CHAPTER - 35

MAGNETIC FIELD DUE TO CURRENT

1. $F=q \vec{v} \times \vec{B}$ or, $B=\frac{F}{q v}=\frac{F}{I T v}=\frac{N}{A \cdot \sec . / s e c}=\frac{N}{A-m}$
$B=\frac{\mu_{0} I}{2 \pi r} \quad$ or, $\mu_{0}=\frac{2 \pi r B}{I}=\frac{m \times N}{A-m \times A}=\frac{N}{A^{2}}$
2. $i=10 \mathrm{~A}, \mathrm{~d}=1 \mathrm{~m}$
$B=\frac{\mu_{0} i}{2 \pi r}=\frac{10^{-7} \times 4 \pi \times 10}{2 \pi \times 1}=20 \times 10^{-6} \mathrm{~T}=2 \mu \mathrm{~T}$
Along +ve Y direction.

3. $\mathrm{d}=1.6 \mathrm{~mm}$

So, $r=0.8 \mathrm{~mm}=0.0008 \mathrm{~m}$
$\mathrm{i}=20 \mathrm{~A}$
$\vec{B}=\frac{\mu_{0} i}{2 \pi r}=\frac{4 \pi \times 10^{-7} \times 20}{2 \times \pi \times 8 \times 10^{-4}}=5 \times 10^{-3} \mathrm{~T}=5 \mathrm{mT}$
4. $\mathrm{i}=100 \mathrm{~A}, \mathrm{~d}=8 \mathrm{~m}$

$B=\frac{\mu_{0} i}{2 \pi r}$
$=\frac{4 \pi \times 10^{-7} \times 100}{2 \times \pi \times 8}=2.5 \mu \mathrm{~T}$
5. $\mu_{0}=4 \pi \times 10^{-7} \mathrm{~T}-\mathrm{m} / \mathrm{A}$
$\mathrm{r}=2 \mathrm{~cm}=0.02 \mathrm{~m}, \quad \mathrm{I}=1 \mathrm{~A}, \quad \overrightarrow{\mathrm{~B}}=1 \times 10^{-5} \mathrm{~T}$
We know: Magnetic field due to a long straight wire carrying current $=\frac{\mu_{0} \mathrm{I}}{2 \pi r}$
\vec{B} at $P=\frac{4 \pi \times 10^{-7} \times 1}{2 \pi \times 0.02}=1 \times 10^{-5} \mathrm{~T}$ upward
net $B=2 \times 1 \times 10^{-7} \mathrm{~T}=20 \mu \mathrm{~T}$
B at $Q=1 \times 10^{-5} \mathrm{~T}$ downwards
Hence net $\vec{B}=0$
6. (a) The maximum magnetic field is $B+\frac{\mu_{0} I}{2 \pi r}$ which are along the left keeping the sense along the direction of traveling current.
(b)The minimum $B-\frac{\mu_{0} I}{2 \pi r}$

$$
\begin{aligned}
& \text { If } r=\frac{\mu_{0} I}{2 \pi B} B \text { net }=0 \\
& r<\frac{\mu_{0} I}{2 \pi B} B \text { net }=0 \\
& r>\frac{\mu_{0} I}{2 \pi B} B \text { net }=B-\frac{\mu_{0} I}{2 \pi r}
\end{aligned}
$$

7. $\mu_{0}=4 \pi \times 10^{-7} \mathrm{~T}-\mathrm{m} / \mathrm{A}, \quad \mathrm{I}=30 \mathrm{~A}, \quad \mathrm{~B}=4.0 \times 10^{-4} \mathrm{~T}$ Parallel to current.
\vec{B} due to wore at a pt. 2 cm
$=\frac{\mu_{0} \mathrm{I}}{2 \pi \mathrm{r}}=\frac{4 \pi \times 10^{-7} \times 30}{2 \pi \times 0.02}=3 \times 10^{-4} \mathrm{~T}$
net field $=\sqrt{\left(3 \times 10^{-4}\right)^{2}+\left(4 \times 10^{-4}\right)^{2}}=5 \times 10^{-4} \mathrm{~T}$

8. $i=10 \mathrm{~A} .(\hat{K})$
$B=2 \times 10^{-3} \mathrm{~T}$ South to North (\hat{J})
To cancel the magnetic field the point should be choosen so that the net magnetic field is along $-\hat{J}$ direction.
\therefore The point is along $-\hat{\mathrm{i}}$ direction or along west of the wire.
$B=\frac{\mu_{0} I}{2 \pi r}$
$\Rightarrow 2 \times 10^{-3}=\frac{4 \pi \times 10^{-7} \times 10}{2 \pi \times r}$
$\Rightarrow \mathrm{r}=\frac{2 \times 10^{-7}}{2 \times 10^{-3}}=10^{-3} \mathrm{~m}=1 \mathrm{~mm}$.
9. Let the tow wires be positioned at O \& P
$R=O A,=\sqrt{(0.02)^{2}+(0.02)^{2}}=\sqrt{8 \times 10^{-4}}=2.828 \times 10^{-2} \mathrm{~m}$
(a) \vec{B} due to Q, at $A_{1}=\frac{4 \pi \times 10^{-7} \times 10}{2 \pi \times 0.02}=1 \times 10^{-4} \mathrm{~T}$ ($\perp \mathrm{r}$ towards up the line)
\vec{B} due to P, at $A_{1}=\frac{4 \pi \times 10^{-7} \times 10}{2 \pi \times 0.06}=0.33 \times 10^{-4} \mathrm{~T}(\perp r$ towards down the line $)$ net $\vec{B}=1 \times 10^{-4}-0.33 \times 10^{-4}=0.67 \times 10^{-4} \mathrm{~T}$

(b) \vec{B} due to O at $A_{2}=\frac{2 \times 10^{-7} \times 10}{0.01}=2 \times 10^{-4} \mathrm{~T}$
$\perp r$ down the line
\vec{B} due to P at $A_{2}=\frac{2 \times 10^{-7} \times 10}{0.03}=0.67 \times 10^{-4} \mathrm{~T} \quad \perp r$ down the line net \vec{B} at $A_{2}=2 \times 10^{-4}+0.67 \times 10^{-4}=2.67 \times 10^{-4} \mathrm{~T}$
(c) \vec{B} at A_{3} due to $O=1 \times 10^{-4} \mathrm{~T} \quad \perp r$ towards down the line
\vec{B} at A_{3} due to $P=1 \times 10^{-4} \mathrm{~T} \quad \perp r$ towards down the line
Net \vec{B} at $A_{3}=2 \times 10^{-4} \mathrm{~T}$
(d) \vec{B} at A_{4} due to $O=\frac{2 \times 10^{-7} \times 10}{2.828 \times 10^{-2}}=0.7 \times 10^{-4} \mathrm{~T} \quad$ towards SE
\vec{B} at A_{4} due to $P=0.7 \times 10^{-4} \mathrm{~T} \quad$ towards SW
Net $\vec{B}=\sqrt{\left(0.7 \times 10^{-4}\right)^{2}+\left(0.7 \times 10^{-4}\right)^{2}}=0.989 \times 10^{-4} \approx 1 \times 10^{-4} \mathrm{~T}$
10. $\operatorname{Cos} \theta=1 / 2$,

$$
\theta=60^{\circ} \& \angle \mathrm{AOB}=60^{\circ}
$$

$B=\frac{\mu_{0} \mathrm{I}}{2 \pi \mathrm{r}}=\frac{10^{-7} \times 2 \times 10}{2 \times 10^{-2}}=10^{-4} \mathrm{~T}$
So net is $\left[\left(10^{-4}\right)^{2}+\left(10^{-4}\right)^{2}+2\left(10^{-8}\right) \operatorname{Cos} 60^{\circ}\right]^{1 / 2}$
$=10^{-4}[1+1+2 \times 1 / 2]^{1 / 2}=10^{-4} \times \sqrt{3} \mathrm{~T}=1.732 \times 10^{-4} \mathrm{~T}$
11. (a) \vec{B} for $X=\vec{B}$ for Y

Both are oppositely directed hence net $\vec{B}=0$
(b) \vec{B} due to $X=\vec{B}$ due to X both directed along Z-axis

Net $\vec{B}=\frac{2 \times 10^{-7} \times 2 \times 5}{1}=2 \times 10^{-6} \mathrm{~T}=2 \mu \mathrm{~T}$
(c) \vec{B} due to $X=\vec{B}$ due to Y both directed opposite to each other.

Hence Net $\vec{B}=0$

(d) \vec{B} due to $X=\vec{B}$ due to $Y=1 \times 10^{-6} \mathrm{~T}$ both directed along (-) ve Z-axis
12. (a) For each of the wire Magnitude of magnetic field

$$
=\frac{\mu_{0} \mathrm{i}}{4 \pi \mathrm{r}}\left(\operatorname{Sin} 45^{\circ}+\operatorname{Sin} 45^{\circ}\right)=\frac{\mu_{0} \times 5}{4 \pi \times(5 / 2)} \frac{2}{\sqrt{2}}
$$

For $\mathrm{AB} \odot$ for $\mathrm{BC} \odot$ For $\mathrm{CD} \otimes$ and for $\mathrm{DA} \otimes$.
The two \odot and $2 \otimes$ fields cancel each other. Thus $B_{\text {net }}=0$
(b) At point Q_{1}
due to (1) $B=\frac{\mu_{0} i}{2 \pi \times 2.5 \times 10^{-2}}=\frac{4 \pi \times 5 \times 2 \times 10^{-7}}{2 \pi \times 5 \times 10^{-2}}=4 \times 10^{-5} \odot$

due to (2) $B=\frac{\mu_{0} i}{2 \pi \times(15 / 2) \times 10^{-2}}=\frac{4 \pi \times 5 \times 2 \times 10^{-7}}{2 \pi \times 15 \times 10^{-2}}=(4 / 3) \times 10^{-5} \odot$
due to (3) $B=\frac{\mu_{0} i}{2 \pi \times(5+5 / 2) \times 10^{-2}}=\frac{4 \pi \times 5 \times 2 \times 10^{-7}}{2 \pi \times 15 \times 10^{-2}}=(4 / 3) \times 10^{-5} \odot$
due to (4) $B=\frac{\mu_{0} i}{2 \pi \times 2.5 \times 10^{-2}}=\frac{4 \pi \times 5 \times 2 \times 10^{-7}}{2 \pi \times 5 \times 10^{-2}}=4 \times 10^{-5} \odot$
$B_{\text {net }}=[4+4+(4 / 3)+(4 / 3)] \times 10^{-5}=\frac{32}{3} \times 10^{-5}=10.6 \times 10^{-5} \approx 1.1 \times 10^{-4} \mathrm{~T}$
At point Q_{2}
due to (1) $\frac{\mu_{0} i}{2 \pi \times(2.5) \times 10^{-2}} \odot$
due to (2) $\frac{\mu_{0} i}{2 \pi \times(15 / 2) \times 10^{-2}} \odot$
due to (3) $\frac{\mu_{0} i}{2 \pi \times(2.5) \times 10^{-2}} \otimes$
due to (4) $\frac{\mu_{0} i}{2 \pi \times(15 / 2) \times 10^{-2}} \otimes$
$B_{\text {net }}=0$
At point Q_{3}
due to (1) $\frac{4 \pi \times 10^{-7} \times 5}{2 \pi \times(15 / 2) \times 10^{-2}}=4 / 3 \times 10^{-5}$
due to (2) $\frac{4 \pi \times 10^{-7} \times 5}{2 \pi \times(5 / 2) \times 10^{-2}}=4 \times 10^{-5}$
due to (3) $\frac{4 \pi \times 10^{-7} \times 5}{2 \pi \times(5 / 2) \times 10^{-2}}=4 \times 10^{-5}$
due to (4) $\frac{4 \pi \times 10^{-7} \times 5}{2 \pi \times(15 / 2) \times 10^{-2}}=4 / 3 \times 10^{-5}$
$B_{\text {net }}=[4+4+(4 / 3)+(4 / 3)] \times 10^{-5}=\frac{32}{3} \times 10^{-5}=10.6 \times 10^{-5} \approx 1.1 \times 10^{-4} \mathrm{~T}$
For Q_{4}
due to (1) $4 / 3 \times 10^{-5} \quad \otimes$
due to (2) $4 \times 10^{-5} \otimes$
due to (3) $4 / 3 \times 10^{-5} \otimes$
due to (4) $4 \times 10^{-5} \otimes$
$B_{\text {net }}=0$
13. Since all the points lie along a circle with radius $=$ ' d ' Hence ' R ' \& ' Q ' both at a distance 'd' from the wire.
So, magnetic field \vec{B} due to are same in magnitude.
As the wires can be treated as semi infinite straight current carrying conductors. Hence magnetic field $\vec{B}=\frac{\pi_{0} i}{4 \pi d}$
At P

B_{1} due to 1 is 0
B_{2} due to 2 is $\frac{\pi_{0} i}{4 \pi d}$
At Q
B_{1} due to 1 is $\frac{\pi_{0} i}{4 \pi d}$
B_{2} due to 2 is 0
At R
B_{1} due to 1 is 0
B_{2} due to 2 is $\frac{\pi_{0} i}{4 \pi d}$
At S
B_{1} due to 1 is $\frac{\pi_{0} i}{4 \pi d}$
B_{2} due to 2 is 0
14. $B=\frac{\pi_{0} i}{4 \pi d} 2 \operatorname{Sin} \theta$
$=\frac{\pi_{0} i}{4 \pi d} \frac{2 \times x}{2 \times \sqrt{d^{2}+\frac{x^{2}}{4}}}=\frac{\mu_{0} i x}{4 \pi d \sqrt{d^{2}+\frac{x^{2}}{4}}}$

(a) When $d \gg x$

Neglecting x
w.r.t. d
$B=\frac{\mu_{0} \mathrm{ix}}{\mu \pi d \sqrt{d^{2}}}=\frac{\mu_{0} \mathrm{ix}}{\mu \pi d^{2}}$
$\therefore B \propto \frac{1}{\mathrm{~d}^{2}}$
(b) When $x \gg d$, neglecting d w.r.t. x
$B=\frac{\mu_{0} \mathrm{ix}}{4 \pi \mathrm{dx} / 2}=\frac{2 \mu_{0} \mathrm{i}}{4 \pi \mathrm{~d}}$
$\therefore B \propto \frac{1}{d}$
15. $I=10 \mathrm{~A}, \quad a=10 \mathrm{~cm}=0.1 \mathrm{~m}$
$r=O P=\frac{\sqrt{3}}{2} \times 0.1 \mathrm{~m}$
$B=\frac{\mu_{0} I}{4 \pi r}\left(\operatorname{Sin} \phi_{1}+\operatorname{Sin} \phi_{2}\right)$
$=\frac{10^{-7} \times 10 \times 1}{\frac{\sqrt{3}}{2} \times 0.1}=\frac{2 \times 10^{-5}}{1.732}=1.154 \times 10^{-5} \mathrm{~T}=11.54 \mu \mathrm{~T}$

16. $B_{1}=\frac{\mu_{0} \mathrm{i}}{2 \pi \mathrm{~d}}, \quad \mathrm{~B}_{2}=\frac{\mu_{0} \mathrm{i}}{4 \pi \mathrm{~d}}(2 \times \operatorname{Sin} \theta)=\frac{\mu_{0} \mathrm{i}}{4 \pi \mathrm{~d}} \frac{2 \times \ell}{2 \sqrt{d^{2}+\frac{\ell^{2}}{4}}}=\frac{\mu_{0} \mathrm{i} \ell}{4 \pi d \sqrt{d^{2}+\frac{\ell^{2}}{4}}}$
$B_{1}-B_{2}=\frac{1}{100} B_{2} \Rightarrow \frac{\mu_{0} i}{2 \pi d}-\frac{\mu_{0} i \ell}{4 \pi d \sqrt{d^{2}+\frac{\ell^{2}}{4}}}=\frac{\mu_{0} i}{200 \pi d}$
$\Rightarrow \frac{\mu_{0} i \ell}{4 \pi \mathrm{~d} \sqrt{\mathrm{~d}^{2}+\frac{\ell^{2}}{4}}}=\frac{\mu_{0} \mathrm{i}}{\pi \mathrm{d}}\left(\frac{1}{2}-\frac{1}{200}\right)$
$\Rightarrow \frac{\ell}{4 \sqrt{d^{2}+\frac{\ell^{2}}{4}}}=\frac{99}{200} \quad \Rightarrow \frac{\ell^{2}}{d^{2}+\frac{\ell^{2}}{4}}=\left(\frac{99 \times 4}{200}\right)^{2}=\frac{156816}{40000}=3.92$
$\Rightarrow \ell^{2}=3.92 \mathrm{~d}^{2}+\frac{3.92}{4} \ell^{2}$
$\left(\frac{1-3.92}{4}\right) \ell^{2}=3.92 \mathrm{~d}^{2} \Rightarrow 0.02 \ell^{2}=3.92 \mathrm{~d}^{2} \Rightarrow \frac{\mathrm{~d}^{2}}{\ell^{2}}=\frac{0.02}{3.92}=\frac{\mathrm{d}}{\ell}=\sqrt{\frac{0.02}{3.92}}=0.07$

. As resistances vary as r \& $2 r$
Hence Current along $A B C=\frac{i}{3}$ \& along $A D C=\frac{2}{3 i}$
Now,
\vec{B} due to $A D C=2\left[\frac{\mu_{0} \mathrm{i} \times 2 \times 2 \times \sqrt{2}}{4 \pi 3 \mathrm{a}}\right]=\frac{2 \sqrt{2} \mu_{0} \mathrm{i}}{3 \pi \mathrm{a}}$

\vec{B} due to $A B C=2\left[\frac{\mu_{0} \mathrm{i} \times 2 \times \sqrt{2}}{4 \pi 3 a}\right]=\frac{2 \sqrt{2} \mu_{0} \mathrm{i}}{6 \pi \mathrm{a}}$
Now $\vec{B}=\frac{2 \sqrt{2} \mu_{0} i}{3 \pi a}-\frac{2 \sqrt{2} \mu_{0} i}{6 \pi a}=\frac{\sqrt{2} \mu_{0} i}{3 \pi a}$
18. $\mathrm{A}_{0}=\sqrt{\frac{\mathrm{a}^{2}}{16}+\frac{\mathrm{a}^{2}}{4}}=\sqrt{\frac{5 \mathrm{a}^{2}}{16}}=\frac{\mathrm{a} \sqrt{5}}{4}$

$D_{0}=\sqrt{\left(\frac{3 a}{4}\right)^{2}+\left(\frac{a}{2}\right)^{2}}=\sqrt{\frac{9 a^{2}}{16}+\frac{a^{2}}{4}}=\sqrt{\frac{13 a^{2}}{16}}=\frac{a \sqrt{13}}{4}$
Magnetic field due to $A B$
$B_{A B}=\frac{\mu_{0}}{4 \pi} \times \frac{i}{2(a / 4)}(\operatorname{Sin}(90-i)+\operatorname{Sin}(90-\alpha))$
$=\frac{\mu_{0} \times 2 i}{4 \pi a} 2 \operatorname{Cos} \alpha=\frac{\mu_{0} \times 2 i}{4 \pi a} \times 2 \times \frac{(a / 2)}{a(\sqrt{5} / 4)}=\frac{2 \mu_{0} i}{\pi \sqrt{5}}$
Magnetic field due to DC
$B_{D C}=\frac{\mu_{0}}{4 \pi} \times \frac{i}{2(3 \mathrm{a} / 4)} 2 \operatorname{Sin}\left(90^{\circ}-B\right)$
$=\frac{\mu_{0} i \times 4 \times 2}{4 \pi \times 3 a} \cos \beta=\frac{\mu_{0} i}{\pi \times 3 a} \times \frac{(a / 2)}{(\sqrt{13 a} / 4)}=\frac{2 \mu_{0} i}{\pi a 3 \sqrt{13}}$
The magnetic field due to $A D \& B C$ are equal and appropriate hence cancle each other.
Hence, net magnetic field is $\frac{2 \mu_{0} \mathrm{i}}{\pi \sqrt{5}}-\frac{2 \mu_{0} \mathrm{i}}{\pi \mathrm{a} 3 \sqrt{13}}=\frac{2 \mu_{0} \mathrm{i}}{\pi \mathrm{a}}\left[\frac{1}{\sqrt{5}}-\frac{1}{3 \sqrt{13}}\right]$
19. \vec{B} due $t B C$ \&
\vec{B} due to $A D$ at $P t$ ' P ' are equal ore Opposite
Hence net $\vec{B}=0$
Similarly, due to $A B \& C D$ at $P=0$
\therefore The net $\overrightarrow{\mathrm{B}}$ at the Centre of the square loop = zero.

20. For $A B \quad B$ is along $\odot \quad B=\frac{\mu_{0} i}{4 \pi r}\left(\operatorname{Sin} 60^{\circ}+\operatorname{Sin} 60^{\circ}\right)$

For $A C \quad B \quad B \quad B=\frac{\mu_{0} i}{4 \pi r}\left(\operatorname{Sin} 60^{\circ}+\operatorname{Sin} 60^{\circ}\right)$
For BD
$B \quad \odot \quad B=\frac{\mu_{0} i}{4 \pi r}\left(\operatorname{Sin} 60^{\circ}\right)$
For DC
$\otimes \quad B=\frac{\mu_{0} i}{4 \pi r}\left(\operatorname{Sin} 60^{\circ}\right)$
\therefore Net B $=0$
21. (a) $\triangle \mathrm{ABC}$ is Equilateral
$A B=B C=C A=\ell / 3$
Current $=\mathrm{i}$
$\mathrm{AO}=\frac{\sqrt{3}}{2} \mathrm{a}=\frac{\sqrt{3} \times \ell}{2 \times 3}=\frac{\ell}{2 \sqrt{3}}$
$\phi_{1}=\phi_{2}=60^{\circ}$
So, $\mathrm{MO}=\frac{\ell}{6 \sqrt{3}} \quad$ as $\mathrm{AM}: \mathrm{MO}=2: 1$

\vec{B} due to $B C$ at $<$.
$=\frac{\mu_{0} \mathrm{i}}{4 \pi \mathrm{r}}\left(\operatorname{Sin} \phi_{1}+\operatorname{Sin} \phi_{2}\right)=\frac{\mu_{0} \mathrm{i}}{4 \pi} \times \mathrm{i} \times 6 \sqrt{3} \times \sqrt{3}=\frac{\mu_{0} \mathrm{i} \times 9}{2 \pi \ell}$
net $\vec{B}=\frac{9 \mu_{0} i}{2 \pi \ell} \times 3=\frac{27 \mu_{0} i}{2 \pi \ell}$
(b) \vec{B} due to $A D=\frac{\mu_{0} i \times 8}{4 \pi \times \ell} \sqrt{2}=\frac{8 \sqrt{2} \mu_{0} i}{4 \pi \ell}$

Net $\vec{B}=\frac{8 \sqrt{2} \mu_{0} i}{4 \pi \ell} \times 4=\frac{8 \sqrt{2} \mu_{0} i}{\pi \ell}$

22. $\operatorname{Sin}(\alpha / 2)=\frac{r}{x}$
$\Rightarrow r=x \operatorname{Sin}(\alpha / 2)$
Magnetic field B due to AR
$\frac{\mu_{0} \mathrm{i}}{4 \pi \mathrm{r}}[\operatorname{Sin}(180-(90-(\alpha / 2)))+1]$
$\Rightarrow \frac{\mu_{0}[\operatorname{Sin}(90-(\alpha / 2))+1]}{4 \pi \times \operatorname{Sin}(\alpha / 2)}$
$=\frac{\mu_{0} \mathrm{i}(\operatorname{Cos}(\alpha / 2)+1)}{4 \pi \times \operatorname{Sin}(\alpha / 2)}$
$=\frac{\mu_{0} \mathrm{i} 2 \operatorname{Cos}^{4}(\alpha / 4)}{4 \pi \times 2 \operatorname{Sin}(\alpha / 4) \operatorname{Cos}(\alpha / 4)}=\frac{\mu_{0} \mathrm{i}}{4 \pi \mathrm{x}} \operatorname{Cot}(\alpha / 4)$

The magnetic field due to both the wire.
$\frac{2 \mu_{0} i}{4 \pi x} \operatorname{Cot}(\alpha / 4)=\frac{\mu_{0} i}{2 \pi x} \operatorname{Cot}(\alpha / 4)$
23. $\overrightarrow{\mathrm{B}} \mathrm{AB}$

$$
\begin{aligned}
& \frac{\mu_{0} \mathrm{i} \times 2}{4 \pi \mathrm{~b}} \times 2 \operatorname{Sin} \theta=\frac{\mu_{0} \mathrm{i} \operatorname{Sin} \theta}{\pi \mathrm{~b}} \\
& =\frac{\mu_{0} \mathrm{i} \ell}{\pi \mathrm{~b} \sqrt{\ell^{2}+\mathrm{b}^{2}}}=\overrightarrow{\mathrm{B} D C}
\end{aligned}
$$

$$
\therefore \operatorname{Sin}\left(\ell^{2}+\mathrm{b}\right)=\frac{(\ell / 2)}{\sqrt{\ell^{2} / 4+\mathrm{b}^{2} / 4}}=\frac{\ell}{\sqrt{\ell^{2}+\mathrm{b}^{2}}}
$$

$\overrightarrow{B B C}$

$$
\begin{aligned}
& \frac{\mu_{0} \mathrm{i} \times 2}{4 \pi \ell} \times 2 \times 2 \operatorname{Sin} \theta^{\prime}=\frac{\mu_{0} \mathrm{~S} \operatorname{Sin} \theta^{\prime}}{\pi \ell} \quad \therefore \operatorname{Sin} \theta^{\prime}=\frac{(\mathrm{b} / 2)}{\sqrt{\ell^{2} / 4+\mathrm{b}^{2} / 4}}=\frac{\mathrm{b}}{\sqrt{\ell^{2}+\mathrm{b}^{2}}} \\
& =\frac{\mu_{0} \mathrm{ib}}{\pi \ell \sqrt{\ell^{2}+\mathrm{b}^{2}}}=\overrightarrow{\mathrm{B}}
\end{aligned}
$$

Net $\vec{B}=\frac{2 \mu_{0} \mathrm{i} \ell}{\pi \mathrm{b} \sqrt{\ell^{2}+\mathrm{b}^{2}}}+\frac{2 \mu_{0} \mathrm{ib}}{\pi \ell \sqrt{\ell^{2}+\mathrm{b}^{2}}}=\frac{2 \mu_{0} \mathrm{i}\left(\ell^{2}+\mathrm{b}^{2}\right)}{\pi \ell \mathrm{b} \sqrt{\ell^{2}+\mathrm{b}^{2}}}=\frac{2 \mu_{0} \mathrm{i} \sqrt{\ell^{2}+\mathrm{b}^{2}}}{\pi \ell \mathrm{~b}}$
24. $2 \theta=\frac{2 \pi}{\mathrm{n}} \Rightarrow \theta=\frac{\pi}{\mathrm{n}}$,

$$
\ell=\frac{2 \pi r}{n}
$$

$\operatorname{Tan} \theta=\frac{\ell}{2 \mathrm{x}} \Rightarrow \mathrm{x}=\frac{\ell}{2 \operatorname{Tan} \theta}$
$\frac{\ell}{2}=\frac{\pi r}{n}$
$B_{A B}=\frac{\mu_{0} i}{4 \pi(x)}(\operatorname{Sin} \theta+\operatorname{Sin} \theta)=\frac{\mu_{0} i 2 \operatorname{Tan} \theta \times 2 \operatorname{Sin} \theta}{4 \pi \ell}$

$=\frac{\mu_{0} \mathrm{i} 2 \operatorname{Tan}(\pi / n) 2 \operatorname{Sin}(\pi / n) \mathrm{n}}{4 \pi 2 \pi \mathrm{r}}=\frac{\mu_{0} \operatorname{in} \operatorname{Tan}(\pi / n) \operatorname{Sin}(\pi / n)}{2 \pi^{2} \mathrm{r}}$
For n sides, $B_{\text {net }}=\frac{\mu_{0} \operatorname{in} \operatorname{Tan}(\pi / n) \operatorname{Sin}(\pi / n)}{2 \pi^{2} r}$
25. Net current in circuit $=0$

Hence the magnetic field at point $\mathrm{P}=0$
[Owing to wheat stone bridge principle]
26. Force acting on 10 cm of wire is $2 \times 10^{-5} \mathrm{~N}$

$\frac{\mathrm{dF}}{\mathrm{dl}}=\frac{\mu_{0} \mathrm{i}_{1} \mathrm{i}_{2}}{2 \pi \mathrm{~d}}$
$\Rightarrow \frac{2 \times 10^{-5}}{10 \times 10^{-2}}=\frac{\mu_{0} \times 20 \times 20}{2 \pi \mathrm{~d}}$
$\Rightarrow d=\frac{4 \pi \times 10^{-7} \times 20 \times 20 \times 10 \times 10^{-2}}{2 \pi \times 2 \times 10^{-5}}=400 \times 10^{-3}=0.4 \mathrm{~m}=40 \mathrm{~cm}$
27. $i=10 \mathrm{~A}$

Magnetic force due to two parallel Current Carrying wires.
$F=\frac{\mu_{0} \mathrm{I}_{1} \mathrm{I}_{2}}{2 \pi \mathrm{r}}$
So, \vec{F} or $1=\vec{F}$ by $2+\vec{F}$ by 3
$=\frac{\mu_{0} \times 10 \times 10}{2 \pi \times 5 \times 10^{-2}}+\frac{\mu_{0} \times 10 \times 10}{2 \pi \times 10 \times 10^{-2}}$
$=\frac{4 \pi \times 10^{-7} \times 10 \times 10}{2 \pi \times 5 \times 10^{-2}}+\frac{4 \pi \times 10^{-7} \times 10 \times 10}{2 \pi \times 10 \times 10^{-2}}$

$=\frac{2 \times 10^{-3}}{5}+\frac{10^{-3}}{5}=\frac{3 \times 10^{-3}}{5}=6 \times 10^{-4} \mathrm{~N}$ towards middle wire
28. $\frac{\mu_{0} 10 \mathrm{i}}{2 \pi \mathrm{x}}=\frac{\mu_{0} \mathrm{i} 40}{2 \pi(10-\mathrm{x})}$
$\Rightarrow \frac{10}{x}=\frac{40}{10-x} \Rightarrow \frac{1}{x}=\frac{4}{10-x}$
$\Rightarrow 10-x=4 x \Rightarrow 5 x=10 \Rightarrow x=2 \mathrm{~cm}$

The third wire should be placed 2 cm from the 10 A wire and 8 cm from 40 A wire.
29. $F_{A B}=F_{C D}+F_{E F}$
$=\frac{\mu_{0} \times 10 \times 10}{2 \pi \times 1 \times 10^{-2}}+\frac{\mu_{0} \times 10 \times 10}{2 \pi \times 2 \times 10^{-2}}$
$=2 \times 10^{-3}+10^{-3}=3 \times 10^{-3}$ downward.
$\mathrm{F}_{\mathrm{CD}}=\mathrm{F}_{\mathrm{AB}}+\mathrm{F}_{\mathrm{EF}}$

As $F_{A B} \& F_{E F}$ are equal and oppositely directed hence $F=0$
30. $\frac{\mu_{0} \mathrm{i}_{1} \mathrm{i}_{2}}{2 \pi \mathrm{~d}}=\mathrm{mg}$ (For a portion of wire of length 1 m)
$\Rightarrow \frac{\mu_{0} \times 50 \times \mathrm{i}_{2}}{2 \pi \times 5 \times 10^{-3}}=1 \times 10^{-4} \times 9.8$
$\Rightarrow \frac{4 \pi \times 10^{-7} \times 5 \times \mathrm{i}_{2}}{2 \pi \times 5 \times 10^{-3}}=9.8 \times 10^{-4}$

$\Rightarrow 2 \times \mathrm{i}_{2} \times 10^{-3}=9.3 \times 10^{-3} \times 10^{-1}$
$\Rightarrow \mathrm{i}_{2}=\frac{9.8}{2} \times 10^{-1}=0.49 \mathrm{~A}$
31. $\mathrm{I}_{2}=6 \mathrm{~A}$
$I_{1}=10 \mathrm{~A}$
F_{PQ}
'F' on $\mathrm{dx}=\frac{\mu_{0} \mathrm{i}_{1} \mathrm{i}_{2}}{2 \pi \mathrm{x}} \mathrm{dx}=\frac{\mu_{0} \mathrm{i}_{1} \mathrm{i}_{2}}{2 \pi} \frac{\mathrm{dx}}{\mathrm{x}}=\frac{\mu_{0} \times 30}{\pi} \frac{\mathrm{dx}}{\mathrm{x}}$
$\vec{F}_{\mathrm{PQ}}=\frac{\mu_{0} \times 30}{\mathrm{x}} \int_{1} \frac{\mathrm{dx}}{\mathrm{x}}=30 \times 4 \times 10^{-7} \times[\log \mathrm{x}]_{1}^{2}$
$=120 \times 10^{-7}[\log 3-\log 1]$
Similarly force of $\vec{F}_{R S}=120 \times 10^{-7}[\log 3-\log 1]$
So, $\vec{F}_{P Q}=\vec{F}_{R S}$

$\vec{F}_{P S}=\frac{\mu_{0} \times i_{1} i_{2}}{2 \pi \times 1 \times 10^{-2}}-\frac{\mu_{0} \times i_{1} i_{2}}{2 \pi \times 2 \times 10^{-2}}$
$=\frac{2 \times 6 \times 10 \times 10^{-7}}{10^{-2}}-\frac{2 \times 10^{-7} \times 6 \times 6}{2 \times 10^{-2}}=8.4 \times 10^{-4} \mathrm{~N}$ (Towards right)
$\vec{F}_{R Q}=\frac{\mu_{0} \times i_{1} i_{2}}{2 \pi \times 3 \times 10^{-2}}-\frac{\mu_{0} \times i_{1} i_{2}}{2 \pi \times 2 \times 10^{-2}}$
$=\frac{4 \pi \times 10^{-7} \times 6 \times 10}{2 \pi \times 3 \times 10^{-2}}-\frac{4 \pi \times 10^{-7} \times 6 \times 6}{2 \pi \times 2 \times 10^{-2}}=4 \times 10^{-4}+36 \times 10^{-5}=7.6 \times 10^{-4} \mathrm{~N}$
Net force towards down
$=(8.4+7.6) \times 10^{-4}=16 \times 10^{-4} \mathrm{~N}$
32. $B=0.2 \mathrm{mT}, \quad \mathrm{i}=5 \mathrm{~A}, \quad \mathrm{n}=1, \quad \mathrm{r}=$?
$B=\frac{n \mu_{0} i}{2 r}$
$\Rightarrow r=\frac{\mathrm{n} \times \mu_{0} \mathrm{i}}{2 \mathrm{~B}}=\frac{1 \times 4 \pi \times 10^{-7} \times 5}{2 \times 0.2 \times 10^{-3}}=3.14 \times 5 \times 10^{-3} \mathrm{~m}=15.7 \times 10^{-3} \mathrm{~m}=15.7 \times 10^{-1} \mathrm{~cm}=1.57 \mathrm{~cm}$
33. $B=\frac{n \mu_{0} i}{2 r}$
$\mathrm{n}=100, \quad \mathrm{r}=5 \mathrm{~cm}=0.05 \mathrm{~m}$
$\vec{B}=6 \times 10^{-5} \mathrm{~T}$
$\mathrm{i}=\frac{2 \mathrm{rB}}{\mathrm{n} \mu_{0}}=\frac{2 \times 0.05 \times 6 \times 10^{-5}}{100 \times 4 \pi \times 10^{-7}}=\frac{3}{6.28} \times 10^{-1}=0.0477 \approx 48 \mathrm{~mA}$
34. 3×10^{5} revolutions in 1 sec .

1 revolutions in $\frac{1}{3 \times 10^{5}} \mathrm{sec}$
$i=\frac{q}{t}=\frac{1.6 \times 10^{-19}}{\left(\frac{1}{3 \times 10^{5}}\right)} \mathrm{A}$
$B=\frac{\mu_{0} i}{2 r}=\frac{4 \pi \times 10^{-7} .16 \times 10^{-19} 3 \times 10^{5}}{2 \times 0.5 \times 10^{-10}} \frac{2 \pi \times 1.6 \times 3}{0.5} \times 10^{-11}=6.028 \times 10^{-10} \approx 6 \times 10^{-10} \mathrm{~T}$
35. $I=i / 2$ in each semicircle
$A B C=\vec{B}=\frac{1}{2} \times \frac{\mu_{0}(\mathrm{i} / 2)}{2 \mathrm{a}}$ downwards
$A D C=\vec{B}=\frac{1}{2} \times \frac{\mu_{0}(\mathrm{i} / 2)}{2 \mathrm{a}}$ upwards

Net $\vec{B}=0$
36. $\begin{array}{ll}r_{1}=5 \mathrm{~cm} & r_{2}=10 \mathrm{~cm} \\ n_{1}=50 & n_{2}=100\end{array}$
$\mathrm{n}_{1}=50$
$\mathrm{n}_{2}=100$
$\mathrm{i}=2 \mathrm{~A}$
(a) $B=\frac{n_{1} \mu_{0} i}{2 r_{1}}+\frac{n_{2} \mu_{0} i}{2 r_{2}}$

$=\frac{50 \times 4 \pi \times 10^{-7} \times 2}{2 \times 5 \times 10^{-2}}+\frac{100 \times 4 \pi \times 10^{-7} \times 2}{2 \times 10 \times 10^{-2}}$
$=4 \pi \times 10^{-4}+4 \pi \times 10^{-4}=8 \pi \times 10^{-4}$
(b) $B=\frac{n_{1} \mu_{0} i}{2 r_{1}}-\frac{n_{2} \mu_{0} i}{2 r_{2}}=0$

37. Outer Circle
$n=100, \quad r=100 m=0.1 \mathrm{~m}$
$\mathrm{i}=2 \mathrm{~A}$
$\vec{B}=\frac{n \mu_{0} i}{2 a}=\frac{100 \times 4 \pi \times 10^{-7} \times 2}{2 \times 0.1}=4 \pi \times 10^{-4} \quad$ horizontally towards West.
Inner Circle
$r=5 \mathrm{~cm}=0.05 \mathrm{~m}, \quad \mathrm{n}=50, \mathrm{i}=2 \mathrm{~A}$

$\vec{B}=\frac{n \mu_{0} i}{2 r}=\frac{4 \pi \times 10^{-7} \times 2 \times 50}{2 \times 0.05}=4 \pi \times 10^{-4} \quad$ downwards
Net $B=\sqrt{\left(4 \pi \times 10^{-4}\right)^{2}+\left(4 \pi \times 10^{-4}\right)^{2}}=\sqrt{32 \pi^{2} \times 10^{-8}}=17.7 \times 10^{-4} \approx 18 \times 10^{-4}=1.8 \times 10^{-3}=1.8 \mathrm{mT}$
38. $r=20 \mathrm{~cm}, \quad i=10 \mathrm{~A}, \quad \mathrm{~V}=2 \times 10^{6} \mathrm{~m} / \mathrm{s}, \quad \theta=30^{\circ}$
$F=e(\vec{V} \times \vec{B})=e V B \operatorname{Sin} \theta$
$=1.6 \times 10^{-19} \times 2 \times 10^{6} \times \frac{\mu_{0} \mathrm{i}}{2 \mathrm{r}} \operatorname{Sin} 30^{\circ}$
$=\frac{1.6 \times 10^{-19} \times 2 \times 10^{6} \times 4 \pi \times 10^{-7} \times 10}{2 \times 2 \times 20 \times 10^{-2}}=16 \pi \times 10^{-19} \mathrm{~N}$
39. \vec{B} Large loop $=\frac{\mu_{0} I}{2 R}$
' i ' due to larger loop on the smaller loop
$=i(A \times B)=i A B \operatorname{Sin} 90^{\circ}=i \times \pi r^{2} \times \frac{\mu_{0} I}{2 r}$

40. The force acting on the smaller loop
$\mathrm{F}=\mathrm{ilB} \operatorname{Sin} \theta$
$=\frac{i 2 \pi r \mu_{0} I 1}{2 R \times 2}=\frac{\mu_{0} \mathrm{i} I \pi r}{2 R}$
41. $i=5$ Ampere, $\quad r=10 \mathrm{~cm}=0.1 \mathrm{~m}$

As the semicircular wire forms half of a circular wire,
So, $\vec{B}=\frac{1}{2} \frac{\mu_{0} \mathrm{i}}{2 \mathrm{r}}=\frac{1}{2} \times \frac{4 \pi \times 10^{-7} \times 5}{2 \times 0.1}$
$=15.7 \times 10^{-6} \mathrm{~T} \approx 16 \times 10^{-6} \mathrm{~T}=1.6 \times 10^{-5} \mathrm{~T}$

42. $B=\frac{\mu_{0} i}{2 R} \frac{\theta}{2 \pi}=\frac{2 \pi}{3 \times 2 \pi} \times \frac{\mu_{0} i}{2 R}$
$=\frac{4 \pi \times 10^{-7} \times 6}{6 \times 10^{\text {t10 }}}=4 \pi \times 10^{-6}$
$=4 \times 3.14 \times 10^{-6}=12.56 \times 10^{-6}=1.26 \times 10^{-5} \mathrm{~T}$
43. \vec{B} due to loop $\frac{\mu_{0} i}{2 r}$

Let the straight current carrying wire be kept at a distance R from centre. Given $I=4 i$
\vec{B} due to wire $=\frac{\mu_{0} I}{2 \pi R}=\frac{\mu_{0} \times 4 i}{2 \pi R}$
Now, the \vec{B} due to both will balance each other
Hence $\frac{\mu_{0} i}{2 r}=\frac{\mu_{0} 4 i}{2 \pi R} \Rightarrow R=\frac{4 r}{\pi}$

Hence the straight wire should be kept at a distance $4 \pi / \mathrm{r}$ from centre in such a way that the direction of current in it is opposite to that in the nearest part of circular wire. As a result the direction will \vec{B} will be oppose.
44. $n=200, \quad i=2 A, \quad r=10 \mathrm{~cm}=10 \times 10^{-2} n$
(a) $B=\frac{n \mu_{0} i}{2 r}=\frac{200 \times 4 \pi \times 10^{-7} \times 2}{2 \times 10 \times 10^{-2}}=2 \times 4 \pi \times 10^{-4}$

$$
=2 \times 4 \times 3.14 \times 10^{-4}=25.12 \times 10^{-4} \mathrm{~T}=2.512 \mathrm{mT}
$$

(b) $B=\frac{n \mu_{0} i^{2}}{2\left(a^{2}+d^{2}\right)^{3 / 2}} \Rightarrow \frac{n \mu_{0} i}{4 a}=\frac{n \mu_{0} i a^{2}}{2\left(a^{2}+d^{2}\right)^{3 / 2}}$
$\Rightarrow \frac{1}{2 a}=\frac{a^{2}}{2\left(a^{2}+d^{2}\right)^{3 / 2}} \quad \Rightarrow\left(a^{2}+d^{2}\right)^{3 / 2} 2 a^{3} \quad \Rightarrow a^{2}+d^{2}=\left(2 a^{3}\right)^{2 / 3}$
$\Rightarrow a^{2}+d^{2}=\left(2^{1 / 3} a\right)^{2} \quad \Rightarrow a^{2}+d^{2}=2^{2 / 3} a^{2} \quad \Rightarrow\left(10^{-1}\right)^{2}+d^{2}=2^{2 / 3}\left(10^{-1}\right)^{2}$
$\Rightarrow 10^{-2}+d^{2}=2^{2 / 3} 10^{-2} \quad \Rightarrow\left(10^{-2}\right)\left(2^{2 / 3}-1\right)=d^{2} \quad \Rightarrow\left(10^{-2}\right)\left(4^{1 / 3}-1\right)=d^{2}$
$\Rightarrow 10^{-2}(1.5874-1)=d^{2} \quad \Rightarrow d^{2}=10^{-2} \times 0.5874$
$\Rightarrow d=\sqrt{10^{-2} \times 0.5874}=10^{-1} \times 0.766 \mathrm{~m}=7.66 \times 10^{-2}=7.66 \mathrm{~cm}$.
45. At $O P$ the \vec{B} must be directed downwards

We Know $\quad B$ at the axial line at O \& P
$=\frac{\mu_{0} \mathrm{ia}^{2}}{2\left(\mathrm{a}^{2}+\mathrm{d}^{2}\right)^{3 / 2}}$
$\mathrm{a}=4 \mathrm{~cm}=0.04 \mathrm{~m}$
$=\frac{4 \pi \times 10^{-7} \times 5 \times 0.0016}{2\left((0.0025)^{3 / 2}\right.}$
$=40 \times 10^{-6}=4 \times 10^{-5} \mathrm{~T} \quad$ downwards in both the cases

46. $q=3.14 \times 10^{-6} \mathrm{C}, \quad \mathrm{r}=20 \mathrm{~cm}=0.2 \mathrm{~m}$,
$w=60 \mathrm{rad} / \mathrm{sec} ., \quad i=\frac{q}{t}=\frac{3.14 \times 10^{-6} \times 60}{2 \pi \times 0.2}=1.5 \times 10^{-5}$
$\frac{\text { Electric field }}{\text { Magnetic field }}=\frac{\frac{x Q}{4 \pi \varepsilon_{0}\left(x^{2}+\mathrm{a}^{2}\right)^{3 / 2}}}{\frac{\mu_{0} \mathrm{ia}^{2}}{2\left(\mathrm{a}^{2}+\mathrm{x}^{2}\right)^{3 / 2}}}=\frac{\mathrm{xQ}}{4 \pi \varepsilon_{0}\left(\mathrm{x}^{2}+\mathrm{a}^{2}\right)^{3 / 2}} \times \frac{2\left(\mathrm{x}^{2}+\mathrm{a}^{2}\right)^{3 / 2}}{\mu_{0} \mathrm{i} \mathrm{a}^{2}}$
$=\frac{9 \times 10^{9} \times 0.05 \times 3.14 \times 10^{-6} \times 2}{4 \pi \times 10^{-7} \times 15 \times 10^{-5} \times(0.2)^{2}}$
$=\frac{9 \times 5 \times 2 \times 10^{3}}{4 \times 13 \times 4 \times 10^{-12}}=\frac{3}{8}$
47. (a) For inside the tube $\quad \vec{B}=0$

As, \vec{B} inside the conducting tube $=0$
(b) For $\overrightarrow{\mathrm{B}}$ outside the tube
$d=\frac{3 r}{2}$

$\vec{B}=\frac{\mu_{0} i}{2 \pi d}=\frac{\mu_{0} i \times 2}{2 \pi 3 r}=\frac{\mu_{0} i}{2 \pi r}$
48. (a) At a point just inside the tube the current enclosed in the closed surface $=0$.

Thus B $=\frac{\mu_{0} O}{A}=0$
(b) Taking a cylindrical surface just out side the tube, from ampere's law.
$\mu_{0} i=B \times 2 \pi b \quad \Rightarrow B=\frac{\mu_{0} i}{2 \pi b}$
49. i is uniformly distributed throughout.

So, 'i' for the part of radius $\mathrm{a}=\frac{\mathrm{i}}{\pi \mathrm{b}^{2}} \times \pi \mathrm{a}^{2}=\frac{i \mathrm{a}^{2}}{\mathrm{~b}^{2}}=\mathrm{I}$
Now according to Ampere's circuital law
$\phi B \times d l=B \times 2 \times \pi \times a=\mu_{0} I$
$\Rightarrow B=\mu_{0} \frac{i a^{2}}{b^{2}} \times \frac{1}{2 \pi a}=\frac{\mu_{0} i a}{2 \pi b^{2}}$

50. (a) $r=10 \mathrm{~cm}=10 \times 10^{-2} \mathrm{~m}$
$x=2 \times 10^{-2} \mathrm{~m}$, $i=5 \mathrm{~A}$
i in the region of radius 2 cm
$\frac{5}{\pi\left(10 \times 10^{-2}\right)^{2}} \times \pi\left(2 \times 10^{-2}\right)^{2}=0.2 \mathrm{~A}$
$B \times \pi\left(2 \times 10^{-2}\right)^{2}=\mu_{0}(0-2)$
$\Rightarrow B=\frac{4 \pi \times 10^{-7} \times 0.2}{\pi \times 4 \times 10^{-4}}=\frac{0.2 \times 10^{-7}}{10^{-4}}=2 \times 10^{-4}$
(b) 10 cm radius

B $\times \pi\left(10 \times 10^{-2}\right)^{2}=\mu_{0} \times 5$
$\Rightarrow B=\frac{4 \pi \times 10^{-7} \times 5}{\pi \times 10^{-2}}=20 \times 10^{-5}$
(c) $x=20 \mathrm{~cm}$
$B \times \pi \times\left(20 \times 10^{-2}\right)^{2}=\mu_{0} \times 5$
$\Rightarrow B=\frac{\mu_{0} \times 5}{\pi \times\left(20 \times 10^{-2}\right)^{2}}=\frac{4 \pi \times 10^{-7} \times 5}{\pi \times 400 \times 10^{-4}}=5 \times 10^{-5}$

51. We know, $\int B \times d l=\mu_{0} i$. Theoritically $B=0$ a t A

If, a current is passed through the loop PQRS, then
$B=\frac{\mu_{0} i}{2(\ell+b)}$ will exist in its vicinity.
Now, As the \vec{B} at A is zero. So there'll be no interaction

However practically this is not true. As a current carrying loop, irrespective of its near about position is always affected by an existing magnetic field.

(a) At point $P, i=0$, Thus B
(b) At point $R, i=0, B=0$
(c) At point θ,

Applying ampere's rule to the above rectangle
$B \times 2 l=\mu_{0} K_{0} \int_{0}^{1} d l$
$\Rightarrow B \times 2 I=\mu_{0} k l \Rightarrow B=\frac{\mu_{0} k}{2}$

$B \times 2 l=\mu_{0} K_{0} \int_{0}^{1} d l$
$\Rightarrow B \times 2 \mathrm{I}=\mu_{0} \mathrm{kl} \Rightarrow \mathrm{B}=\frac{\mu_{0} \mathrm{k}}{2}$
Since the \vec{B} due to the 2 stripes are along the same direction, thus.
$B_{\text {net }}=\frac{\mu_{0} k}{2}+\frac{\mu_{0} k}{2}=\mu_{0} k$

53. Charge $=q, \quad$ mass $=m$

We know radius described by a charged particle in a magnetic field B
$r=\frac{m v}{q B}$
Bit $B=\mu_{0} K$ [according to Ampere's circuital law, where K is a constant]
$r=\frac{m v}{q \mu_{0} k} \Rightarrow v=\frac{r q \mu_{0} k}{m}$
54. $i=25 A, \quad B=3.14 \times 10^{-2} T, \quad n=$?
$B=\mu_{0} n i$
$\Rightarrow 3.14 \times 10^{-2}=4 \times \pi \times 10^{-7} \mathrm{n} \times 5$
$\Rightarrow \mathrm{n}=\frac{10^{-2}}{20 \times 10^{-7}}=\frac{1}{2} \times 10^{4}=0.5 \times 10^{4}=5000$ turns $/ \mathrm{m}$
55. $r=0.5 \mathrm{~mm}, \quad i=5 \mathrm{~A}, \quad B=\mu_{0} n i$ (for a solenoid)

Width of each turn $=1 \mathrm{~mm}=10^{-3} \mathrm{~m}$
No. of turns ' n ' $=\frac{1}{10^{-3}}=10^{3}$
So, $B=4 \pi \times 10^{-7} \times 10^{3} \times 5=2 \pi \times 10^{-3} \mathrm{~T}$

56. $\frac{R}{l}=0.01 \Omega$ in $1 \mathrm{~m}, \quad r=1.0 \mathrm{~cm} \quad$ Total turns $=400, \quad \ell=20 \mathrm{~cm}$,
$B=1 \times 10^{-2} T, \quad n=\frac{400}{20 \times 10^{-2}}$ turns $/ \mathrm{m}$
$i=\frac{E}{R_{0}}=\frac{E}{R_{0} / I \times(2 \pi r \times 400)}=\frac{E}{0.01 \times 2 \times \pi \times 0.01 \times 400}$
$B=\mu_{0} n i$
$\Rightarrow 10^{2}=4 \pi \times 10^{-7} \times \frac{400}{20 \times 10^{-2}} \times \frac{E}{400 \times 2 \pi \times 0.01 \times 10^{-2}}$
$\Rightarrow E=\frac{10^{-2} \times 20 \times 10^{-2} \times 400 \times 2 \pi \times 10^{-2} 0.01}{4 \pi \times 10^{-7} \times 400}=1 \mathrm{~V}$
57. Current at ' 0 ' due to the circular loop $=\mathrm{dB}=\frac{\mu_{0}}{4 \pi} \times \frac{a^{2} \text { indx }}{\left[a^{2}+\left(\frac{1}{2}-x\right)^{2}\right]^{3 / 2}}$
\therefore for the whole solenoid $B=\int_{0}^{B} d B$
$=\int_{0}^{\ell} \frac{\mu_{0} \mathrm{a}^{2} \mathrm{nidx}}{4 \pi\left[\mathrm{a}^{2}+\left(\frac{\ell}{2}-\mathrm{x}\right)^{2}\right]^{3 / 2}}$
$=\frac{\mu_{0} n i}{4 \pi} \int_{0}^{\ell} \frac{\mathrm{a}^{2} \mathrm{dx}}{\mathrm{a}^{3}\left[1+\left(\ell-\frac{2 \mathrm{x}}{2 \mathrm{a}}\right)^{2}\right]^{3 / 2}}=\frac{\mu_{0} \mathrm{ni}}{4 \pi \mathrm{a}} \int_{0}^{\ell} \frac{\mathrm{dx}}{\left[1+\left(\ell-\frac{2 \mathrm{x}}{2 \mathrm{a}}\right)^{2}\right]^{3 / 2}}=1+\left(\ell-\frac{2 \mathrm{x}}{2 \mathrm{a}}\right)^{2}$

58. $i=2 a, f=10^{8} \mathrm{rev} / \mathrm{sec}, \quad n=$?, $\quad m_{e}=9.1 \times 10^{-31} \mathrm{~kg}$,
$q_{e}=1.6 \times 10^{-19} c$,
$B=\mu_{0} n i \Rightarrow n=\frac{B}{\mu_{0} i}$
$f=\frac{q B}{2 \pi m_{e}} \Rightarrow B=\frac{f 2 \pi m_{e}}{q_{e}} \Rightarrow n=\frac{B}{\mu_{0} i}=\frac{f 2 \pi m_{e}}{q_{e} \mu_{0} i}=\frac{10^{8} \times 9.1 \times 10^{-31}}{1.6 \times 10^{-19} \times 2 \times 10^{-7} \times 2 A}=1421$ turns $/ \mathrm{m}$
59. No. of turns per unit length $=n, \quad$ radius of circle $=r / 2, \quad$ current in the solenoid $=i$,

Charge of Particle $=q$,
mass of particle $=\mathrm{m} \quad \therefore \mathrm{B}=\mu_{0} \mathrm{ni}$
0000
Again $\frac{m V^{2}}{r}=q V B \Rightarrow V=\frac{q B r}{m}=\frac{q \mu_{0} n i r}{2 m}=\frac{\mu_{0} n i q r}{2 m}$
60. No. of turns per unit length $=\ell$
(a) As the net magnetic field $=$ zero
$\therefore \overrightarrow{\mathrm{B}}_{\text {plate }}=\overrightarrow{\mathrm{B}}_{\text {Solenoid }}$
$\overrightarrow{\mathrm{B}}_{\text {plate }} \times 2 \ell=\mu_{0} \mathrm{kdl}=\mu_{0} \mathrm{k} \ell$
$\vec{B}_{\text {plate }}=\frac{\mu_{0} k}{2} \quad \ldots$ (1)
$\vec{B}_{\text {Solenoid }}=\mu_{0} \mathrm{ni} \ldots$ (2)
Equating both $\mathrm{i}=\frac{\mu_{0} \mathrm{k}}{2}$
(b) $B_{a} \times \ell=\mu k \ell \quad \Rightarrow B_{a}=\mu_{0} k \quad B C=\mu_{0} k$
$B=\sqrt{B_{a}{ }^{2}+B_{c}{ }^{2}}=\sqrt{2\left(\mu_{0} k\right)^{2}}=\sqrt{2} \mu_{0} k$
$2 \mu_{0} \mathrm{k}=\mu_{0} \mathrm{ni} \quad \mathrm{i}=\frac{\sqrt{2} \mathrm{k}}{\mathrm{n}}$

61. $C=100 \mu \mathrm{f}, \quad \mathrm{Q}=\mathrm{CV}=2 \times 10^{-3} \mathrm{C}, \quad \mathrm{t}=2 \mathrm{sec}$,
$\mathrm{V}=20 \mathrm{~V}, \quad \mathrm{~V}^{\prime}=18 \mathrm{~V}, \quad \mathrm{Q}^{\prime}=\mathrm{CV}=1.8 \times 10^{-3} \mathrm{C}$,
$\therefore \mathrm{i}=\frac{\mathrm{Q}-\mathrm{Q}^{\prime}}{\mathrm{t}}=\frac{2 \times 10^{-4}}{2}=10^{-4} \mathrm{~A} \quad \mathrm{n}=4000$ turns $/ \mathrm{m}$.
$\therefore B=\mu_{0} n i=4 \pi \times 10^{-7} \times 4000 \times 10^{-4}=16 \pi \times 10^{-7} \mathrm{~T}$

