $r=10 \mathrm{~cm}, \mathrm{R}=4 \Omega$
$\frac{\mathrm{dB}}{\mathrm{dt}}=0.010 \mathrm{~T} /{ }^{\prime}, \frac{\mathrm{d} \phi}{\mathrm{dt}}=\frac{\mathrm{dB}}{\mathrm{dt}} \mathrm{A}$
$\mathrm{E}=\frac{\mathrm{d} \phi}{\mathrm{dt}}=\frac{\mathrm{dB}}{\mathrm{dt}} \times \mathrm{A}=0.01\left(\frac{\pi \times \mathrm{r}^{2}}{2}\right)$
$=\frac{0.01 \times 3.14 \times 0.01}{2}=\frac{3.14}{2} \times 10^{-4}=1.57 \times 10^{-4}$
$i=\frac{E}{R}=\frac{1.57 \times 10^{-4}}{4}=0.39 \times 10^{-4}=3.9 \times 10^{-5} \mathrm{~A}$

19. a) S_{1} closed S_{2} open
net $R=4 \times 4=16 \Omega$

$$
\mathrm{e}=\frac{\mathrm{d} \phi}{\mathrm{dt}}=\mathrm{A} \frac{\mathrm{~dB}}{\mathrm{dt}}=10^{-4} \times 2 \times 10^{-2}=2 \times 10^{-6} \mathrm{~V}
$$

i through ad $=\frac{e}{R}=\frac{2 \times 10^{-6}}{16}=1.25 \times 10^{-7} \mathrm{~A}$ along ad
b) $R=16 \Omega$

$$
\begin{aligned}
& e=A \times \frac{d B}{d t}=2 \times 0^{-5} \mathrm{~V} \\
& i=\frac{2 \times 10^{-6}}{16}=1.25 \times 10^{-7} \mathrm{~A} \text { along } \mathrm{d} \mathrm{a}
\end{aligned}
$$

c) Since both S_{1} and S_{2} are open, no current is passed as circuit is open i.e. $i=0$
d) Since both S_{1} and S_{2} are closed, the circuit forms a balanced wheat stone bridge and no current will flow along ad i.e. $\mathrm{i}=0$.
20. Magnetic field due to the coil (1) at the center of (2) is $B=\frac{\mu_{0} N \mathrm{Nia}^{2}}{2\left(a^{2}+x^{2}\right)^{3 / 2}}$

Flux linked with the second,
$=B . A_{(2)}=\frac{\mu_{0} \mathrm{Nia}^{2}}{2\left(\mathrm{a}^{2}+\mathrm{x}^{2}\right)^{3 / 2}} \pi \mathrm{a}^{\prime 2}$
E.m.f. induced $\frac{d \phi}{d t}=\frac{\mu_{0} \mathrm{Na}^{2} \mathrm{a}^{2} \pi}{2\left(\mathrm{a}^{2}+\mathrm{x}^{2}\right)^{3 / 2}} \frac{\mathrm{di}}{\mathrm{dt}}$

$$
\begin{aligned}
& =\frac{\mu_{0} N \pi a^{2} a^{\prime 2}}{2\left(a^{2}+x^{2}\right)^{3 / 2}} \frac{d}{d t} \frac{E}{((R / L) x+r)} \\
& =\frac{\mu_{0} N \pi a^{2} a^{\prime 2}}{2\left(a^{2}+x^{2}\right)^{3 / 2}} E \frac{-1 . R / L \cdot v}{((R / L) x+r)^{2}}
\end{aligned}
$$

b) $=\frac{\mu_{0} N \pi a^{2} a^{\prime 2}}{2\left(a^{2}+x^{2}\right)^{3 / 2}} \frac{E R V}{L(R / 2+r)^{2}}($ for $x=L / 2, R / L x=R / 2)$
a) For $x=L$

$$
E=\frac{\mu_{0} N \pi a^{2} a^{\prime 2} R v E}{2\left(a^{2}+x^{2}\right)^{3 / 2}(R+r)^{2}}
$$

21. $N=50, \vec{B}=0.200 \mathrm{~T} ; r=2.00 \mathrm{~cm}=0.02 \mathrm{~m}$
$\theta=60^{\circ}, \mathrm{t}=0.100 \mathrm{~s}$
a) $\mathrm{e}=\frac{\mathrm{Nd} \phi}{\mathrm{dt}}=\frac{\mathrm{N} \times \mathrm{B} \cdot \mathrm{A}}{\mathrm{T}}=\frac{\mathrm{NBA} \cos 60^{\circ}}{\mathrm{T}}$

$$
\begin{aligned}
& =\frac{50 \times 2 \times 10^{-1} \times \pi \times(0.02)^{2}}{0.1}=5 \times 4 \times 10^{-3} \times \pi \\
& =2 \pi \times 10^{-2} \mathrm{~V}=6.28 \times 10^{-2} \mathrm{~V}
\end{aligned}
$$

b) $i=\frac{e}{R}=\frac{6.28 \times 10^{-2}}{4}=1.57 \times 10^{-2} \mathrm{~A}$

$$
\mathrm{Q}=\text { it }=1.57 \times 10^{-2} \times 10^{-1}=1.57 \times 10^{-3} \mathrm{C}
$$

22. $n=100$ turns, $B=4 \times 10^{-4} \mathrm{~T}$
$A=25 \mathrm{~cm}^{2}=25 \times 10^{-4} \mathrm{~m}^{2}$
a) When the coil is perpendicular to the field

$$
\phi=n B A
$$

When coil goes through half a turn

$$
\begin{aligned}
& \phi=\mathrm{BA} \cos 18^{\circ}=0-\mathrm{nBA} \\
& \mathrm{~d} \phi=2 \mathrm{nBA}
\end{aligned}
$$

The coil undergoes 300 rev , in 1 min
$300 \times 2 \pi \mathrm{rad} / \mathrm{min}=10 \pi \mathrm{rad} / \mathrm{sec}$
$10 \pi \mathrm{rad}$ is swept in 1 sec .
$\pi / \pi \mathrm{rad}$ is swept $1 / 10 \pi \times \pi=1 / 10 \mathrm{sec}$
$E=\frac{\mathrm{d} \phi}{\mathrm{dt}}=\frac{2 \mathrm{nBA}}{\mathrm{dt}}=\frac{2 \times 100 \times 4 \times 10^{-4} \times 25 \times 10^{-4}}{1 / 10}=2 \times 10^{-3} \mathrm{~V}$
b) $\phi_{1}=n B A, \phi_{2}=n B A\left(\theta=360^{\circ}\right)$

$$
\mathrm{d} \phi=0
$$

c) $i=\frac{E}{R}=\frac{2 \times 10^{-3}}{4}=\frac{1}{2} \times 10^{-3}$
$=0.5 \times 10^{-3}=5 \times 10^{-4}$

$$
\mathrm{q}=\mathrm{idt}=5 \times 10^{-4} \times 1 / 10=5 \times 10^{-5} \mathrm{C} .
$$

23. $r=10 \mathrm{~cm}=0.1 \mathrm{~m}$
$R=40 \Omega, N=1000$
$\theta=180^{\circ}, B_{H}=3 \times 10^{-5} \mathrm{~T}$
$\phi=\mathrm{N}(\mathrm{B} . \mathrm{A})=\mathrm{NBA} \operatorname{Cos} 180^{\circ}$ or $=-$ NBA
$=1000 \times 3 \times 10^{-5} \times \pi \times 1 \times 10^{-2}=3 \pi \times 10^{-4}$ where
$\mathrm{d} \phi=2 \mathrm{NBA}=6 \pi \times 10^{-4}$ weber
$\mathrm{e}=\frac{\mathrm{d} \phi}{\mathrm{dt}}=\frac{6 \pi \times 10^{-4} \mathrm{~V}}{\mathrm{dt}}$
$\mathrm{i}=\frac{6 \pi \times 10^{-4}}{40 \mathrm{dt}}=\frac{4.71 \times 10^{-5}}{\mathrm{dt}}$
$\mathrm{Q}=\frac{4.71 \times 10^{-5} \times \mathrm{dt}}{\mathrm{dt}}=4.71 \times 10^{-5} \mathrm{C}$.
24. $\mathrm{emf}=\frac{\mathrm{d} \phi}{\mathrm{dt}}=\frac{\mathrm{dB} \cdot \mathrm{A} \cos \theta}{\mathrm{dt}}$
$=B A \sin \theta \omega=-B A \omega \sin \theta$
$(d q / d t=$ the rate of change of angle between arc vector and $B=\omega$)
a) emf maximum $=\mathrm{BA} \omega=0.010 \times 25 \times 10^{-4} \times 80 \times \frac{2 \pi \times \pi}{6}$

$$
=0.66 \times 10^{-3}=6.66 \times 10^{-4} \text { volt. }
$$

b) Since the induced emf changes its direction every time, so for the average emf $=0$
25. $H=\int_{0}^{t} i^{2} R d t=\int_{0}^{t} \frac{B^{2} A^{2} \omega^{2}}{R^{2}} \sin \omega t R d t$

$$
=\frac{\mathrm{B}^{2} \mathrm{~A}^{2} \omega^{2}}{2 \mathrm{R}^{2}} \int_{0}^{\mathrm{t}}(1-\cos 2 \omega \mathrm{t}) \mathrm{dt}
$$

$$
=\frac{B^{2} A^{2} \omega^{2}}{2 R}\left(t-\frac{\sin 2 \omega t}{2 \omega}\right)_{0}^{1 \text { minute }}
$$

$$
=\frac{B^{2} A^{2} \omega^{2}}{2 R}\left(60-\frac{\sin 2 \times 8-\times 2 \pi / 60 \times 60}{2 \times 80 \times 2 \pi / 60}\right)
$$

$=\frac{60}{200} \times \pi^{2} r^{4} \times B^{2} \times\left(80^{4} \times \frac{2 \pi}{60}\right)^{2}$
$=\frac{60}{200} \times 10 \times \frac{64}{9} \times 10 \times 625 \times 10^{-8} \times 10^{-4}=\frac{625 \times 6 \times 64}{9 \times 2} \times 10^{-11}=1.33 \times 10^{-7} \mathrm{~J}$.
26. $\phi_{1}=\mathrm{BA}, \phi_{2}=0$

$$
\begin{aligned}
& =\frac{2 \times 10^{-4} \times \pi(0.1)^{2}}{2}=\pi \times 10^{-5} \\
E & =\frac{\mathrm{d} \phi}{\mathrm{dt}}=\frac{\pi \times 10^{-6}}{2}=1.57 \times 10^{-6} \mathrm{~V}
\end{aligned}
$$

27. $\mathrm{I}=20 \mathrm{~cm}=0.2 \mathrm{~m}$
$\mathrm{v}=10 \mathrm{~cm} / \mathrm{s}=0.1 \mathrm{~m} / \mathrm{s}$
$B=0.10 \mathrm{~T}$
a) $F=q \vee B=1.6 \times 10^{-19} \times 1 \times 10^{-1} \times 1 \times 10^{-1}=1.6 \times 10^{-21} \mathrm{~N}$
b) $q E=q v B$
$\Rightarrow E=1 \times 10^{-1} \times 1 \times 10^{-1}=1 \times 10^{-2} \mathrm{~V} / \mathrm{m}$
This is created due to the induced emf.
c) Motional emf $=\mathrm{Bv} \ell$

$$
=0.1 \times 0.1 \times 0.2=2 \times 10^{-3} \mathrm{~V}
$$

28. $\ell=1 \mathrm{~m}, \mathrm{~B}=0.2 \mathrm{~T}, \mathrm{v}=2 \mathrm{~m} / \mathrm{s}, \mathrm{e}=\mathrm{Blv}$

$$
=0.2 \times 1 \times 2=0.4 \mathrm{~V}
$$

29. $\ell=10 \mathrm{~m}, \mathrm{v}=3 \times 10^{7} \mathrm{~m} / \mathrm{s}, \mathrm{B}=3 \times 10^{-10} \mathrm{~T}$

Motional emf $=\mathrm{Bv} \ell$

$$
=3 \times 10^{-10} \times 3 \times 10^{7} \times 10=9 \times 10^{-3}=0.09 \mathrm{~V}
$$

30. $v=180 \mathrm{~km} / \mathrm{h}=50 \mathrm{~m} / \mathrm{s}$
$B=0.2 \times 10^{-4} \mathrm{~T}, \mathrm{~L}=1 \mathrm{~m}$
$E=B v \ell=0.2 \mathrm{I} 10^{-4} \times 50=10^{-3} \mathrm{~V}$
\therefore The voltmeter will record 1 mv .
31. a) Zero as the components of ab are exactly opposite to that of bc. So they cancel each other. Because velocity should be perpendicular to the length.
b) $e=B v \times \ell$
$=B v(b c)+v e$ at C
c) $\mathrm{e}=0$ as the velocity is not perpendicular to the length.

d) $e=B v(b c)$ positive at ' a '
i.e. the component of ' $a b$ ' along the perpendicular direction.
32. a) Component of length moving perpendicular to V is $2 R$

$$
\therefore \mathrm{E}=\mathrm{B} \vee 2 \mathrm{R}
$$

b) Component of length perpendicular to velocity $=0$

$$
\therefore \mathrm{E}=0
$$

33. $\ell=10 \mathrm{~cm}=0.1 \mathrm{~m}$;
$\theta=60^{\circ} ; B=1 \mathrm{~T}$
$\mathrm{V}=20 \mathrm{~cm} / \mathrm{s}=0.2 \mathrm{~m} / \mathrm{s}$
$E=B v \ell \sin 60^{\circ}$
[As we have to take that component of length vector which is $\perp r$ to the velocity vector]
$=1 \times 0.2 \times 0.1 \times \sqrt{3} / 2$
$=1.732 \times 10^{-2}=17.32 \times 10^{-3} \mathrm{~V}$.
34. a) The e.m.f. is highest between diameter $\perp r$ to the velocity. Because here length $\perp r$ to velocity is highest.
$E_{\text {max }}=V B 2 R$
b) The length perpendicular to velocity is lowest as the diameter is parallel to the
 velocity $E_{\text {min }}=0$.
35. $F_{\text {magnetic }}=i \ell B$

This force produces an acceleration of the wire.
But since the velocity is given to be constant.
Hence net force acting on the wire must be zero.
36. $E=B v \ell$

Resistance $=r \times$ total length

$$
=r \times 2(\ell+v t)=24(\ell+v t)
$$

$\mathrm{i}=\frac{\mathrm{Bv} \ell}{2 \mathrm{r}(\ell+\mathrm{vt})}$
37. $e=B v \ell$
$\mathrm{i}=\frac{\mathrm{e}}{\mathrm{R}}=\frac{\mathrm{Bv} \ell}{2 \mathrm{r}(\ell+\mathrm{vt})}$
a) $\mathrm{F}=\mathrm{i} \mathrm{\ell B}=\frac{\mathrm{Bv} \ell}{2 \mathrm{r}(\ell+\mathrm{vt})} \times \ell \mathrm{B}=\frac{\mathrm{B}^{2} \ell^{2} \mathrm{v}}{2 \mathrm{r}(\ell+\mathrm{vt})}$
b) Just after $t=0$

$$
\begin{aligned}
\mathrm{F}_{0} & =\mathrm{i} \ell \mathrm{~B}=\ell \mathrm{B}\left(\frac{\ell \mathrm{Bv}}{2 \mathrm{r} \ell}\right)=\frac{\ell \mathrm{B}^{2} \mathrm{v}}{2 \mathrm{r}} \\
& \frac{\mathrm{~F}_{0}}{2}=\frac{\ell \mathrm{B}^{2} \mathrm{v}}{4 \mathrm{r}}=\frac{\ell^{2} \mathrm{~B}^{2} \mathrm{v}}{2 \mathrm{r}(\ell+\mathrm{vt})} \\
\Rightarrow & 2 \ell=\ell+\mathrm{vt} \\
\Rightarrow & \mathrm{~T}=\ell / \mathrm{v}
\end{aligned}
$$

38. a) When the speed is V

$$
\mathrm{Emf}=\mathrm{Blv}
$$

Resistance $=r+r$

$$
\text { Current }=\frac{B \ell v}{r+R}
$$

b) Force acting on the wire $=i \ell B$

$$
=\frac{\mathrm{B} \ell \mathrm{v} \ell \mathrm{~B}}{\mathrm{R}+\mathrm{r}}=\frac{\mathrm{B}^{2} \ell^{2} \mathrm{v}}{\mathrm{R}+\mathrm{r}}
$$

Acceleration on the wire $=\frac{B^{2} \ell^{2} v}{m(R+r)}$
c) $v=v_{0}+a t=v_{0}-\frac{B^{2} \ell^{2} v}{m(R+r)} t$ [force is opposite to velocity]

$$
=v_{0}-\frac{B^{2} \ell^{2} x}{m(R+r)}
$$

d) $a=v \frac{d v}{d x}=\frac{B^{2} \ell^{2} v}{m(R+r)}$
$\Rightarrow \mathrm{dx}=\frac{\mathrm{dvm}(\mathrm{R}+\mathrm{r})}{\mathrm{B}^{2} \ell^{2}}$
$\Rightarrow x=\frac{m(R+r) v_{0}}{B^{2} \ell^{2}}$
39. $\mathrm{R}=2.0 \Omega, \mathrm{~B}=0.020 \mathrm{~T}, \mathrm{I}=32 \mathrm{~cm}=0.32 \mathrm{~m}$
$B=8 \mathrm{~cm}=0.08 \mathrm{~m}$
a) $\mathrm{F}=\mathrm{i} \mathrm{\ell B}=3.2 \times 10^{-5} \mathrm{~N}$

$$
=\frac{\mathrm{B}^{2} \ell^{2} \mathrm{v}}{\mathrm{R}}=3.2 \times 10^{5}
$$

$\Rightarrow \frac{(0.020)^{2} \times(0.08)^{2} \times v}{2}=3.2 \times 10^{-5}$
$\Rightarrow \mathrm{v}=\frac{3.2 \times 10^{-5} \times 2}{6.4 \times 10^{-3} \times 4 \times 10^{-4}}=25 \mathrm{~m} / \mathrm{s}$
b) $E m f E=v B l=25 \times 0.02 \times 0.08=4 \times 10^{-2} v$
c) Resistance per unit length $=\frac{2}{0.8}$

$$
\text { Resistance of part ad/cb }=\frac{2 \times 0.72}{0.8}=1.8 \Omega
$$

$$
V_{a b}=i R=\frac{B \ell v}{2} \times 1.8=\frac{0.02 \times 0.08 \times 25 \times 1.8}{2}=0.036 \mathrm{~V}=3.6 \times 10^{-2} \mathrm{~V}
$$

d) Resistance of $\mathrm{cd}=\frac{2 \times 0.08}{0.8}=0.2 \Omega$

$$
V=\mathrm{iR}=\frac{0.02 \times 0.08 \times 25 \times 0.2}{2}=4 \times 10^{-3} \mathrm{~V}
$$

40. $\ell=20 \mathrm{~cm}=20 \times 10^{-2} \mathrm{~m}$
$\mathrm{v}=20 \mathrm{~cm} / \mathrm{s}=20 \times 10^{-2} \mathrm{~m} / \mathrm{s}$
$\mathrm{B}_{\mathrm{H}}=3 \times 10^{-5} \mathrm{~T}$
$\mathrm{i}=2 \mu \mathrm{~A}=2 \times 10^{-6} \mathrm{~A}$
$R=0.2 \Omega$
$i=\frac{B_{v} \ell v}{R}$
$\Rightarrow B_{v}=\frac{i R}{\ell v}=\frac{2 \times 10^{-6} \times 2 \times 10^{-1}}{20 \times 10^{-2} \times 20 \times 10^{-2}}=1 \times 10^{-5} \mathrm{Tesla}$
$\tan \delta=\frac{\mathrm{B}_{\mathrm{v}}}{\mathrm{B}_{\mathrm{H}}}=\frac{1 \times 10^{-5}}{3 \times 10^{-5}}=\frac{1}{3} \Rightarrow \delta($ dip $)=\tan ^{-1}(1 / 3)$
41. I $=\frac{\mathrm{B} \ell v}{\mathrm{R}}=\frac{\mathrm{B} \times \ell \cos \theta \times v \cos \theta}{\mathrm{R}}$

$$
=\frac{\mathrm{B} \ell v}{\mathrm{R}} \cos ^{2} \theta
$$

$F=i \ell B=\frac{B \ell v \cos ^{2} \theta \times \ell B}{R}$

Now, $\mathrm{F}=\mathrm{mg} \sin \theta$ [Force due to gravity which pulls downwards]
Now, $\frac{\mathrm{B}^{2} \ell^{2} \mathrm{v} \cos ^{2} \theta}{\mathrm{R}}=\mathrm{mg} \sin \theta$
$\Rightarrow B=\sqrt{\frac{R m g \sin \theta}{\ell^{2} v \cos ^{2} \theta}}$
42. a) The wires constitute 2 parallel emf.
\therefore Net emf $=B \ell v=1 \times 4 \times 10^{-2} \times 5 \times 10^{-2}=20 \times 10^{-4}$
Net resistance $=\frac{2 \times 2}{2+2}+19=20 \Omega$

Net current $=\frac{20 \times 10^{-4}}{20}=0.1 \mathrm{~mA}$.
b) When both the wires move towards opposite directions then not emf $=0$
\therefore Net current $=0$
43.

a) No current will pass as circuit is incomplete.
b) As circuit is complete

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{VP}_{2} \mathrm{Q}_{2}=\mathrm{B} \ell \mathrm{~V} \\
\quad=1 \times 0.04 \times 0.05=2 \times 10^{-3} \mathrm{~V} \\
\mathrm{R}
\end{array}=2 \Omega \\
& \mathrm{i}=\frac{2 \times 10^{-3}}{2}=1 \times 10^{-3} \mathrm{~A}=1 \mathrm{~mA}
\end{aligned}
$$

44. $\mathrm{B}=1 \mathrm{~T}, \mathrm{~V}=5 \mathrm{I} 10^{-2} \mathrm{~m} /{ }^{\prime}, \mathrm{R}=10 \Omega$

a) When the switch is thrown to the middle rail
$E=B v \ell$
$=1 \times 5 \times 10^{-2} \times 2 \times 10^{-2}=10^{-3}$
Current in the 10Ω resistor $=E / R$
$=\frac{10^{-3}}{10}=10^{-4}=0.1 \mathrm{~mA}$
b) The switch is thrown to the lower rail
$E=B v \ell$
$=1 \times 5 \times 10^{-2} \times 2 \times 10^{-2}=20 \times 10^{-4}$
Current $=\frac{20 \times 10^{-4}}{10}=2 \times 10^{-4}=0.2 \mathrm{~mA}$
45. Initial current passing $=\mathrm{i}$

Hence initial emf = ir
Emf due to motion of $\mathrm{ab}=\mathrm{Blv}$
Net emf = ir - Blv
Net resistance $=2 r$

Hence current passing $=\frac{i r-B \ell v}{2 r}$

46. Force on the wire $=i \ell B$

Acceleration $=\frac{i \ell B}{m}$
Velocity $=\frac{i \ell B t}{m}$

47. Given Blv = mg

When wire is replaced we have
$2 \mathrm{mg}-\mathrm{Blv}=2 \mathrm{ma}$ [where $\mathrm{a} \rightarrow$ acceleration]
$\Rightarrow a=\frac{2 m g-B \ell v}{2 m}$
Now, $s=u t+\frac{1}{2}$ at 2

$\Rightarrow \ell=\frac{1}{2} \times \frac{2 \mathrm{mg}-\mathrm{B} \ell \mathrm{v}}{2 \mathrm{~m}} \times \mathrm{t}^{2} \quad[\therefore \mathrm{~s}=\ell]$
$\Rightarrow t=\sqrt{\frac{4 m l}{2 m g-B \ell v}}=\sqrt{\frac{4 m l}{2 m g-m g}}=\sqrt{2 \ell / g} .[$ from (1)]
48. a) emf developed $=B d v$ (when it attains a speed v)

Current $=\frac{B d v}{R}$
Force $=\frac{B d^{2} v^{2}}{R}$

This force opposes the given force
Net $F=F-\frac{B d^{2} v^{2}}{R}=R F-\frac{B d^{2} v^{2}}{R}$
Net acceleration $=\frac{R F-B^{2} d^{2} v}{m R}$
b) Velocity becomes constant when acceleration is 0 .

$$
\begin{aligned}
& \frac{F}{m}-\frac{B^{2} d^{2} v_{0}}{m R}=0 \\
& \Rightarrow \frac{F}{m}=\frac{B^{2} d^{2} v_{0}}{m R} \\
& \Rightarrow V_{0}=\frac{F R}{B^{2} d^{2}}
\end{aligned}
$$

c) Velocity at line t

$$
\begin{aligned}
& a=-\frac{d v}{d t} \\
& \Rightarrow \int_{0}^{v} \frac{d v}{R F-I^{2} B^{2} v}=\int_{0}^{t} \frac{d t}{m R} \\
& \Rightarrow\left[I_{n}\left[R F-I^{2} B^{2} v\right] \frac{1}{-I^{2} B^{2}}\right]_{0}^{v}\left[\frac{t}{R m}\right]_{0}^{t} \\
& \\
& \Rightarrow\left[I_{n}\left(R F-I^{2} B^{2} v\right)\right]_{0}^{v}=\frac{-\left.t\right|^{2} B^{2}}{R m} \\
& \\
& \Rightarrow I_{n}\left(R F-I^{2} B^{2} v\right)-\ln (R F)=\frac{-t^{2} B^{2} t}{R m} \\
& \\
& \Rightarrow 1-\frac{I^{2} B^{2} v}{R F}=e^{\frac{-I^{2} B^{2} t}{R m}} \\
& \Rightarrow \frac{I^{2} B^{2} v}{R F}=1-e^{\frac{-I^{2} B^{2} t}{R m}} \\
& \Rightarrow v=\frac{F R}{I^{2} B^{2}}\left(1-e^{\frac{-I^{2} B^{2} v_{0} t}{R v_{0} m}}\right)=v_{0}\left(1-e^{-F v_{0} m}\right)
\end{aligned}
$$

49. Net emf $=E-B v \ell$
$I=\frac{E-B v \ell}{r}$ from b to a
$F=I \ell B$
$=\left(\frac{\mathrm{E}-\mathrm{Bv} \ell}{\mathrm{r}}\right) \ell \mathrm{B}=\frac{\ell \mathrm{B}}{\mathrm{r}}(\mathrm{E}-\mathrm{Bv} \ell)$ towards right.
After some time when $E=B v \ell$,
Then the wire moves constant velocity v
 Hence v = E/Bl.
50. a) When the speed of wire is V
emf developed $=B \ell V$
b) Induced current is the wire $=\frac{B \ell v}{R}$ (from b to a)
c) Down ward acceleration of the wire
$=\frac{m g-F}{m}$ due to the current

$=\mathrm{mg}-\mathrm{i} \ell \mathrm{B} / \mathrm{m}=\mathrm{g}-\frac{\mathrm{B}^{2} \ell^{2} \mathrm{~V}}{\mathrm{Rm}}$
d) Let the wire start moving with constant velocity. Then acceleration $=0$

$$
\begin{aligned}
& \frac{\mathrm{B}^{2} \ell^{2} \mathrm{v}}{\mathrm{Rm}} \mathrm{~m}=\mathrm{g} \\
& \Rightarrow V_{m}=\frac{\mathrm{gRm}}{\mathrm{~B}^{2} \ell^{2}}
\end{aligned}
$$

e) $\frac{d V}{d t}=a$
$\Rightarrow \frac{\mathrm{dV}}{\mathrm{dt}}=\frac{\mathrm{mg}-\mathrm{B}^{2} \ell^{2} \mathrm{v} / \mathrm{R}}{\mathrm{m}}$
$\Rightarrow \frac{d v}{\frac{m g-B^{2} \ell^{2} v / R}{m}}=d t$
$\Rightarrow \int_{0}^{v} \frac{m d v}{m g-\frac{B^{2} \ell^{2} v}{R}}=\int_{0}^{t} d t$
$\Rightarrow \frac{m}{\frac{-B^{2} \ell^{2}}{R}}\left(\log \left(m g-\frac{B^{2} \ell^{2} v}{R}\right)_{0}^{v}=t\right.$
$\Rightarrow \frac{-m R}{B^{2} \ell^{2}}=\log \left[\log \left(m g-\frac{B^{2} \ell^{2} v}{R}\right)-\log (m g)\right]=t$
$\Rightarrow \log \left[\frac{m g-\frac{B^{2} \ell^{2} v}{R}}{m g}\right]=\frac{-t B^{2} \ell^{2}}{m R}$
$\Rightarrow \log \left[1-\frac{\mathrm{B}^{2} \ell^{2} \mathrm{v}}{\mathrm{Rmg}}\right]=\frac{-\mathrm{tB}^{2} \ell^{2}}{\mathrm{mR}}$
$\Rightarrow 1-\frac{\mathrm{B}^{2} \ell^{2} \mathrm{v}}{\mathrm{Rmg}}=\mathrm{e}^{\frac{-\mathrm{tB}^{2} \ell^{2}}{\mathrm{mR}}}$
$\Rightarrow\left(1-\mathrm{e}^{-\mathrm{B}^{2} \ell^{2} / m \mathrm{R}}\right)=\frac{\mathrm{B}^{2} \ell^{2} v}{R m g}$
$\Rightarrow \mathrm{v}=\frac{\mathrm{Rmg}}{\mathrm{B}^{2} \ell^{2}}\left(1-\mathrm{e}^{-\mathrm{B}^{2} \ell^{2} / \mathrm{mR}}\right)$
$\Rightarrow v=v_{m}\left(1-e^{-g t / v m}\right) \quad\left[v_{m}=\frac{R m g}{B^{2} \ell^{2}}\right]$
f) $\frac{\mathrm{ds}}{\mathrm{dt}}=\mathrm{v} \Rightarrow \mathrm{ds}=\mathrm{vdt}$
$\Rightarrow \mathrm{s}=\mathrm{vm} \int_{0}^{\mathrm{t}}\left(1-\mathrm{e}^{-\mathrm{gt} / v m}\right) \mathrm{dt}$
$=V_{m}\left(t-\frac{V_{m}}{g} e^{-g t / v m}\right)=\left(V_{m} t+\frac{V_{m}^{2}}{g} e^{-g t / v m}\right)-\frac{V_{m}^{2}}{g}$
$=V_{m} t-\frac{V_{m}^{2}}{g}\left(1-e^{-g t / v m}\right)$
g) $\frac{d}{d t} m g s=m g \frac{d s}{d t}=m g V_{m}\left(1-e^{-g t / v m}\right)$
$\frac{\mathrm{d}_{\mathrm{H}}}{\mathrm{dt}}=\mathrm{i}^{2} \mathrm{R}=\mathrm{R}\left(\frac{\ell \mathrm{BV}}{\mathrm{R}}\right)^{2}=\frac{\ell^{2} \mathrm{~B}^{2} \mathrm{v}^{2}}{\mathrm{R}}$
$\Rightarrow \frac{\ell^{2} B^{2}}{R} V_{m}^{2}\left(1-e^{-g t / v m}\right)^{2}$
After steady state i.e. $T \rightarrow \infty$

$$
\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{mgs}=\mathrm{mgV}_{\mathrm{m}}
$$

$$
\frac{\mathrm{d}_{\mathrm{H}}}{\mathrm{dt}}=\frac{\ell^{2} \mathrm{~B}^{2}}{\mathrm{R}} \mathrm{~V}_{\mathrm{m}}^{2}=\frac{\ell^{2} \mathrm{~B}^{2}}{\mathrm{R}} \mathrm{~V}_{\mathrm{m}} \frac{\mathrm{mgR}}{\ell^{2} \mathrm{~B}^{2}}=\mathrm{mgV}_{\mathrm{m}}
$$

Hence after steady state $\frac{d_{H}}{d t}=\frac{d}{d t}$ mgs
51. $\ell=0.3 \mathrm{~m}, \overrightarrow{\mathrm{~B}}=2.0 \times 10^{-5} \mathrm{~T}, \omega=100 \mathrm{rpm}$
$v=\frac{100}{60} \times 2 \pi=\frac{10}{3} \pi \mathrm{rad} / \mathrm{s}$

$v=\frac{\ell}{2} \times \omega=\frac{0.3}{2} \times \frac{10}{3} \pi$
$\mathrm{Emf}=\mathrm{e}=\mathrm{Blv}$

$$
\begin{aligned}
& =2.0 \times 10^{-5} \times 0.3 \times \frac{0.33}{2} \times \frac{10}{3} \pi \\
& =3 \pi \times 10^{-6} \mathrm{~V}=3 \times 3.14 \times 10^{-6} \mathrm{~V}=9.42 \times 10^{-6} \mathrm{~V}
\end{aligned}
$$

52. V at a distance $r / 2$

From the centre $=\frac{r \omega}{2}$
$E=B \ell v \Rightarrow E=B \times r \times \frac{r \omega}{2}=\frac{1}{2} B r^{2} \omega$

53. $\mathrm{B}=0.40 \mathrm{~T}, \omega=10 \mathrm{rad} /{ }^{\prime}, \mathrm{r}=10 \Omega$
$r=5 \mathrm{~cm}=0.05 \mathrm{~m}$
Considering a rod of length 0.05 m affixed at the centre and rotating with the same ω.
$v=\frac{\ell}{2} \times \omega=\frac{0.05}{2} \times 10$
$e=B l v=0.40 \times \frac{0.05}{2} \times 10 \times 0.05=5 \times 10^{-3} V$
$I=\frac{e}{R}=\frac{5 \times 10^{-3}}{10}=0.5 \mathrm{~mA}$
It leaves from the centre.

54. $\vec{B}=\frac{B_{0}}{L} y \hat{K}$
$\mathrm{L}=$ Length of rod on y -axis
$\mathrm{V}=\mathrm{V}_{0} \hat{\mathrm{i}}$
Considering a small length by of the rod
$\mathrm{dE}=\mathrm{BV} \mathrm{dy}$
$\Rightarrow d E=\frac{B_{0}}{L} y \times V_{0} \times d y$

$\Rightarrow d E=\frac{B_{0} V_{0}}{L} y d y$
$\Rightarrow E=\frac{B_{0} V_{0}}{L} \int_{0}^{L} y d y$

$$
=\frac{B_{0} V_{0}}{L}\left[\frac{y^{2}}{2}\right]_{0}^{L}=\frac{B_{0} V_{0}}{L} \frac{L^{2}}{2}=\frac{1}{2} B_{0} V_{0} L
$$

55. In this case \vec{B} varies

Hence considering a small element at centre of rod of length dx at a dist x from the wire.
$\vec{B}=\frac{\mu_{0} i}{2 \pi x}$
So, de $=\frac{\mu_{0} i}{2 \pi x} \times v x d x$

$$
\begin{aligned}
& e=\int_{0}^{e} d e=\frac{\mu_{0} i v}{2 \pi}=\int_{x-t / 2}^{x+t / 2} \frac{d x}{x}=\frac{\mu_{0} i v}{2 \pi}[\ln (x+\ell / 2)-\ln (x-\ell / 2)] \\
& =\frac{\mu_{0} i v}{2 \pi} \ln \left[\frac{x+\ell / 2}{x-\ell / 2}\right]=\frac{\mu_{0} i v}{2 x} \ln \left(\frac{2 x+\ell}{2 x-\ell}\right)
\end{aligned}
$$

56. a) emf produced due to the current carrying wire $=\frac{\mu_{0} \mathrm{iv}}{2 \pi} \ln \left(\frac{2 x+\ell}{2 x-\ell}\right)$

Let current produced in the rod $=\mathrm{i}^{\prime}=\frac{\mu_{0} \mathrm{iv}}{2 \pi R} \ln \left(\frac{2 \mathrm{x}+\ell}{2 \mathrm{x}-\ell}\right)$
Force on the wire considering a small portion dx at a distance x

$$
\begin{aligned}
\mathrm{dF} & =\mathrm{i}^{\prime} \mathrm{B} \ell \\
\Rightarrow \mathrm{dF} & =\frac{\mu_{0} \mathrm{i}}{2 \pi \mathrm{R}} \ln \left(\frac{2 \mathrm{x}+\ell}{2 \mathrm{x}-\ell}\right) \times \frac{\mu_{0} \mathrm{i}}{2 \pi \mathrm{x}} \times \mathrm{dx} \\
\Rightarrow \mathrm{dF} & =\left(\frac{\mu_{0} \mathrm{i}}{2 \pi}\right)^{2} \frac{\mathrm{v}}{\mathrm{R}} \ln \left(\frac{2 \mathrm{x}+\ell}{2 \mathrm{x}-\ell}\right) \frac{\mathrm{dx}}{\mathrm{x}} \\
\Rightarrow \mathrm{~F} & =\left(\frac{\mu_{0} \mathrm{i}}{2 \pi}\right)^{2} \frac{\mathrm{v}}{\mathrm{R}} \ln \left(\frac{2 \mathrm{x}+\ell}{2 \mathrm{x}-\ell}\right)_{\mathrm{x}-\mathrm{t} / 2}^{\mathrm{x}+\mathrm{t} / 2} \int_{\mathrm{d}}^{\mathrm{d}} \frac{\mathrm{dx}}{\mathrm{x}} \\
& =\left(\frac{\mu_{0} \mathrm{i}}{2 \pi}\right)^{2} \frac{\mathrm{v}}{\mathrm{R}} \ln \left(\frac{2 \mathrm{x}+\ell}{2 \mathrm{x}-\ell}\right) \ln \left(\frac{2 \mathrm{x}+\ell}{2 \mathrm{x}-\ell}\right) \\
& =\frac{\mathrm{v}}{\mathrm{R}}\left[\frac{\mu_{0} \mathrm{i}}{2 \pi} \ln \left(\frac{2 \mathrm{x}+\ell}{2 \mathrm{x}-\ell}\right)\right]^{2}
\end{aligned}
$$

b) Current $=\frac{\mu_{0} \ln }{2 \pi R} \ln \left(\frac{2 x+\ell}{2 x-\ell}\right)$
c) Rate of heat developed $=i^{2} R$

$$
=\left[\frac{\mu_{0} \mathrm{iv}}{2 \pi R}\left(\frac{2 x+\ell}{2 x-\ell}\right)\right]^{2} R=\frac{1}{R}\left[\frac{\mu_{0} \mathrm{iv}}{2 \pi} \ln \left(\frac{2 x+\ell}{2 x-\ell}\right)^{2}\right]
$$

d) Power developed in rate of heat developed $=i^{2} R$

$$
=\frac{1}{R}\left[\frac{\mu_{0} \mathrm{iv}}{2 \pi} \ln \left(\frac{2 x+\ell}{2 x-\ell}\right)\right]^{2}
$$

57. Considering an element $d x$ at a dist x from the wire. We have
a) $\phi=B . A$.

$$
\begin{aligned}
& d \phi=\frac{\mu_{0} i \times a d x}{2 \pi x} \\
& \phi=\int_{0}^{a} d \phi=\frac{\mu_{0} i a}{2 \pi} \int_{b}^{a+b} \frac{d x}{x}=\frac{\mu_{0} i a}{2 \pi} \ln \{1+a / b\}
\end{aligned}
$$

b) $e=\frac{d \phi}{d t}=\frac{d}{d t} \frac{\mu_{0} \mathrm{ia}}{2 \pi} \ln [1+a / b]$

$$
\begin{aligned}
& =\frac{\mu_{0} a}{2 \pi} \ln [1+a / n] \frac{d}{d t}\left(i_{0} \sin \omega t\right) \\
& =\frac{\mu_{0} a i_{0} \omega \cos \omega t}{2 \pi} \ln [1+a / b]
\end{aligned}
$$

c) $i=\frac{e}{r}=\frac{\mu_{0} a i_{0} \omega \cos \omega t}{2 \pi r} \ln [1+a / b]$

$$
H=i^{2} r t
$$

$$
=\left[\frac{\mu_{0} \mathrm{ai}_{0} \omega \cos \omega t}{2 \pi r} \ln (1+a / b)\right]^{2} \times r \times t
$$

$$
=\frac{\mu_{0}^{2} \times a^{2} \times i_{0}^{2} \times \omega^{2}}{4 \pi \times r^{2}} \ln ^{2}[1+a / b] \times r \times \frac{20 \pi}{\omega}
$$

$$
=\frac{5 \mu_{0}^{2} \mathrm{a}^{2} i_{0}^{2} \omega}{2 \pi \mathrm{r}} \ln ^{2}[1+\mathrm{a} / \mathrm{b}] \quad\left[\therefore \mathrm{t}=\frac{20 \pi}{\omega}\right]
$$

58. a) Using Faraday" law

Consider a unit length $d x$ at a distance x
$B=\frac{\mu_{0} i}{2 \pi x}$
Area of strip $=b d x$
$d \phi=\frac{\mu_{0} i}{2 \pi \mathrm{x}} \mathrm{dx}$

$$
\Rightarrow \phi=\int_{a}^{a+1} \frac{\mu_{0} i}{2 \pi x} b d x
$$

$$
=\frac{\mu_{0} i}{2 \pi} b \int_{a}^{a+1}\left(\frac{d x}{x}\right)=\frac{\mu_{0} i b}{2 \pi} \log \left(\frac{a+1}{a}\right)
$$

$$
\mathrm{Emf}=\frac{\mathrm{d} \phi}{\mathrm{dt}}=\frac{\mathrm{d}}{\mathrm{dt}}\left[\frac{\mu_{0} \mathrm{ib}}{2 \pi} \log \left(\frac{\mathrm{a}+\mathrm{l}}{\mathrm{a}}\right)\right]
$$

$=\frac{\mu_{0} i b}{2 \pi} \frac{a}{a+1}\left(\frac{v a-(a+l) v}{a^{2}}\right)($ where $d a / d t=V)$

$$
=\frac{\mu_{0} \mathrm{i} b}{2 \pi} \frac{a}{a+l} \frac{v l}{a^{2}}=\frac{\mu_{0} i b v l}{2 \pi(a+l) a}
$$

The velocity of $A B$ and $C D$ creates the emf. since the emf due to $A D$ and $B C$ are equal and opposite to each other.
$B_{A B}=\frac{\mu_{0} i}{2 \pi a} \quad \Rightarrow \quad$ E.m.f. $A B=\frac{\mu_{0} i}{2 \pi a} b v$
Length b , velocity v .
$B_{C D}=\frac{\mu_{0} i}{2 \pi(a+l)}$

$$
\Rightarrow \text { E.m.f. } C D=\frac{\mu_{0} \mathrm{ibv}}{2 \pi(a+\mathrm{l})}
$$

Length b , velocity v .

$$
\text { Net emf }=\frac{\mu_{0} \mathrm{i}}{2 \pi \mathrm{a}} \mathrm{bv}-\frac{\mu_{0} \mathrm{ibv}}{2 \pi(\mathrm{a}+\mathrm{l})}=\frac{\mu_{0} \mathrm{ibvl}}{2 \pi \mathrm{a}(\mathrm{a}+\mathrm{l})}
$$

59. $\mathrm{e}=\mathrm{Bvl}=\frac{\mathrm{B} \times \mathrm{a} \times \omega \times \mathrm{a}}{2}$
$\mathrm{i}=\frac{\mathrm{Ba}^{2} \omega}{2 \mathrm{R}}$
$F=i \ell B=\frac{{B a^{2} \omega}_{2 R}^{2 R} \times a \times B=\frac{B^{2} a^{3} \omega}{2 R} \text { towards right of } O A . ~}{2}$.

60. The 2 resistances $r / 4$ and $3 r / 4$ are in parallel.
$R^{\prime}=\frac{r / 4 \times 3 r / 4}{r}=\frac{3 r}{16}$
$e=B V \ell$

$$
=\mathrm{B} \times \frac{\mathrm{a}}{2} \omega \times \mathrm{a}=\frac{\mathrm{Ba}^{2} \omega}{2}
$$

$i=\frac{e}{R^{\prime}}=\frac{B a^{2} \omega}{2 R^{\prime}}=\frac{B a^{2} \omega}{2 \times 3 r / 16}$

$$
=\frac{\mathrm{Ba}^{2} \omega 16}{2 \times 3 \mathrm{r}}=\frac{8}{3} \frac{\mathrm{Ba}^{2} \omega}{\mathrm{r}}
$$

61. We know
$F=\frac{B^{2} a^{2} \omega}{2 R}=i \ell B$
Component of $m g$ along $F=m g \sin \theta$.
Net force $=\frac{\mathrm{B}^{2} \mathrm{a}^{3} \omega}{2 R}-m g \sin \theta$.

62. emf $=\frac{1}{2} \mathrm{~B} \omega \mathrm{a}^{2}$ [from previous problem]

Current $=\frac{e+E}{R}=\frac{1 / 2 \times B \omega a^{2}+E}{R}=\frac{B \omega a^{2}+2 E}{2 R}$
$\Rightarrow \mathrm{mg} \cos \theta=\mathrm{i} \ell \mathrm{B} \quad$ [Net force acting on the rod is O]
$\Rightarrow m g \cos \theta=\frac{B \omega a^{2}+2 E}{2 R} a \times B$

$\Rightarrow R=\frac{\left(\mathrm{B} \omega \mathrm{a}^{2}+2 \mathrm{E}\right) \mathrm{aB}}{2 \mathrm{mg} \cos \theta}$.
63. Let the rod has a velocity v at any instant,

Then, at the point,
$\mathrm{e}=\mathrm{B} \ell v$
Now, $q=c \times$ potential $=c e=C B l v$
Current $\mathrm{I}=\frac{\mathrm{dq}}{\mathrm{dt}}=\frac{\mathrm{d}}{\mathrm{dt}}$ CBIv
$=\mathrm{CBI} \frac{\mathrm{dv}}{\mathrm{dt}}=$ CBla \quad (where $\mathrm{a} \rightarrow$ acceleration)

From figure, force due to magnetic field and gravity are opposite to each other.
So, $m g-I \ell B=m a$
$\Rightarrow \mathrm{mg}-\mathrm{CBla} \times \ell B=\mathrm{ma} \quad \Rightarrow \mathrm{ma}+\mathrm{CB}^{2} \ell^{2} \mathrm{a}=\mathrm{mg}$
$\Rightarrow \mathrm{a}\left(\mathrm{m}+\mathrm{CB}^{2} \ell^{2}\right)=\mathrm{mg} \quad \Rightarrow \mathrm{a}=\frac{\mathrm{mg}}{\mathrm{m}+\mathrm{CB}^{2} \ell 2}$
64. a) Work done per unit test charge
$=\phi \mathrm{E} . \mathrm{dl} \quad(\mathrm{E}=$ electric field $)$
$\phi E . d l=e$
$\Rightarrow \mathrm{E} \phi \mathrm{dl}=\frac{\mathrm{d} \phi}{\mathrm{dt}} \Rightarrow \mathrm{E} 2 \pi \mathrm{r}=\frac{\mathrm{dB}}{\mathrm{dt}} \times \mathrm{A}$
$\Rightarrow E 2 \pi r=\pi r^{2} \frac{d B}{d t}$
$\Rightarrow E=\frac{\pi r^{2}}{2 \pi} \frac{d B}{d t}=\frac{r}{2} \frac{d B}{d t}$
b) When the square is considered,
$\phi E \mathrm{dl}=\mathrm{e}$
$\Rightarrow \mathrm{E} \times 2 \mathrm{r} \times 4=\frac{\mathrm{dB}}{\mathrm{dt}}(2 \mathrm{r})^{2}$
$\Rightarrow E=\frac{d B}{d t} \frac{4 r^{2}}{8 r} \Rightarrow E=\frac{r}{2} \frac{d B}{d t}$
\therefore The electric field at the point p has the same value as (a).
65. $\frac{\mathrm{di}}{\mathrm{dt}}=0.01 \mathrm{~A} / \mathrm{s}$

For $2 \mathrm{~s} \frac{\mathrm{di}}{\mathrm{dt}}=0.02 \mathrm{~A} / \mathrm{s}$
$\mathrm{n}=2000$ turn $/ \mathrm{m}, \mathrm{R}=6.0 \mathrm{~cm}=0.06 \mathrm{~m}$
$\mathrm{r}=1 \mathrm{~cm}=0.01 \mathrm{~m}$
a) $\phi=B A$
$\Rightarrow \frac{\mathrm{d} \phi}{\mathrm{dt}}=\mu_{0} \mathrm{nA} \frac{\mathrm{di}}{\mathrm{dt}}$
$=4 \pi \times 10^{-7} \times 2 \times 10^{3} \times \pi \times 1 \times 10^{-4} \times 2 \times 10^{-2} \quad\left[\mathrm{~A}=\pi \times 1 \times 10^{-4}\right]$
$=16 \pi^{2} \times 10^{-10} \omega$
$=157.91 \times 10^{-10} \omega$
$=1.6 \times 10^{-8} \omega$
or, $\frac{d \phi}{d t}$ for $1 \mathrm{~s}=0.785 \omega$.
b) $\int E \cdot d l=\frac{d \phi}{d t}$

$$
\Rightarrow \mathrm{E} \phi \mathrm{dl}=\frac{\mathrm{d} \phi}{\mathrm{dt}} \Rightarrow \mathrm{E}=\frac{0.785 \times 10^{-8}}{2 \pi \times 10^{-2}}=1.2 \times 10^{-7} \mathrm{~V} / \mathrm{m}
$$

c) $\frac{\mathrm{d} \phi}{\mathrm{dt}}=\mu_{0} \mathrm{n} \frac{\mathrm{di}}{\mathrm{dt}} \mathrm{A}=4 \pi \times 10^{-7} \times 2000 \times 0.01 \times \pi \times(0.06)^{2}$

$$
\mathrm{E} \phi \mathrm{dl}=\frac{\mathrm{d} \phi}{\mathrm{dt}}
$$

$\Rightarrow \mathrm{E}=\frac{\mathrm{d} \phi / \mathrm{dt}}{2 \pi \mathrm{r}}=\frac{4 \pi \times 10^{-7} \times 2000 \times 0.01 \times \pi \times(0.06)^{2}}{\pi \times 8 \times 10^{-2}}=5.64 \times 10^{-7} \mathrm{~V} / \mathrm{m}$
66. $\mathrm{V}=20 \mathrm{~V}$
$\mathrm{dl}=\mathrm{I}_{2}-\mathrm{I}_{1}=2.5-(-2.5)=5 \mathrm{~A}$
$\mathrm{dt}=0.1 \mathrm{~s}$
$V=L \frac{d l}{d t}$
$\Rightarrow 20=\mathrm{L}(5 / 0.1) \Rightarrow 20=\mathrm{L} \times 50$
$\Rightarrow L=20 / 50=4 / 10=0.4$ Henry.
67. $\frac{\mathrm{d} \phi}{\mathrm{dt}}=8 \times 10^{-4}$ weber
$n=200, I=4 A, E=-n L \frac{d l}{d t}$
or, $\frac{-\mathrm{d} \phi}{\mathrm{dt}}=\frac{-\mathrm{Ldl}}{\mathrm{dt}}$
or, $L=n \frac{d \phi}{d t}=200 \times 8 \times 10^{-4}=2 \times 10^{-2} \mathrm{H}$.
68. $E=\frac{\mu_{0} N^{2} A}{\ell} \frac{d l}{d t}$

$$
\begin{aligned}
& =\frac{4 \pi \times 10^{-7} \times(240)^{2} \times \pi\left(2 \times 10^{-2}\right)^{2}}{12 \times 10^{-2}} \times 0.8 \\
& =\frac{4 \pi \times(24)^{2} \times \pi \times 4 \times 8}{12} \times 10^{-8} \\
& =60577.3824 \times 10^{-8}=6 \times 10^{-4} \mathrm{~V} .
\end{aligned}
$$

69. We know $i=i_{0}\left(1-e^{-t / r}\right)$
a) $\frac{90}{100} i_{0}=i_{0}\left(1-e^{-t / r}\right)$
$\Rightarrow 0.9=1-\mathrm{e}^{-\mathrm{tr}}$
$\Rightarrow \mathrm{e}^{-t r}=0.1$
Taking ln from both sides
$\ln e^{-t / r}=\ln 0.1 \Rightarrow-t=-2.3 \Rightarrow t / r=2.3$
b) $\frac{99}{100} i_{0}=i_{0}\left(1-e^{-t / r}\right)$
$\Rightarrow \mathrm{e}^{-t \mathrm{t}}=0.01$
$\ell n e^{-t / r}=\ln 0.01$
or, $-t / r=-4.6$ or $t / r=4.6$
c) $\frac{99.9}{100} i_{0}=i_{0}\left(1-e^{-t / r}\right)$
$e^{-t / r}=0.001$
$\Rightarrow \operatorname{In} \mathrm{e}^{-t / r}=\ln 0.001 \Rightarrow \mathrm{e}^{-t / r}=-6.9 \Rightarrow \mathrm{t} / \mathrm{r}=6.9$.
70. $i=2 A, E=4 V, L=1 H$
$R=\frac{E}{i}=\frac{4}{2}=2$
$i=\frac{L}{R}=\frac{1}{2}=0.5$
71. $L=2.0 \mathrm{H}, \mathrm{R}=20 \Omega$, emf $=4.0 \mathrm{~V}, \mathrm{t}=0.20 \mathrm{~S}$
$\mathrm{i}_{0}=\frac{\mathrm{e}}{\mathrm{R}}=\frac{4}{20}, \tau=\frac{\mathrm{L}}{\mathrm{R}}=\frac{2}{20}=0.1$
a) $\mathrm{i}=\mathrm{i}_{0}\left(1-\mathrm{e}^{-\mathrm{t} / \tau}\right)=\frac{4}{20}\left(1-\mathrm{e}^{-0.2 / 0.1}\right)$

$$
=0.17 \mathrm{~A}
$$

b) $\frac{1}{2} \mathrm{Li}^{2}=\frac{1}{2} \times 2 \times(0.17)^{2}=0.0289=0.03 \mathrm{~J}$.
72. $R=40 \Omega, E=4 V, t=0.1, i=63 \mathrm{~mA}$
$i=i_{0}-\left(1-e^{t R / 2}\right)$
$\Rightarrow 63 \times 10^{-3}=4 / 40\left(1-\mathrm{e}^{-0.1 \times 40 / \mathrm{L}}\right)$
$\Rightarrow 63 \times 10^{-3}=10^{-1}\left(1-\mathrm{e}^{-4 / \mathrm{L}}\right)$
$\Rightarrow 63 \times 10^{-2}=\left(1-\mathrm{e}^{-4 / \mathrm{L}}\right)$
$\Rightarrow 1-0.63=e^{-4 / L} \Rightarrow e^{-4 / L}=0.37$
$\Rightarrow-4 / L=\ln (0.37)=-0.994$
$\Rightarrow L=\frac{-4}{-0.994}=4.024 \mathrm{H}=4 \mathrm{H}$.
73. $L=5.0 \mathrm{H}, \mathrm{R}=100 \Omega$, emf $=2.0 \mathrm{~V}$
$\mathrm{t}=20 \mathrm{~ms}=20 \times 10^{-3} \mathrm{~s}=2 \times 10^{-2} \mathrm{~s}$
$\mathrm{i}_{0}=\frac{2}{100} \quad$ now $\mathrm{i}=\mathrm{i}_{0}\left(1-\mathrm{e}^{-\mathrm{t} / \tau}\right)$
$\tau=\frac{\mathrm{L}}{\mathrm{R}}=\frac{5}{100} \Rightarrow \mathrm{i}=\frac{2}{100}\left(1-\mathrm{e}^{\frac{-2 \times 10^{-2} \times 100}{5}}\right)$
$\Rightarrow \mathrm{i}=\frac{2}{100}\left(1-\mathrm{e}^{-2 / 5}\right)$
$\Rightarrow 0.00659=0.0066$.
$\mathrm{V}=\mathrm{iR}=0.0066 \times 100=0.66 \mathrm{~V}$.
74. $\tau=40 \mathrm{~ms}$
$\mathrm{i}_{0}=2 \mathrm{~A}$
a) $t=10 \mathrm{~ms}$
$i=i_{0}\left(1-e^{-t / \tau}\right)=2\left(1-e^{-10 / 40}\right)=2\left(1-e^{-1 / 4}\right)$
$=2(1-0.7788)=2(0.2211)^{\mathrm{A}}=0.4422 \mathrm{~A}=0.44 \mathrm{~A}$
b) $t=20 \mathrm{~ms}$

$$
\begin{aligned}
& i=i_{0}\left(1-e^{-t / \tau}\right)=2\left(1-e^{-20 / 40}\right)=2\left(1-e^{-1 / 2}\right) \\
& =2(1-0.606)=0.7869 \mathrm{~A}=0.79 \mathrm{~A}
\end{aligned}
$$

c) $t=100 \mathrm{~ms}$

$$
i=i_{0}\left(1-e^{-t / \tau}\right)=2\left(1-e^{-100 / 40}\right)=2\left(1-e^{-10 / 4}\right)
$$

$$
=2(1-0.082)=1.835 \mathrm{~A}=1.8 \mathrm{~A}
$$

d) $t=1 \mathrm{~s}$
$\mathrm{i}=\mathrm{i}_{0}\left(1-\mathrm{e}^{-\mathrm{t} / \tau}\right)=2\left(1-\mathrm{e}^{-1 / 40 \times 10^{-3}}\right)=2\left(1-\mathrm{e}^{-10 / 40}\right)$
$=2\left(1-\mathrm{e}^{-25}\right)=2 \times 1=2 \mathrm{~A}$
75. $L=1.0 \mathrm{H}, \mathrm{R}=20 \Omega$, emf $=2.0 \mathrm{~V}$
$\tau=\frac{L}{R}=\frac{1}{20}=0.05$
$\mathrm{i}_{0}=\frac{\mathrm{e}}{\mathrm{R}}=\frac{2}{20}=0.1 \mathrm{~A}$
$\mathrm{i}=\mathrm{i}_{0}\left(1-\mathrm{e}^{-\mathrm{t}}\right)=\mathrm{i}_{0}-\mathrm{i}_{0} \mathrm{e}^{-\mathrm{t}}$
$\Rightarrow \frac{\mathrm{di}}{\mathrm{dt}}=\frac{\mathrm{di}_{0}}{\mathrm{dt}}\left(\mathrm{i}_{0} \mathrm{x}-1 / \tau \times \mathrm{e}^{-\mathrm{t} / \tau}\right)=\mathrm{i}_{0} / \tau \mathrm{e}^{-\mathrm{t} / \tau}$.
So,
a) $\mathrm{t}=100 \mathrm{~ms} \Rightarrow \frac{\mathrm{di}}{\mathrm{dt}}=\frac{0.1}{0.05} \times \mathrm{e}^{-0.1 / 0.05}=0.27 \mathrm{~A}$
b) $\mathrm{t}=200 \mathrm{~ms} \Rightarrow \frac{\mathrm{di}}{\mathrm{dt}}=\frac{0.1}{0.05} \times \mathrm{e}^{-0.2 / 0.05}=0.0366 \mathrm{~A}$
c) $\mathrm{t}=1 \mathrm{~s} \Rightarrow \frac{\mathrm{di}}{\mathrm{dt}}=\frac{0.1}{0.05} \times \mathrm{e}^{-1 / 0.05}=4 \times 10^{-9} \mathrm{~A}$
76. a) For first case at $t=100 \mathrm{~ms}$
$\frac{\mathrm{di}}{\mathrm{dt}}=0.27$
Induced emf $=\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}}=1 \times 0.27=0.27 \mathrm{~V}$
b) For the second case at t $=200 \mathrm{~ms}$

$$
\frac{\mathrm{di}}{\mathrm{dt}}=0.036
$$

Induced emf $=\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}}=1 \times 0.036=0.036 \mathrm{~V}$
c) For the third case at $t=1 \mathrm{~s}$

$$
\frac{\mathrm{di}}{\mathrm{dt}}=4.1 \times 10^{-9} \mathrm{~V}
$$

Induced emf $=\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}}=4.1 \times 10^{-9} \mathrm{~V}$
77. $\mathrm{L}=20 \mathrm{mH} ; \mathrm{e}=5.0 \mathrm{~V}, \mathrm{R}=10 \Omega$
$\tau=\frac{L}{R}=\frac{20 \times 10^{-3}}{10}, i_{0}=\frac{5}{10}$
$\mathrm{i}=\mathrm{i}_{0}\left(1-\mathrm{e}^{-\mathrm{t} / \tau}\right)^{2}$
$\Rightarrow \mathrm{i}=\mathrm{i}_{0}-\mathrm{i}_{0} \mathrm{e}^{-\mathrm{t} / \tau^{2}}$
$\Rightarrow i R=i_{0} R-i_{0} R e^{-t / \tau^{2}}$
a) $10 \times \frac{\mathrm{di}}{\mathrm{dt}}=\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{i}_{0} \mathrm{R}+10 \times \frac{5}{10} \times \frac{10}{20 \times 10^{-3}} \times \mathrm{e}^{-0 \times 10 / 2 \times 10^{-2}}$

$$
=\frac{5}{2} \times 10^{-3} \times 1=\frac{5000}{2}=2500=2.5 \times 10^{-3} \mathrm{~V} / \mathrm{s}
$$

b) $\frac{\mathrm{Rdi}}{\mathrm{dt}}=\mathrm{R} \times \mathrm{i}_{0} \times \frac{1}{\tau} \times \mathrm{e}^{-\mathrm{t} / \tau}$

$$
\begin{aligned}
& \mathrm{t}=10 \mathrm{~ms}=10 \times 10^{-3} \mathrm{~s} \\
& \frac{\mathrm{dE}}{\mathrm{dt}}=10 \times \frac{5}{10} \times \frac{10}{20 \times 10^{-3}} \times \mathrm{e}^{-0.01 \times 10 / 2 \times 10^{-2}} \\
& =16.844=17 \mathrm{~V} /{ }^{\prime}
\end{aligned}
$$

c) For $t=1 \mathrm{~s}$

$$
\frac{\mathrm{dE}}{\mathrm{dt}}=\frac{\mathrm{Rdi}}{\mathrm{dt}}=\frac{5}{2} 10^{3} \times \mathrm{e}^{10 / 2 \times 10^{-2}}=0.00 \mathrm{~V} / \mathrm{s} .
$$

78. $\mathrm{L}=500 \mathrm{mH}, \mathrm{R}=25 \Omega, \mathrm{E}=5 \mathrm{~V}$
a) $t=20 \mathrm{~ms}$

$$
\begin{aligned}
& \mathrm{i}=\mathrm{i}_{0}\left(1-\mathrm{e}^{-\mathrm{TR} / L}\right)=\frac{\mathrm{E}}{\mathrm{R}}\left(1-\mathrm{E}^{-\mathrm{tR} / L}\right) \\
& =\frac{5}{25}\left(1-\mathrm{e}^{-20 \times 10^{-3} \times 25 / 100 \times 10^{-3}}\right)=\frac{1}{5}\left(1-\mathrm{e}^{-1}\right) \\
& =\frac{1}{5}(1-0.3678)=0.1264
\end{aligned}
$$

Potential difference $\mathrm{iR}=0.1264 \times 25=3.1606 \mathrm{~V}=3.16 \mathrm{~V}$.
b) $t=100 \mathrm{~ms}$

$$
\begin{aligned}
& i=i_{0}\left(1-e^{-t R / L}\right)=\frac{E}{R}\left(1-E^{-t R / L}\right) \\
& =\frac{5}{25}\left(1-e^{-100 \times 10^{-3} \times 25 / 100 \times 10^{-3}}\right)=\frac{1}{5}\left(1-\mathrm{e}^{-5}\right) \\
& =\frac{1}{5}(1-0.0067)=0.19864
\end{aligned}
$$

Potential difference $=\mathrm{iR}=0.19864 \times 25=4.9665=4.97 \mathrm{~V}$.
C) $t=1 \mathrm{sec}$

$$
\begin{aligned}
& i=i_{0}\left(1-e^{-t R / L}\right)=\frac{E}{R}\left(1-E^{-t R / L}\right) \\
& =\frac{5}{25}\left(1-e^{-1 \times 25 / 100 \times 10^{-3}}\right)=\frac{1}{5}\left(1-e^{-50}\right) \\
& =\frac{1}{5} \times 1=1 / 5 \mathrm{~A}
\end{aligned}
$$

Potential difference $=\mathrm{iR}=(1 / 5 \times 25) \mathrm{V}=5 \mathrm{~V}$.
79. $\mathrm{L}=120 \mathrm{mH}=0.120 \mathrm{H}$
$R=10 \Omega, e m f=6, r=2$
$i=i_{0}\left(1-e^{-t / \tau}\right)$
Now, dQ = idt

$$
=\mathrm{i}_{0}\left(1-\mathrm{e}^{-\mathrm{t} / \tau}\right) \mathrm{dt}
$$

$Q=\int d Q=\int_{0}^{1} i_{0}\left(1-e^{-t / \tau}\right) d t$

$$
\begin{aligned}
& =i_{0}\left[\int_{0}^{t} d t-\int_{0}^{1} e^{-t / \tau} d t\right]=i_{0}\left[t-(-\tau) \int_{0}^{t} e^{-t / \tau} d t\right] \\
& =i_{0}\left[t+\tau\left(e^{-t / \tau-1}\right)\right]=i_{0}\left[t+\tau e^{-t / \tau} \tau\right]
\end{aligned}
$$

Now, $i_{0}=\frac{6}{10+2}=\frac{6}{12}=0.5 \mathrm{~A}$

$$
\tau=\frac{L}{R}=\frac{0.120}{12}=0.01
$$

a) $t=0.01 \mathrm{~s}$

$$
\text { So, } \begin{aligned}
\mathrm{Q} & =0.5\left[0.01+0.01 \mathrm{e}^{-0.01 / 0.01}-0.01\right] \\
& =0.00183=1.8 \times 10^{-3} \mathrm{C}=1.8 \mathrm{mC}
\end{aligned}
$$

b) $\mathrm{t}=20 \mathrm{~ms}=2 \times 10^{-2 \mathrm{I}}=0.02 \mathrm{~s}$

$$
\text { So, } \begin{aligned}
\mathrm{Q} & =0.5\left[0.02+0.01 \mathrm{e}^{-0.02 / 0.01}-0.01\right] \\
& =0.005676=5.6 \times 10^{-3} \mathrm{C}=5.6 \mathrm{mC}
\end{aligned}
$$

c) $t=100 \mathrm{~ms}=0.1 \mathrm{~s}$

$$
\text { So, } \begin{aligned}
Q & =0.5\left[0.1+0.01 \mathrm{e}^{-0.1 / 0.01}-0.01\right] \\
& =0.045 \mathrm{C}=45 \mathrm{mC}
\end{aligned}
$$

80. $\mathrm{L}=17 \mathrm{mH}, \ell=100 \mathrm{~m}, \mathrm{~A}=1 \mathrm{~mm}^{2}=1 \times 10^{-6} \mathrm{~m}^{2}, \mathrm{f}_{\mathrm{cu}}=1.7 \times 10^{-8} \Omega-\mathrm{m}$
$R=\frac{\mathrm{f}_{\mathrm{cu}} \ell}{\mathrm{A}}=\frac{1.7 \times 10^{-8} \times 100}{1 \times 10^{-6}}=1.7 \Omega$
$i=\frac{L}{R}=\frac{0.17 \times 10^{-8}}{1.7}=10^{-2} \mathrm{sec}=10 \mathrm{~m} \mathrm{sec}$.
81. $\tau=L / R=50 \mathrm{~ms}=0.05^{\prime}$
a) $\frac{\mathrm{i}_{0}}{2}=\mathrm{i}_{0}\left(1-\mathrm{e}^{-\mathrm{t} / 0.06}\right)$
$\Rightarrow \frac{1}{2}=1-\mathrm{e}^{-\mathrm{t} / 0.05}=\mathrm{e}^{-\mathrm{t} / 0.05}=\frac{1}{2}$
$\Rightarrow \ln \mathrm{e}^{-\mathrm{t} / 0.05}=\ln ^{1 / 2}$
$\Rightarrow \mathrm{t}=0.05 \times 0.693=0.3465^{\prime}=34.6 \mathrm{~ms}=35 \mathrm{~ms}$.
b) $P=i^{2} R=\frac{E^{2}}{R}\left(1-E^{-t . R / L}\right)^{2}$

Maximum power $=\frac{E^{2}}{R}$
So, $\frac{E^{2}}{2 R}=\frac{E^{2}}{R}\left(1-e^{-t R / L}\right)^{2}$
$\Rightarrow 1-\mathrm{e}^{-\mathrm{tR} / L}=\frac{1}{\sqrt{2}}=0.707$
$\Rightarrow \mathrm{e}^{-\mathrm{tR} / L}=0.293$
$\Rightarrow \frac{\mathrm{tR}}{\mathrm{L}}=-\ln 0.293=1.2275$
$\Rightarrow \mathrm{t}=50 \times 1.2275 \mathrm{~ms}=61.2 \mathrm{~ms}$.
82. Maximum current $=\frac{E}{R}$

In steady state magnetic field energy stored $=\frac{1}{2} L \frac{E^{2}}{R^{2}}$
The fourth of steady state energy $=\frac{1}{8} L \frac{E^{2}}{R^{2}}$
One half of steady energy $=\frac{1}{4} L \frac{E^{2}}{R^{2}}$
$\frac{1}{8} L \frac{E^{2}}{R^{2}}=\frac{1}{2} L \frac{E^{2}}{R^{2}}\left(1-e^{-t_{1} R / L}\right)^{2}$
$\Rightarrow 1-e^{t_{1} R / L}=\frac{1}{2}$
$\Rightarrow e^{t_{1} R / L}=\frac{1}{2} \Rightarrow t_{1} \frac{R}{L}=\ln 2 \Rightarrow t_{1}=\tau \ln 2$
Again $\frac{1}{4} L \frac{E^{2}}{R^{2}}=\frac{1}{2} L \frac{E^{2}}{R^{2}}\left(1-e^{-t_{2} R / L}\right)^{2}$
$\Rightarrow \mathrm{e}^{\mathrm{t}_{2} \mathrm{R} / \mathrm{L}}=\frac{\sqrt{2}-1}{\sqrt{2}}=\frac{2-\sqrt{2}}{2}$
$\Rightarrow t_{2}=\tau\left[\ell n\left(\frac{1}{2-\sqrt{2}}\right)+\ell n 2\right]$
So, $t_{2}-t_{1}=\tau \ell n \frac{1}{2-\sqrt{2}}$
83. $L=4.0 \mathrm{H}, \mathrm{R}=10 \Omega, \mathrm{E}=4 \mathrm{~V}$
a) Time constant $=\tau=\frac{\mathrm{L}}{\mathrm{R}}=\frac{4}{10}=0.4 \mathrm{~s}$.
b) $i=0.63 \mathrm{i}_{0}$

$$
\begin{aligned}
& \text { Now, } 0.63 \mathrm{i}_{0}=\mathrm{i}_{0}\left(1-\mathrm{e}^{-\mathrm{t} / \tau}\right) \\
& \Rightarrow \mathrm{e}^{-\mathrm{t} / \tau}=1-0.63=0.37 \\
& \Rightarrow \ell \mathrm{ne}^{-\mathrm{t} / \tau}=\ln 0.37 \\
& \Rightarrow-\mathrm{t} / \tau=-0.9942 \\
& \Rightarrow \mathrm{t}=0.9942 \times 0.4=0.3977=0.40 \mathrm{~s} .
\end{aligned}
$$

c) $i=i_{0}\left(1-e^{-t / \tau}\right)$

$$
\Rightarrow \frac{4}{10}\left(1-\mathrm{e}^{-0.4 / 0.4}\right)=0.4 \times 0.6321=0.2528 \mathrm{~A} .
$$

Power delivered $=\mathrm{VI}$

$$
=4 \times 0.2528=1.01=1 \omega
$$

d) Power dissipated in Joule heating $=I^{2} R$

$$
=(0.2528)^{2} \times 10=0.639=0.64 \omega .
$$

84. $i=i_{0}\left(1-e^{-t / \tau}\right)$
$\Rightarrow \mu_{0} \mathrm{ni}=\mu_{0} \mathrm{ni}_{0}\left(1-\mathrm{e}^{-\mathrm{t} / \tau}\right)$
$\Rightarrow 0.8 \mathrm{~B}_{0}=\mathrm{B}_{0}\left(1-\mathrm{e}^{-20 \times 10^{-5} \times \mathrm{R} / 2 \times 10^{-3}}\right)$

$$
\Rightarrow \mathrm{e}^{-\mathrm{R} / 100}=0.2
$$

$$
\begin{array}{ll}
\Rightarrow & \mathrm{B}=\mathrm{B}_{0}\left(1-\mathrm{e}^{-\mathrm{IR} / L}\right) \\
\Rightarrow & 0.8=\left(1-\mathrm{e}^{-\mathrm{R} / 100}\right) \\
\Rightarrow & \ell \mathrm{n}\left(\mathrm{e}^{-\mathrm{R} / 100}\right)=\ell \mathrm{n}(0.2)
\end{array}
$$

$$
\Rightarrow-R / 100=-1.609 \quad \Rightarrow \quad R=16.9=160 \Omega
$$

85. $E m f=E \quad L R$ circuit
a) $d q=i d t$

$$
\begin{aligned}
& =\mathrm{i}_{0}\left(1-\mathrm{e}^{-t / \tau}\right) \mathrm{dt} \\
& =\mathrm{i}_{0}\left(1-\mathrm{e}^{-\mathrm{R} \cdot \mathrm{~L}}\right) \mathrm{dt} \quad \quad[\therefore \tau=\mathrm{L} / \mathrm{R}] \\
Q & =\int_{0}^{\mathrm{t}} \mathrm{dq}=\mathrm{i}_{0}\left[\int_{0}^{\mathrm{t}} \mathrm{dt}-\int_{0}^{\mathrm{t}} \mathrm{e}^{-\mathrm{tR} / L} \mathrm{dt}\right] \\
& =\mathrm{i}_{0}\left[\mathrm{t}-(-\mathrm{L} / \mathrm{R})\left(\mathrm{e}^{-\operatorname{IR} / L}\right) \mathrm{t}_{0}\right] \\
& =\mathrm{i}_{0}\left[\mathrm{t}-\mathrm{L} / \mathrm{R}\left(1-\mathrm{e}^{-1 R / L}\right)\right] \\
Q & =\mathrm{E} / \mathrm{R}\left[\mathrm{t}-\mathrm{L} / \mathrm{R}\left(1-\mathrm{e}^{-1 R / L}\right)\right]
\end{aligned}
$$

b) Similarly as we know work done $=\mathrm{VI}=\mathrm{EI}$

$$
\begin{aligned}
& =E i_{0}\left[t-L / R\left(1-e^{-I R / L}\right)\right] \\
& =\frac{E^{2}}{R}\left[t-L / R\left(1-e^{-I R / L}\right)\right]
\end{aligned}
$$

c) $H=\int_{0}^{t} i^{2} R \cdot d t=\frac{E^{2}}{R^{2}} \cdot R \cdot \int_{0}^{t}\left(1-e^{-t R / L}\right)^{2} \cdot d t$

$$
=\frac{E^{2}}{R} \int_{0}^{t}\left(1+e^{(-2+B) / L}-2 e^{-t R / L}\right) \cdot d t
$$

$=\frac{E^{2}}{R}\left(t-\frac{L}{2 R} e^{-2 t R / L}+\frac{L}{R} 2 \cdot e^{-t R / L}\right)_{0}^{t}$
$=\frac{E^{2}}{R}\left(t-\frac{L}{2 R} e^{-2 t R / L}+\frac{2 L}{R} \cdot e^{-t R / L}\right)-\left(-\frac{L}{2 R}+\frac{2 L}{R}\right)$
$=\frac{E^{2}}{R}\left[\left(t-\frac{L}{2 R} x^{2}+\frac{2 L}{R} \cdot x\right)-\frac{3}{2} \frac{L}{R}\right]$
$=\frac{E^{2}}{2}\left(t-\frac{L}{2 R}\left(x^{2}-4 x+3\right)\right)$
d) $\mathrm{E}=\frac{1}{2} \mathrm{Li}^{2}$
$=\frac{1}{2} L \cdot \frac{E^{2}}{R^{2}} \cdot\left(1-e^{-t R / L}\right)^{2} \quad\left[x=e^{-t R / L}\right]$
$=\frac{L E^{2}}{2 R^{2}}(1-x)^{2}$
e) Total energy used as heat as stored in magnetic field
$=\frac{E^{2}}{R} T-\frac{E^{2}}{R} \cdot \frac{L}{2 R} x^{2}+\frac{E^{2}}{R} \frac{L}{r} \cdot 4 x^{2}-\frac{3 L}{2 R} \cdot \frac{E^{2}}{R}+\frac{L E^{2}}{2 R^{2}}+\frac{L E^{2}}{2 R^{2}} x^{2}-\frac{L E^{2}}{R^{2}} x$
$=\frac{E^{2}}{R} t+\frac{E^{2} L}{R^{2}} x-\frac{L E^{2}}{R^{2}}$
$=\frac{E^{2}}{R}\left(t-\frac{L}{R}(1-x)\right)$
= Energy drawn from battery.
(Hence conservation of energy holds good).
86. $L=2 H, R=200 \Omega, E=2 V, t=10 \mathrm{~ms}$
a) $\ell=\ell_{0}\left(1-e^{-t / \tau}\right)$
$=\frac{2}{200}\left(1-\mathrm{e}^{-10 \times 10^{-3} \times 200 / 2}\right)$
$=0.01\left(1-\mathrm{e}^{-1}\right)=0.01(1-0.3678)$
$=0.01 \times 0.632=6.3 \mathrm{~A}$.
b) Power delivered by the battery
$=\mathrm{VI}$
$=E I_{0}\left(1-e^{-t / \tau}\right)=\frac{E^{2}}{R}\left(1-e^{-t / \tau}\right)$
$=\frac{2 \times 2}{200}\left(1-\mathrm{e}^{-10 \times 10^{-3} \times 200 / 2}\right)=0.02\left(1-\mathrm{e}^{-1}\right)=0.1264=12 \mathrm{mw}$.
c) Power dissepited in heating the resistor $=I^{2} R$
$=\left[i_{0}\left(1-e^{-t / \tau}\right)\right]^{2} R$
$=(6.3 \mathrm{~mA})^{2} \times 200=6.3 \times 6.3 \times 200 \times 10^{-6}$
$=79.38 \times 10^{-4}=7.938 \times 10^{-3}=8 \mathrm{~mA}$.
d) Rate at which energy is stored in the magnetic field
d/dt (1/2 $\left.\mathrm{LI}^{2}\right]$

$$
\begin{aligned}
& =\frac{\mathrm{LI}_{0}^{2}}{\tau}\left(\mathrm{e}^{-\mathrm{t} / \tau}-\mathrm{e}^{-2 t / \tau}\right)=\frac{2 \times 10^{-4}}{10^{-2}}\left(\mathrm{e}^{-1}-\mathrm{e}^{-2}\right) \\
& =2 \times 10^{-2}(0.2325)=0.465 \times 10^{-2} \\
& =4.6 \times 10^{-3}=4.6 \mathrm{~mW} .
\end{aligned}
$$

87. $\mathrm{L}_{\mathrm{A}}=1.0 \mathrm{H} ; \mathrm{L}_{\mathrm{B}}=2.0 \mathrm{H} ; \mathrm{R}=10 \Omega$
a) $\mathrm{t}=0.1 \mathrm{~s}, \tau_{\mathrm{A}}=0.1, \tau_{\mathrm{B}}=\mathrm{L} / \mathrm{R}=0.2$
$\mathrm{i}_{\mathrm{A}}=\mathrm{i}_{0}\left(1-\mathrm{e}^{-\mathrm{t} / \tau}\right)$
$=\frac{2}{10}\left(1-e^{\frac{-0.1 \times 10}{1}}\right)=0.2\left(1-\mathrm{e}^{-1}\right)=0.126424111$
$\mathrm{i}_{\mathrm{B}}=\mathrm{i}_{0}\left(1-\mathrm{e}^{-\mathrm{t} / \tau}\right)$
$=\frac{2}{10}\left(1-e^{\frac{-0.1 \times 10}{2}}\right)=0.2\left(1-\mathrm{e}^{-1 / 2}\right)=0.078693$
$\frac{i_{A}}{i_{B}}=\frac{0.12642411}{0.78693}=1.6$
b) $t=200 \mathrm{~ms}=0.2 \mathrm{~s}$
$\mathrm{i}_{\mathrm{A}}=\mathrm{i}_{0}\left(1-\mathrm{e}^{-\mathrm{t} / \tau}\right)$
$=0.2\left(1-\mathrm{e}^{-0.2 \times 10 / 1}\right)=0.2 \times 0.864664716=0.172932943$
$\mathrm{i}_{\mathrm{B}}=0.2\left(1-\mathrm{e}^{-0.2 \times 10 / 2}\right)=0.2 \times 0.632120=0.126424111$
$\frac{i_{A}}{i_{B}}=\frac{0.172932943}{0.126424111}=1.36=1.4$
c) $t=1 \mathrm{~s}$

$$
\begin{gathered}
i_{A}=0.2\left(1-e^{-1 \times 10 / 1}\right)=0.2 \times 0.9999546=0.19999092 \\
i_{B}=0.2\left(1-e^{-1 \times 10 / 2}\right)=0.2 \times 0.99326=0.19865241 \\
\quad \frac{i_{A}}{i_{B}}=\frac{0.19999092}{0.19865241}=1.0
\end{gathered}
$$

88. a) For discharging circuit

$$
\begin{aligned}
& \mathrm{i}=\mathrm{i}_{0} \mathrm{e}^{-\mathrm{t} / \tau} \\
& \Rightarrow 1=2 \mathrm{e}^{-0.1 / \tau} \\
& \Rightarrow(1 / 2)=\mathrm{e}^{-0.1 / \tau} \\
& \Rightarrow \ln (1 / 2)=\ln \left(\mathrm{e}^{-0.1 / \tau}\right) \\
& \Rightarrow-0.693=-0.1 / \tau \\
& \Rightarrow \tau=0.1 / 0.693=0.144=0.14 .
\end{aligned}
$$

b) $L=4 H, i=L / R$
$\Rightarrow 0.14=4 / R$
$\Rightarrow R=4 / 0.14=28.57=28 \Omega$.
89.

In this case there is no resistor in the circuit.
So, the energy stored due to the inductor before and after removal of battery remains same. i.e.

$$
V_{1}=V_{2}=\frac{1}{2} L i^{2}
$$

So, the current will also remain same.
Thus charge flowing through the conductor is the same.
90. a) The inductor does not work in DC. When the switch is closed the current charges so at first inductor works. But after a long time the current flowing is constant.

Thus effect of inductance vanishes.

$$
i=\frac{E}{R_{\text {net }}}=\frac{E}{\frac{R_{1} R_{2}}{R_{1}+R_{2}}}=\frac{E\left(R_{1}+R_{2}\right)}{R_{1} R_{2}}
$$

b) When the switch is opened the resistors are in series.

$$
\tau=\frac{L}{R_{\text {net }}}=\frac{L}{R_{1}+R_{2}} .
$$

91. $\mathrm{i}=1.0 \mathrm{~A}, \mathrm{r}=2 \mathrm{~cm}, \mathrm{n}=1000 \mathrm{turn} / \mathrm{m}$

Magnetic energy stored $=\frac{B^{2} V}{2 \mu_{0}}$
Where $\mathrm{B} \rightarrow$ Magnetic field, $\mathrm{V} \rightarrow$ Volume of Solenoid.
$=\frac{\mu_{0} n^{2} i^{2}}{2 \mu_{0}} \times \pi r^{2} h$
$=\frac{4 \pi \times 10^{-7} \times 10^{6} \times 1 \times \pi \times 4 \times 10^{-4} \times 1}{2} \quad[\mathrm{~h}=1 \mathrm{~m}]$
$=8 \pi^{2} \times 10^{-5}$
$=78.956 \times 10^{-5}=7.9 \times 10^{-4} \mathrm{~J}$.
92. Energy density $=\frac{B^{2}}{2 \mu_{0}}$

Total energy stored $=\frac{B^{2} V}{2 \mu_{0}}=\frac{\left(\mu_{0} i / 2 r\right)^{2}}{2 \mu_{0}} V=\frac{\mu_{0} i^{2}}{4 r^{2} \times 2} V$

$$
=\frac{4 \pi \times 10^{-7} \times 4^{2} \times 1 \times 10^{-9}}{4 \times\left(10^{-1}\right)^{2} \times 2}=8 \pi \times 10^{-14} \mathrm{~J} .
$$

93. $\mathrm{I}=4.00 \mathrm{~A}, \mathrm{~V}=1 \mathrm{~mm}^{3}$,
$d=10 \mathrm{~cm}=0.1 \mathrm{~m}$

$$
\vec{B}=\frac{\mu_{0} i}{2 \pi r}
$$

Now magnetic energy stored $=\frac{B^{2}}{2 \mu_{0}} V$

$$
\begin{aligned}
& =\frac{\mu_{0}^{2} \mathrm{i}^{2}}{4 \pi \mathrm{r}^{2}} \times \frac{1}{2 \mu_{0}} \times \mathrm{V}=\frac{4 \pi \times 10^{-7} \times 16 \times 1 \times 1 \times 10^{-9}}{4 \times 1 \times 10^{-2} \times 2} \\
& =\frac{8}{\pi} \times 10^{-14} \mathrm{~J} \\
& =2.55 \times 10^{-14} \mathrm{~J}
\end{aligned}
$$

94. $\mathrm{M}=2.5 \mathrm{H}$

$$
\begin{aligned}
\frac{\mathrm{dl}}{\mathrm{dt}} & =\frac{\ell \mathrm{A}}{\mathrm{~s}} \\
\mathrm{E} & =-\mu \frac{\mathrm{dl}}{\mathrm{dt}} \\
\Rightarrow \mathrm{E} & =2.5 \times 1=2.5 \mathrm{~V}
\end{aligned}
$$

95. We know

$$
\frac{\mathrm{d} \phi}{\mathrm{dt}}=\mathrm{E}=\mathrm{M} \times \frac{\mathrm{di}}{\mathrm{dt}}
$$

From the question,

$$
\begin{aligned}
& \frac{d i}{d t}=\frac{d}{d t}\left(i_{0} \sin \omega t\right)=i_{0} \omega \cos \omega t \\
& \frac{d \phi}{d t}=E=\frac{\mu_{0} a i_{0} \omega \cos \omega t}{2 \pi} \ln [1+a / b]
\end{aligned}
$$

Now, $E=M \times \frac{d i}{d t}$
or, $\frac{\mu_{0} a i_{0} \omega \cos \omega t}{2 \pi} \ell n[1+a / b]=M \times i_{0} \omega \cos \omega t$
$\Rightarrow \mathrm{M}=\frac{\mu_{0} \mathrm{a}}{2 \pi} \ln [1+\mathrm{a} / \mathrm{b}]$
96. emf induced $=\frac{\pi \mu_{0} N a^{2} a^{\prime 2} E R V}{2 L\left(a^{2}+x^{2}\right)^{3 / 2}(R / L x+r)^{2}}$
$\frac{d l}{d t}=\frac{E R V}{L\left(\frac{R x}{L}+r\right)^{2}} \quad$ (from question 20)
$\mu=\frac{E}{d i / d t}=\frac{N \mu_{0} \pi a^{2} a^{\prime 2}}{2\left(a^{2}+x^{2}\right)^{3 / 2}}$.
97. Solenoid I:
$\mathrm{a}_{1}=4 \mathrm{~cm}^{2} ; \mathrm{n}_{1}=4000 / 0.2 \mathrm{~m} ; \ell_{1}=20 \mathrm{~cm}=0.20 \mathrm{~m}$

Solenoid II:

$\mathrm{a}_{2}=8 \mathrm{~cm}^{2} ; \mathrm{n}_{2}=2000 / 0.1 \mathrm{~m} ; \ell_{2}=10 \mathrm{~cm}=0.10 \mathrm{~m}$

$B=\mu_{0} n_{2} i \quad$ let the current through outer solenoid be i.
$\phi=n_{1}$ B.A $=n_{1} n_{2} \mu_{0} \mathrm{i} \times \mathrm{a}_{1}$
$=2000 \times \frac{2000}{0.1} \times 4 \pi \times 10^{-7} \times i \times 4 \times 10^{-4}$
$E=\frac{d \phi}{d t}=64 \pi \times 10^{-4} \times \frac{d i}{d t}$
Now $M=\frac{E}{\mathrm{di} / \mathrm{dt}}=64 \pi \times 10^{-4} \mathrm{H}=2 \times 10^{-2} \mathrm{H} . \quad[\mathrm{As} \mathrm{E}=\mathrm{Mdi} / \mathrm{dt}]$
98. a) $\mathrm{B}=$ Flux produced due to first coil

$$
=\mu_{0} \mathrm{ni}
$$

Flux ϕ linked with the second

$$
=\mu_{0} \mathrm{ni} \times N A=\mu_{0} \mathrm{ni} N \pi \mathrm{R}^{2}
$$

Emf developed

$$
\begin{aligned}
& =\frac{d \mathrm{l}}{\mathrm{dt}}=\frac{\mathrm{dt}}{\mathrm{dt}}\left(\mu_{0} n i N \pi R^{2}\right) \\
& =\mu_{0} n N \pi R^{2} \frac{d i}{d t}=\mu_{0} n N \pi R^{2} i_{0} \omega \cos \omega t .
\end{aligned}
$$

