CHAPTER - 34
 MAGNETIC FIELD

1. $\mathrm{q}=2 \times 1.6 \times 10^{-19} \mathrm{C}, \quad \mathrm{v}=3 \times 10^{4} \mathrm{~km} / \mathrm{s}=3 \times 10^{7} \mathrm{~m} / \mathrm{s}$ $B=1 \mathrm{~T}, \mathrm{~F}=\mathrm{qBu}=2 \times 1.6 \times 10^{-19} \times 3 \times 10^{7} \times 1=9.610^{-12} \mathrm{~N}$. towards west.
2. $\mathrm{KE}=10 \mathrm{Kev}=1.6 \times 10^{-15} \mathrm{~J}, \quad \overrightarrow{\mathrm{~B}}=1 \times 10^{-7} \mathrm{~T}$
(a) The electron will be deflected towards left
(b) $(1 / 2) \mathrm{mv}^{2}=\mathrm{KE} \Rightarrow \mathrm{V}=\sqrt{\frac{K E \times 2}{m}} \quad F=q V B \& \operatorname{accln}=\frac{q V B}{m_{e}}$

Applying s $=u t+(1 / 2)$ at $^{2}=\frac{1}{2} \times \frac{q V B}{m_{e}} \times \frac{x^{2}}{V^{2}}=\frac{q B x^{2}}{2 m_{e} V}$
$=\frac{q B x^{2}}{2 m_{e} \sqrt{\frac{K E \times 2}{m}}}=\frac{1}{2} \times \frac{1.6 \times 10^{-19} \times 1 \times 10^{-7} \times 1^{2}}{9.1 \times 10^{-31} \times \sqrt{\frac{1.6 \times 10^{-15} \times 2}{9.1 \times 10^{-31}}}}$

By solving we get, $s=0.0148 \approx 1.5 \times 10^{-2} \mathrm{~cm}$
3. $\mathrm{B}=4 \times 10^{-3} \mathrm{~T}(\hat{K})$
$F=\left[4 \hat{i}+3 \hat{j} \times 10^{-10}\right] N . \quad F_{X}=4 \times 10^{-10} \mathrm{~N} \quad F_{Y}=3 \times 10^{-10} \mathrm{~N}$
$Q=1 \times 10^{-9} C$.
Considering the motion along x-axis :-
$F_{X}=q u V_{Y} B \Rightarrow V_{Y}=\frac{F}{q B}=\frac{4 \times 10^{-10}}{1 \times 10^{-9} \times 4 \times 10^{-3}}=100 \mathrm{~m} / \mathrm{s}$
Along y-axis
$F_{Y}=q V_{X} B \Rightarrow V_{X}=\frac{F}{q B}=\frac{3 \times 10^{-10}}{1 \times 10^{-9} \times 4 \times 10^{-3}}=75 \mathrm{~m} / \mathrm{s}$
Velocity $=(-75 \hat{i}+100 \hat{j}) \mathrm{m} / \mathrm{s}$
4. $\vec{B}=(7.0 i-3.0 j) \times 10^{-3} \mathrm{~T}$
$\overrightarrow{\mathrm{a}}=$ acceleration $=(--\mathrm{i}+7 \mathrm{j}) \times 10^{-6} \mathrm{~m} / \mathrm{s}^{2}$
Let the gap be x.
Since \vec{B} and \vec{a} are always perpendicular
$\vec{B} \times \vec{a}=0$
$\Rightarrow\left(7 x \times 10^{-3} \times 10^{-6}-3 \times 10^{-3} 7 \times 10^{-6}\right)=0$
$\Rightarrow 7 \mathrm{x}-21=0 \Rightarrow \mathrm{x}=3$
5. $\mathrm{m}=10 \mathrm{~g}=10 \times 10^{-3} \mathrm{~kg}$
$\mathrm{q}=400 \mathrm{mc}=400 \times 10^{-6} \mathrm{C}$
$v=270 \mathrm{~m} / \mathrm{s}, \quad B=500 \mu \mathrm{t}=500 \times 10^{-6}$ Tesla
Force on the particle $=$ quB $=4 \times 10^{-6} \times 270 \times 500 \times 10^{-6}=54 \times 10^{-8}(\mathrm{~K})$
Acceleration on the particle $=54 \times 10^{-6} \mathrm{~m} / \mathrm{s}^{2}(\mathrm{~K})$
Velocity along \hat{i} and acceleration along \hat{k}
along x-axis the motion is uniform motion and
along y-axis it is accelerated motion.
Along $-X$ axis $100=270 \times t \Rightarrow t=\frac{10}{27}$
Along $-Z$ axis $s=u t+(1 / 2) a t^{2}$

v
$\Rightarrow s=\frac{1}{2} \times 54 \times 10^{-6} \times \frac{10}{27} \times \frac{10}{27}=3.7 \times 10^{-6}$
6. $q_{p}=e, \quad m p=m, \quad F=q_{p} \times E$
or $m a_{0}=e E \quad$ or, $E=\frac{m a_{0}}{e} \quad$ towards west

The acceleration changes from a_{0} to $3 \mathrm{a}_{0}$
Hence net acceleration produced by magnetic field \vec{B} is $2 a_{0}$.
Force due to magnetic field
$=\overrightarrow{F_{B}}=m \times 2 a_{0}=e \times V_{0} \times B$
$\Rightarrow B=\frac{2 m a_{0}}{\mathrm{eV}_{0}} \quad$ downwards
7. $\mathrm{I}=10 \mathrm{~cm}=10 \times 10^{-3} \mathrm{~m}=10^{-1} \mathrm{~m}$
$\mathrm{i}=10 \mathrm{~A}, \quad \mathrm{~B}=0.1 \mathrm{~T}, \quad \theta=53^{\circ}$
$|F|=i L B \operatorname{Sin} \theta=10 \times 10^{-1} \times 0.1 \times 0.79=0.0798 \approx 0.08$
direction of F is along a direction $\perp r$ to both I and B.
8. $\vec{F}=i l B=1 \times 0.20 \times 0.1=0.02 \mathrm{~N}$

For $\vec{F}=$ il $\times B$
So, For
da \& $\mathrm{cb} \rightarrow \mathrm{I} \times \mathrm{B}=\mathrm{I} \mathrm{B} \sin 90^{\circ}$ towards left
Hence $\vec{F} 0.02 \mathrm{~N}$ towards left
For
downward
9. $F=i l B \operatorname{Sin} \theta$

$$
\begin{aligned}
& =\text { ilB } \operatorname{Sin} 90^{\circ} \\
& =\text { i } 2 R B \\
& =2 \times\left(8 \times 10^{-2}\right) \times 1 \\
& =16 \times 10^{-2} \\
& =0.16 \mathrm{~N} .
\end{aligned}
$$

10. Length $=I$, Current $=I \hat{i}$
$\vec{B}=B_{0}(\hat{i}+\hat{j}+\hat{k}) T=B_{0} \hat{i}+B_{0} \hat{j}+B_{0} \hat{k} T$
$F=I l \times \vec{B}=I l \hat{i} \times B_{0} \hat{i}+B_{0} \hat{j}+B_{0} \hat{k}$
$=I I B_{0} \hat{i} \times \hat{i}+I B_{0} \hat{i} \times \hat{j}+I B_{0} \hat{i} \times \hat{k}=I \mid B_{0} \hat{K}-I I B_{0} \hat{j}$
or, $|\overrightarrow{\mathrm{F}}|=\sqrt{\left.2 \mathrm{I}^{2}\right|^{2} \mathrm{~B}_{0}{ }^{2}}=\sqrt{2} I \mid \mathrm{B}_{0}$
11. $i=5 A, \quad I=50 \mathrm{~cm}=0.5 \mathrm{~m}$
$B=0.2 \mathrm{~T}$,
$F=i l B \operatorname{Sin} \theta=i l B \operatorname{Sin} 90^{\circ}$
$=5 \times 0.5 \times 0.2$
$=0.05 \mathrm{~N}$
(\hat{j})
12. $I=2 \pi a$

Magnetic field $=\vec{B}$ radially outwards
Current \Rightarrow ' i '
$F=i l \times B$
$=\mathrm{i} \times(2 \pi \mathrm{a} \times \overrightarrow{\mathrm{B}})$
$\otimes=2 \pi$ ai B perpendicular to the plane of the figure going inside.
13. $\overrightarrow{\mathrm{B}}=\mathrm{B}_{0} \overrightarrow{\mathrm{e}_{\mathrm{r}}}$
$\overrightarrow{e_{r}}=$ Unit vector along radial direction
$F=i(\vec{l} \times \vec{B})=i \mathrm{IB} \operatorname{Sin} \theta$
$=\frac{i(2 \pi a) B_{0} a}{\sqrt{a^{2}+d^{2}}}=\frac{i 2 \pi a^{2} B_{0}}{\sqrt{a^{2}+d^{2}}}$

14. Current anticlockwise

Since the horizontal Forces have no effect.
Let us check the forces for current along AD \& $B C$ [Since there is no \vec{B}]
In AD, $\mathrm{F}=0$
For $B C$
$F=$ iaB upward
Current clockwise
Similarly, F = - iaB downwards
Hence change in force $=$ change in tension
$=\mathrm{iaB}-(-\mathrm{iaB})=2 \mathrm{iaB}$
15. $F_{1}=$ Force on $A D=i \ell B$ inwards
$F_{2}=$ Force on $B C=i \ell B$ inwards
They cancel each other
$\mathrm{F}_{3}=$ Force on $\mathrm{CD}=\mathrm{i} \mathrm{\ell B}$ inwards
$F_{4}=$ Force on $A B=i \ell B$ inwards
They also cancel each other.
So the net force on the body is 0 .

16. For force on a current carrying wire in an uniform magnetic field

We need, $I \rightarrow$ length of wire

$\mathrm{i} \rightarrow$ Current
$\mathrm{B} \rightarrow$ Magnitude of magnetic field

$$
\bullet \text { b }
$$

Since $\vec{F}=i \ell B$
Now, since the length of the wire is fixed from A to B, so force is independent of the shape of the wire.
17. Force on a semicircular wire
$=2 \mathrm{iRB}$
$=2 \times 5 \times 0.05 \times 0.5$
$=0.25 \mathrm{~N}$

18. Here the displacement vector $\overrightarrow{\mathrm{dl}}=\lambda$

So magnetic for $i \rightarrow t \overrightarrow{d l} \times \vec{B}=i \times \lambda B$
19. Force due to the wire $A B$ and force due to wire $C D$ are equal and opposite to each other. Thus they cancel each other.
Net force is the force due to the semicircular loop $=2 \mathrm{iRB}$
20. Mass $=10 \mathrm{mg}=10^{-5} \mathrm{~kg}$

Length $=1 \mathrm{~m}$
$I=2 \mathrm{~A}, \quad \mathrm{~B}=$?
Now, $\mathrm{Mg}=\mathrm{ilB}$
$\Rightarrow B=\frac{\mathrm{mg}}{\mathrm{il}}=\frac{10^{-5} \times 9.8}{2 \times 1}=4.9 \times 10^{-5} \mathrm{~T}$
21. (a) When switch S is open

2T $\operatorname{Cos} 30^{\circ}=\mathrm{mg}$
$\Rightarrow \mathrm{T}=\frac{\mathrm{mg}}{2 \operatorname{Cos} 30^{\circ}}$
$=\frac{200 \times 10^{-3} \times 9.8}{2 \sqrt{(3 / 2)}}=1.13$

(b) When the switch is closed and a current passes through the circuit $=2 \mathrm{~A}$

Then
$\Rightarrow 2 \mathrm{~T} \operatorname{Cos} 30^{\circ}=\mathrm{mg}+\mathrm{ilB}$
$=200 \times 10^{-3} 9.8+2 \times 0.2 \times 0.5=1.96+0.2=2.16$
$\Rightarrow 2 \mathrm{~T}=\frac{2.16 \times 2}{\sqrt{3}}=2.49$
$\Rightarrow \mathrm{T}=\frac{2.49}{2}=1.245 \approx 1.25$
22. Let ' F ' be the force applied due to magnetic field on the wire and ' x ' be the dist covered.
So, $F \times I=\mu \mathrm{mg} \times \mathrm{x}$
$\Rightarrow \mathrm{ibBl}=\mu \mathrm{mgx}$
$\Rightarrow x=\frac{i \mathrm{bBI}}{\mu \mathrm{mg}}$

23. $\mu \mathrm{R}=\mathrm{F}$
$\Rightarrow \mu \times \mathrm{m} \times \mathrm{g}=\mathrm{ilB}$
$\Rightarrow \mu \times 10 \times 10^{-3} \times 9.8=\frac{6}{20} \times 4.9 \times 10^{-2} \times 0.8$
$\Rightarrow \mu=\frac{0.3 \times 0.8 \times 10^{-2}}{2 \times 10^{-2}}=0.12$

24. Mass $=m$
length $=1$
Current $=\mathrm{i}$
Magnetic field $=B=$?
friction Coefficient $=\mu$
$\mathrm{iBI}=\mu \mathrm{mg}$

$\Rightarrow B=\frac{\mu \mathrm{mg}}{\mathrm{il}}$

26. $Y=\frac{\text { Stress }}{\text { Strain }}=\frac{\left(\frac{\mathrm{F}}{\pi r^{2}}\right)}{\left(\frac{\mathrm{dl}}{\mathrm{L}}\right)}$
$\Rightarrow \frac{d l}{L} Y=\frac{F}{\pi r^{2}} \Rightarrow d l=\frac{F}{\pi r^{2}} \times \frac{L}{Y}$
$=\frac{i a B}{\pi r^{2}} \times \frac{2 \pi a}{Y}=\frac{2 \pi a^{2} \mathrm{iB}}{\pi r^{2} Y}$

So, $d p=\frac{2 \pi \mathrm{a}^{2} \mathrm{iB}}{\pi \mathrm{r}^{2} \mathrm{Y}}$ (for small cross sectional circle)
$d r=\frac{2 \pi a^{2}{ }^{i} B}{\pi r^{2} Y} \times \frac{1}{2 \pi}=\frac{a^{2} i B}{\pi r^{2} Y}$
27. $\vec{B}=B_{0}\left(1+\frac{x}{I}\right) \hat{K}$
$\mathrm{f}_{1}=$ force on $\mathrm{AB}=\mathrm{iB} \mathrm{B}_{0}[1+0] I=i B_{0} l$
$f_{2}=$ force on $C D=i B_{0}[1+0] l=i B_{0} l$
$\mathrm{f}_{3}=$ force on $\mathrm{AD}=\mathrm{i} \mathrm{B}_{0}[1+0 / 1]\left|=i B_{0}\right|$
$\mathrm{f}_{4}=$ force on $\mathrm{AB}=\mathrm{i} \mathrm{B}_{0}[1+1 / 1]\left|=2 \mathrm{iB}_{0}\right|$
Net horizontal force $=F_{1}-F_{2}=0$
Net vertical force $=F_{4}-F_{3}=i B_{0} l$

28. (a) Velocity of electron $=v$

Magnetic force on electron
$F=e u B$
(b) $F=q E ; F=e v B$
or, $q E=e v B$
$\Rightarrow e E=e v B \quad$ or, $\vec{E}=v B$
(c) $E=\frac{d V}{d r}=\frac{V}{l}$
$\Rightarrow V=I E=\operatorname{lv} B$
29. (a) $i=V_{0} n A e$
$\Rightarrow V_{0}=\frac{\mathrm{i}}{\text { nae }}$
(b) $\mathrm{F}=\mathrm{ilB}=\frac{\mathrm{iBI}}{\mathrm{nA}}=\frac{\mathrm{iB}}{\mathrm{nA}}$ (upwards)
(c) Let the electric field be E

$\mathrm{Ee}=\frac{\mathrm{iB}}{\mathrm{An}} \Rightarrow \mathrm{E}=\frac{\mathrm{iB}}{\mathrm{Aen}}$
(d) $\frac{d v}{d r}=E \Rightarrow d V=E d r$
$=\mathrm{E} \times \mathrm{d}=\frac{\mathrm{iB}}{\text { Aen }} \mathrm{d}$
30. $q=2.0 \times 10^{-8} \mathrm{C} \quad \vec{B}=0.10 \mathrm{~T}$
$\mathrm{m}=2.0 \times 10^{-10} \mathrm{~g}=2 \times 10^{-13} \mathrm{~g}$
$v=2.0 \times 10^{3} \mathrm{~m} /{ }^{\prime}$
$R=\frac{\mathrm{mv}}{\mathrm{qB}}=\frac{2 \times 10^{-13} \times 2 \times 10^{3}}{2 \times 10^{-8} \times 10^{-1}}=0.2 \mathrm{~m}=20 \mathrm{~cm}$
$\mathrm{T}=\frac{2 \pi \mathrm{~m}}{\mathrm{qB}}=\frac{2 \times 3.14 \times 2 \times 10^{-13}}{2 \times 10^{-8} \times 10^{-1}}=6.28 \times 10^{-4} \mathrm{~s}$
31. $r=\frac{m v}{q B}$
$0.01=\frac{\mathrm{mv}}{\mathrm{e} 0.1}$
$r=\frac{4 \mathrm{~m} \times \mathrm{V}}{2 \mathrm{e} \times 0.1}$
$(2) \div(1)$
$\Rightarrow \frac{r}{0.01}=\frac{4 \mathrm{mVe} \times 0.1}{2 \mathrm{e} \times 0.1 \times \mathrm{mv}}=\frac{4}{2}=2 \Rightarrow r=0.02 \mathrm{~m}=2 \mathrm{~cm}$.
32. $\mathrm{KE}=100 \mathrm{ev}=1.6 \times 10^{-17} \mathrm{~J}$
$(1 / 2) \times 9.1 \times 10^{-31} \times \mathrm{V}^{2}=1.6 \times 10^{-17} \mathrm{~J}$
$\Rightarrow \mathrm{V}^{2}=\frac{1.6 \times 10^{-17} \times 2}{9.1 \times 10^{-31}}=0.35 \times 10^{14}$
or, $V=0.591 \times 10^{7} \mathrm{~m} / \mathrm{s}$
Now $r=\frac{\mathrm{mv}}{\mathrm{qB}} \Rightarrow \frac{9.1 \times 10^{-31} \times 0.591 \times 10^{7}}{1.6 \times 10^{-19} \times B}=\frac{10}{100}$
$\Rightarrow B=\frac{9.1 \times 0.591}{1.6} \times \frac{10^{-23}}{10^{-19}}=3.3613 \times 10^{-4} \mathrm{~T} \approx 3.4 \times 10^{-4} \mathrm{~T}$
$\mathrm{T}=\frac{2 \pi \mathrm{~m}}{\mathrm{qB}}=\frac{2 \times 3.14 \times 9.1 \times 10^{-31}}{1.6 \times 10^{-19} \times 3.4 \times 10^{-4}}$
No. of Cycles per Second $f=\frac{1}{T}$
$=\frac{1.6 \times 3.4}{2 \times 3.14 \times 9.1} \times \frac{10^{-19} \times 10^{-4}}{10^{-31}}=0.0951 \times 10^{8} \approx 9.51 \times 10^{6}$
Note: \therefore Puttig $\vec{B} 3.361 \times 10^{-4}$ T We get $f=9.4 \times 10^{6}$
33. Radius $=I$,

$$
K . E=K
$$

$L=\frac{m V}{q B} \Rightarrow I=\frac{\sqrt{2 m k}}{q B}$
$\Rightarrow B=\frac{\sqrt{2 m k}}{q l}$

34. $V=12 \mathrm{KV} \quad \mathrm{E}=\frac{\mathrm{V}}{\mathrm{l}}$ Now, $\mathrm{F}=\mathrm{qE}=\frac{\mathrm{qV}}{\mathrm{l}} \quad$ or, $\mathrm{a}=\frac{\mathrm{F}}{\mathrm{m}}=\frac{\mathrm{qV}}{\mathrm{ml}}$
$v=1 \times 10^{6} \mathrm{~m} / \mathrm{s}$
or $V=\sqrt{2 \times \frac{q V}{m l} \times I}=\sqrt{2 \times \frac{q}{m} \times 12 \times 10^{3}}$
or $1 \times 10^{6}=\sqrt{2 \times \frac{q}{m} \times 12 \times 10^{3}}$
$\Rightarrow 10^{12}=24 \times 10^{3} \times \frac{q}{m}$
$\Rightarrow \frac{\mathrm{m}}{\mathrm{q}}=\frac{24 \times 10^{3}}{10^{12}}=24 \times 10^{-9}$
$r=\frac{m V}{q B}=\frac{24 \times 10^{-9} \times 1 \times 10^{6}}{2 \times 10^{-1}}=12 \times 10^{-2} \mathrm{~m}=12 \mathrm{~cm}$
35. $V=10 \mathrm{Km} /{ }^{\prime}=10^{4} \mathrm{~m} / \mathrm{s}$
$B=1 \mathrm{~T}, \quad \mathrm{q}=2 \mathrm{e}$.
(a) $F=q V B=2 \times 1.6 \times 10^{-19} \times 10^{4} \times 1=3.2 \times 10^{-15} \mathrm{~N}$
(b) $r=\frac{\mathrm{mV}}{\mathrm{qB}}=\frac{4 \times 1.6 \times 10^{-27} \times 10^{4}}{2 \times 1.6 \times 10^{-19} \times 1}=2 \times \frac{10^{-23}}{10^{-19}}=2 \times 10^{-4} \mathrm{~m}$
(c) Time taken $=\frac{2 \pi r}{V}=\frac{2 \pi \mathrm{mv}}{\mathrm{qB} \times \mathrm{v}}=\frac{2 \pi \times 4 \times 1.6 \times 10^{-27}}{2 \times 1.6 \times 10^{-19} \times 1}$
$=4 \pi \times 10^{-8}=4 \times 3.14 \times 10^{-8}=12.56 \times 10^{-8}=1.256 \times 10^{-7} \mathrm{sex}$.
36. $v=3 \times 10^{6} \mathrm{~m} / \mathrm{s}, \quad \mathrm{B}=0.6 \mathrm{~T}, \quad \mathrm{~m}=1.67 \times 10^{-27} \mathrm{~kg}$
$F=q \cup B \quad q_{P}=1.6 \times 10^{-19} \mathrm{C}$
or, $\quad \vec{a}=\frac{F}{m}=\frac{q u B}{m}$
$=\frac{1.6 \times 10^{-19} \times 3 \times 10^{6} \times 10^{-1}}{1.67 \times 10^{-27}}$
$=17.245 \times 10^{13}=1.724 \times 10^{4} \mathrm{~m} / \mathrm{s}^{2}$
37. (a) $R=1 n$,
$B=0.5 \mathrm{~T}$,

$$
r=\frac{m v}{q B}
$$

$\Rightarrow 1=\frac{9.1 \times 10^{-31} \times v}{1.6 \times 10^{-19} \times 0.5}$
$\Rightarrow v=\frac{1.6 \times 0.5 \times 10^{-19}}{9.1 \times 10^{-31}}=0.0879 \times 10^{10} \approx 8.8 \times 10^{10} \mathrm{~m} / \mathrm{s}$
No, it is not reasonable as it is more than the speed of light.
(b) $r=\frac{m v}{q B}$
$\Rightarrow 1=\frac{1.6 \times 10^{-27} \times v}{1.6 \times 10^{-19} \times 0.5}$
$\Rightarrow v=\frac{1.6 \times 10^{-19} \times 0.5}{1.6 \times 10^{-27}}=0.5 \times 10^{8}=5 \times 10^{7} \mathrm{~m} / \mathrm{s}$.
38. (a) Radius of circular $\operatorname{arc}=\frac{\mathrm{mv}}{\mathrm{qB}}$
(b) Since MA is tangent to are ABC, described by the particle.

Hence $\angle \mathrm{MAO}=90^{\circ}$
Now, $\angle \mathrm{NAC}=90^{\circ}[\because \mathrm{NA}$ is $\perp \mathrm{r}]$
$\therefore \angle \mathrm{OAC}=\angle \mathrm{OCA}=\theta$ [By geometry]
Then $\angle A O C=180-(\theta+\theta)=\pi-2 \theta$
(c) Dist. Covered $I=r \theta=\frac{m v}{q B}(\pi-2 \theta)$

$\mathrm{t}=\frac{\mathrm{l}}{\mathrm{v}}=\frac{\mathrm{m}}{\mathrm{qB}}(\pi-2 \theta)$
(d) If the charge ' q ' on the particle is negative. Then
(i) Radius of Circular arc $=\frac{\mathrm{mv}}{\mathrm{qB}}$
(ii) In such a case the centre of the arc will lie with in the magnetic field, as seen in the fig. Hence the angle subtended by the major arc $=\pi+2 \theta$

(iii) Similarly the time taken by the particle to cover the same path $=\frac{m}{q B}(\pi+2 \theta)$
39. Mass of the particle $=m, \quad$ Charge $=q, \quad$ Width $=d$

$$
\text { (a) If } \mathrm{d}=\frac{\mathrm{mV}}{\mathrm{qB}}
$$

The d is equal to radius. θ is the angle between the
 radius and tangent which is equal to $\pi / 2$ (As shown in the figure)
(b) If $\approx \frac{m V}{2 q B}$ distance travelled $=(1 / 2)$ of radius

Along x-directions $d=V_{x t}$ [Since acceleration in this direction is 0 . Force acts along
 \hat{j} directions]
$t=\frac{d}{V_{x}}$
$V_{Y}=u_{Y}+a_{Y} t=\frac{0+q u_{X} B t}{m}=\frac{q u_{X} B t}{m}$
From (1) putting the value of $t, V_{Y}=\frac{q u_{X} B d}{m V_{X}}$
$\operatorname{Tan} \theta=\frac{\mathrm{V}_{\mathrm{Y}}}{\mathrm{V}_{\mathrm{X}}}=\frac{\mathrm{qBd}}{m \mathrm{~V}_{\mathrm{X}}}=\frac{\mathrm{qBm}_{\mathrm{X}}}{2 \mathrm{qBm}_{\mathrm{X}}}=\frac{1}{2}$
$\Rightarrow \theta=\tan ^{-1}\left(\frac{1}{2}\right)=26.4 \approx 30^{\circ}=\pi / 6$
(c) $\mathrm{d} \approx \frac{2 \mathrm{mu}}{\mathrm{qB}}$

Looking into the figure, the angle between the initial direction and final direction of velocity is π.
40. $u=6 \times 10^{4} \mathrm{~m} / \mathrm{s}, \quad B=0.5 \mathrm{~T}, \quad r_{1}=3 / 2=1.5 \mathrm{~cm}, \quad r_{2}=3.5 / 2 \mathrm{~cm}$
$r_{1}=\frac{\mathrm{mv}}{\mathrm{qB}}=\frac{\mathrm{A} \times\left(1.6 \times 10^{-27}\right) \times 6 \times 10^{4}}{1.6 \times 10^{-19} \times 0.5}$
$\Rightarrow 1.5=\mathrm{A} \times 12 \times 10^{-4}$
$\Rightarrow A=\frac{1.5}{12 \times 10^{-4}}=\frac{15000}{12}$

$r_{2}=\frac{\mathrm{mu}}{q B} \Rightarrow \frac{3.5}{2}=\frac{\mathrm{A}^{\prime} \times\left(1.6 \times 10^{-27}\right) \times 6 \times 10^{4}}{1.6 \times 10^{-19} \times 0.5}$
$\Rightarrow \mathrm{A}^{\prime}=\frac{3.5 \times 0.5 \times 10^{-19}}{2 \times 6 \times 10^{4} \times 10^{-27}}=\frac{3.5 \times 0.5 \times 10^{4}}{12}$
$\frac{\mathrm{A}}{\mathrm{A}^{\prime}}=\frac{1.5}{12 \times 10^{-4}} \times \frac{12 \times 10^{-4}}{3.5 \times 0.5}=\frac{6}{7}$
Taking common ration $=2$ (For Carbon). The isotopes used are C^{12} and C^{14}
41. $V=500 \mathrm{~V} \quad B=20 \mathrm{mT}=\left(2 \times 10^{-3}\right) \mathrm{T}$
$E=\frac{V}{d}=\frac{500}{d} \Rightarrow F=\frac{q 500}{d} \Rightarrow a=\frac{q 500}{d m}$
$\Rightarrow u^{2}=2 a d=2 \times \frac{q 500}{d m} \times d \Rightarrow u^{2}=\frac{1000 \times q}{m} \Rightarrow u=\sqrt{\frac{1000 \times q}{m}}$
$r_{1}=\frac{m_{1} \sqrt{1000 \times q_{1}}}{q_{1} \sqrt{m_{1}} B}=\frac{\sqrt{m_{1}} \sqrt{1000}}{\sqrt{q_{1}} B}=\frac{\sqrt{57 \times 1.6 \times 10^{-27} \times 10^{3}}}{\sqrt{1.6 \times 10^{-19}} \times 2 \times 10^{-3}}=1.19 \times 10^{-2} \mathrm{~m}=119 \mathrm{~cm}$
$r_{1}=\frac{m_{2} \sqrt{1000 \times q_{2}}}{q_{2} \sqrt{m_{2}} B}=\frac{\sqrt{m_{2}} \sqrt{1000}}{\sqrt{q_{2}} B}=\frac{\sqrt{1000 \times 58 \times 1.6 \times 10^{-27}}}{\sqrt{1.6 \times 10^{-19}} \times 20 \times 10^{-3}}=1.20 \times 10^{-2} \mathrm{~m}=120 \mathrm{~cm}$
42. For $\mathrm{K}-39: \mathrm{m}=39 \times 1.6 \times 10^{-27} \mathrm{~kg}, \quad \mathrm{~B}=5 \times 10^{-1} \mathrm{~T}, \mathrm{q}=1.6 \times 10^{-19} \mathrm{C}, \quad \mathrm{K} . E=32 \mathrm{KeV}$. Velocity of projection: $=(1 / 2) \times 39 \times\left(1.6 \times 10^{-27}\right) v^{2}=32 \times 10^{3} \times 1.6 \times 10^{-27} \Rightarrow v=4.050957468 \times 10^{5}$
Through out ht emotion the horizontal velocity remains constant.
$\mathrm{t}=\frac{0.01}{40.50957468 \times 10^{5}}=24 \times 10^{-19} \mathrm{sec}$. [Time taken to cross the magnetic field]
Accln. In the region having magnetic field $=\frac{q v B}{m}$
$=\frac{1.6 \times 10^{-19} \times 4.050957468 \times 10^{5} \times 0.5}{39 \times 1.6 \times 10^{-27}}=5193.535216 \times 10^{8} \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{V}($ in vertical direction $)=$ at $=5193.535216 \times 10^{8} \times 24 \times 10^{-9}=12464.48452 \mathrm{~m} / \mathrm{s}$.
Total time taken to reach the screen $=\frac{0.965}{40.50957468 \times 10^{5}}=0.000002382 \mathrm{sec}$.
Time gap $=2383 \times 10^{-9}-24 \times 10^{-9}=2358 \times 10^{-9} \mathrm{sec}$.
Distance moved vertically (in the time) $=12464.48452 \times 2358 \times 10^{-9}=0.0293912545 \mathrm{~m}$
$V^{2}=2$ as $\Rightarrow(12464.48452)^{2}=2 \times 5193.535216 \times 10^{8} \times S \Rightarrow S=0.1495738143 \times 10^{-3} \mathrm{~m}$.
Net displacement from line $=0.0001495738143+0.0293912545=0.0295408283143 \mathrm{~m}$
For K $-41:(1 / 2) \times 41 \times 1.6 \times 10^{-27} \quad v=32 \times 10^{3} 1.6 \times 10^{-19} \Rightarrow v=39.50918387 \mathrm{~m} / \mathrm{s}$.
$a=\frac{q v B}{m}=\frac{1.6 \times 10^{-19} \times 395091.8387 \times 0.5}{41 \times 1.6 \times 10^{-27}}=4818.193154 \times 10^{8} \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{t}=$ (time taken for coming outside from magnetic field) $=\frac{00.1}{39501.8387}=25 \times 10^{-9} \mathrm{sec}$.
$V=$ at (Vertical velocity) $=4818.193154 \times 10^{8} \times 10^{8} 25 \times 10^{-9}=12045.48289 \mathrm{~m} / \mathrm{s}$.
(Time total to reach the screen) $=\frac{0.965}{395091.8387}=0.000002442$
Time gap $=2442 \times 10^{-9}-25 \times 10^{-9}=2417 \times 10^{-9}$
Distance moved vertically $=12045.48289 \times 2417 \times 10^{-9}=0.02911393215$
Now, $V^{2}=2$ as $\Rightarrow(12045.48289)^{2}=2 \times 4818.193151 \times \mathrm{S} \Rightarrow \mathrm{S}=0.0001505685363 \mathrm{~m}$
Net distance travelled $=0.0001505685363+0.02911393215=0.0292645006862$
Net gap between K- 39 and K-41 $=0.0295408283143-0.0292645006862$

$$
=0.0001763276281 \mathrm{~m} \approx 0.176 \mathrm{~mm}
$$

43. The object will make a circular path, perpendicular to the plance of paper

Let the radius of the object be r
$\frac{m v^{2}}{r}=q v B \Rightarrow r=\frac{m V}{q B}$
Here object distance $K=18 \mathrm{~cm}$.
$\frac{1}{\mathrm{v}}-\frac{1}{\mathrm{u}}=\frac{1}{\mathrm{f}}$ (lens eqn.) $\Rightarrow \frac{1}{\mathrm{v}}-\left(\frac{1}{-18}\right)=\frac{1}{12} \Rightarrow \mathrm{v}=36 \mathrm{~cm}$.

Let the radius of the circular path of image $=r^{\prime}$
So magnification $=\frac{v}{u}=\frac{r^{\prime}}{r}\left(\right.$ magnetic path $\left.=\frac{\text { image height }}{\text { object height }}\right) \Rightarrow r^{\prime}=\frac{v}{u} r \Rightarrow r^{\prime}=\frac{36}{18} \times 4=8 \mathrm{~cm}$.
Hence radius of the circular path in which the image moves is 8 cm .
44. Given magnetic field $=B, \quad P d=V$, mass of electron $=m$, Charge $=q$,

Let electric field be ' E ' $\therefore E=\frac{V}{R}$,
Force Experienced $=e E$
Acceleration $=\frac{\mathrm{eE}}{\mathrm{m}}=\frac{\mathrm{eE}}{\mathrm{Rm}} \quad$ Now, $\mathrm{V}^{2}=2 \times \mathrm{a} \times \mathrm{S} \quad[\because \mathrm{x}=0]$
$V=\sqrt{\frac{2 \times e \times V \times R}{R m}}=\sqrt{\frac{2 e V}{m}}$
Time taken by particle to cover the arc $=\frac{2 \pi m}{q B}=\frac{2 \pi m}{e B}$
Since the acceleration is along ' Y ' axis.
Hence it travels along x axis in uniform velocity
Therefore, ${ }^{\prime}=v \times t=\sqrt{\frac{2 \mathrm{em}}{\mathrm{m}}} \times \frac{2 \pi \mathrm{~m}}{\mathrm{eB}}=\sqrt{\frac{8 \pi^{2} \mathrm{mV}}{e^{2}}}$
45. (a) The particulars will not collide if
$d=r_{1}+r_{2}$
$\Rightarrow \mathrm{d}=\frac{\mathrm{mV}}{\mathrm{qB}}+\frac{\mathrm{mV}}{\mathrm{qB}}$

$\Rightarrow d=\frac{2 m V_{m}}{q B} \Rightarrow V_{m}=\frac{q B d}{2 m}$
(b) $V=\frac{V_{m}}{2}$
$\mathrm{d}_{1}{ }^{\prime}=\mathrm{r}_{1}+\mathrm{r}_{2}=2\left(\frac{\mathrm{~m} \times \mathrm{qBd}}{2 \times 2 \mathrm{~m} \times \mathrm{qB}}\right)=\frac{\mathrm{d}}{2}$ (min. dist.)

Max. distance $\mathrm{d}_{2}{ }^{\prime}=\mathrm{d}+2 \mathrm{r}=\mathrm{d}+\frac{\mathrm{d}}{2}=\frac{3 \mathrm{~d}}{2}$
(c) $\mathrm{V}=2 \mathrm{~V}_{\mathrm{m}}$
$r_{1}{ }^{\prime}=\frac{m_{2} V_{m}}{q B}=\frac{m \times 2 \times q B d}{2 n \times q B}, \quad r_{2}=d \quad \therefore$ The arc is $1 / 6$
(d) $V_{m}=\frac{q B d}{2 m}$

The particles will collide at point P. At point p, both the particles will have motion m in upward direction. Since the particles collide inelastically the stick together.
Distance I between centres $=d, \operatorname{Sin} \theta=\frac{I}{2 r}$
Velocity upward $=v \cos 90-\theta=\mathrm{V} \sin \theta=\frac{\mathrm{VI}}{2 \mathrm{r}}$
$\frac{m v^{2}}{r}=q v B \Rightarrow r=\frac{m v}{q B}$
$V \sin \theta=\frac{\mathrm{vl}}{2 \mathrm{r}}=\frac{\mathrm{vl}}{2 \frac{\mathrm{mv}}{\mathrm{qb}}}=\frac{\mathrm{qBd}}{2 \mathrm{~m}}=\mathrm{V}_{\mathrm{m}}$
Hence the combined mass will move with velocity V_{m}
46. $B=0.20 \mathrm{~T}, \quad v=? \quad \mathrm{~m}=0.010 \mathrm{~g}=10^{-5} \mathrm{~kg} \quad \mathrm{q}=1 \times 10^{-5} \mathrm{C}$

Force due to magnetic field $=$ Gravitational force of attraction
So, quB $=\mathrm{mg}$
$\Rightarrow 1 \times 10^{-5} \times v \times 2 \times 10^{-1}=1 \times 10^{-5} \times 9.8$
$\Rightarrow v=\frac{9.8 \times 10^{-5}}{2 \times 10^{-6}}=49 \mathrm{~m} / \mathrm{s}$.
47. $r=0.5 \mathrm{~cm}=0.5 \times 10^{-2} \mathrm{~m}$
$B=0.4 \mathrm{~T}, \quad E=200 \mathrm{~V} / \mathrm{m}$
The path will straighten, if $q E=q u B \Rightarrow E=\frac{r q B \times B}{m} \quad\left[\therefore r=\frac{m v}{q B}\right]$
$\Rightarrow E=\frac{r q B^{2}}{m} \Rightarrow \frac{q}{m}=\frac{E}{B^{2} r}=\frac{200}{0.4 \times 0.4 \times 0.5 \times 10^{-2}}=2.5 \times 10^{5} \mathrm{c} / \mathrm{kg}$
48. $M_{P}=1.6 \times 10^{-27} \mathrm{Kg}$
$v=2 \times 10^{5} \mathrm{~m} / \mathrm{s} \quad r=4 \mathrm{~cm}=4 \times 10^{-2} \mathrm{~m}$
Since the proton is undeflected in the combined magnetic and electric field. Hence force due to both the fields must be same.
i.e. $q E=q v B \Rightarrow E=v B$

Won, when the electricfield is stopped, then if forms a circle due to force of magnetic field
We know $r=\frac{\mathrm{mv}}{\mathrm{qB}}$
$\Rightarrow 4 \times 10^{2}=\frac{1.6 \times 10^{-27} \times 2 \times 10^{5}}{1.6 \times 10^{-19} \times B}$
$\Rightarrow B=\frac{1.6 \times 10^{-27} \times 2 \times 10^{5}}{4 \times 10^{2} \times 1.6 \times 10^{-19}}=0.5 \times 10^{-1}=0.005 \mathrm{~T}$
$E=v B=2 \times 10^{5} \times 0.05=1 \times 10^{4} \mathrm{~N} / C$
49. $\mathrm{q}=5 \mu \mathrm{~F}=5 \times 10^{-6} \mathrm{C}$,

$$
\mathrm{m}=5 \times 10^{-12} \mathrm{~kg}, \quad \mathrm{~V}=1 \mathrm{~km} / \mathrm{s}=10^{3} \mathrm{~m} /{ }^{\prime}
$$

$\theta=\operatorname{Sin}^{-1}(0.9), \quad B=5 \times 10^{-3} \mathrm{~T}$
We have $\mathrm{mv}^{\prime 2}=\mathrm{qv}^{\prime} \mathrm{B} \quad \mathrm{r}=\frac{\mathrm{mv}^{\prime}}{\mathrm{qB}}=\frac{\mathrm{mv} \sin \theta}{\mathrm{qB}}=\frac{5 \times 10^{-12} \times 10^{3} \times 9}{5 \times 10^{-6}+5 \times 10^{3}+10}=0.18$ metre

Hence dimeter $=36 \mathrm{~cm}$.,
Pitch $=\frac{2 \pi r}{v \sin \theta} \operatorname{vcos} \theta=\frac{2 \times 3.1416 \times 0.1 \times \sqrt{1-0.51}}{0.9}=0.54$ metre $=54 \mathrm{mc}$.
The velocity has a x-component along with which no force acts so that the particle, moves with uniform velocity.
The velocity has a y-component with which is accelerates with acceleration a. with the Vertical component it moves in a circular crosssection. Thus it moves in a helix.
50. $\vec{B}=0.020 \mathrm{~T} \quad \mathrm{M}_{\mathrm{P}}=1.6 \times 10^{-27} \mathrm{Kg}$

Pitch $=20 \mathrm{~cm}=2 \times 10^{-1} \mathrm{~m}$
Radius $=5 \mathrm{~cm}=5 \times 10^{-2} \mathrm{~m}$
We know for a helical path, the velocity of the proton has got two components $\theta_{\perp} \& \theta_{H}$
Now, $r=\frac{\mathrm{m} \theta_{\perp}}{\mathrm{qB}} \Rightarrow 5 \times 10^{-2}=\frac{1.6 \times 10^{-27} \times \theta_{\perp}}{1.6 \times 10^{-19} \times 2 \times 10^{-2}}$
$\Rightarrow \theta_{\perp}=\frac{5 \times 10^{-2} \times 1.6 \times 10^{-19} \times 2 \times 10^{-2}}{1.6 \times 10^{-27}}=1 \times 10^{5} \mathrm{~m} / \mathrm{s}$
However, θ_{H} remains constant
$\mathrm{T}=\frac{2 \pi \mathrm{~m}}{\mathrm{qB}}$
Pitch $=\theta_{H} \times T$ or, $\theta_{H}=\frac{\text { Pitch }}{T}$
$\theta_{\mathrm{H}}=\frac{2 \times 10^{-1}}{2 \times 3.14 \times 1.6 \times 10^{-27}} \times 1.6 \times 10^{-19} \times 2 \times 10^{-2}=0.6369 \times 10^{5} \approx 6.4 \times 10^{4} \mathrm{~m} / \mathrm{s}$
51. Velocity will be along $x-z$ plane
$\vec{B}=-B_{0} \hat{J} \quad \vec{E}=E_{0} \hat{k}$
$F=q(\vec{E}+\vec{V} \times \vec{B})=q\left[E_{0} \hat{k}+\left(u_{x} \hat{i}+u_{x} \hat{k}\right)\left(-B_{0} \hat{j}\right)\right]=\left(q E_{0}\right) \hat{k}-\left(u_{x} B_{0}\right) \hat{k}+\left(u_{z} B_{0}\right) \hat{i}$
$F_{z}=\left(q E_{0}-u_{x} B_{0}\right)$
Since $u_{x}=0, F_{z}=q E_{0}$
$\Rightarrow \mathrm{a}_{\mathrm{z}}=\frac{\mathrm{qE}}{\mathrm{m}}$, So, $\mathrm{v}^{2}=u^{2}+2 \mathrm{as} \Rightarrow \mathrm{v}^{2}=2 \frac{\mathrm{qE}}{\mathrm{m}} \mathrm{Z} Z$ [distance along Z direction be z]
$\Rightarrow V=\sqrt{\frac{2 q E_{0} Z}{m}}$
52. The force experienced first is due to the electric field due to the capacitor
$E=\frac{V}{d}$
$F=e E$
$a=\frac{e E}{m_{e}} \quad\left[\right.$ Where $e \rightarrow$ charge of electron $m_{e} \rightarrow$ mass of electron]
$v^{2}=u^{2}+2 a s \Rightarrow v^{2}=2 \times \frac{e E}{m_{e}} \times d=\frac{2 \times e \times V \times d}{d m_{e}}$
or $v=\sqrt{\frac{2 \mathrm{eV}}{\mathrm{m}_{\mathrm{e}}}}$
Now, The electron will fail to strike the upper plate only when d is greater than radius of the are thus formed.
or, $d>\frac{m_{e} \times \sqrt{\frac{2 e V}{m_{e}}}}{e B} \Rightarrow d>\frac{\sqrt{2 m_{e} V}}{e B^{2}}$
53. $\tau=\mathrm{ni} \overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}}$
$\Rightarrow \tau=$ ni $A B \operatorname{Sin} 90^{\circ} \Rightarrow 0.2=100 \times 2 \times 5 \times 4 \times 10^{-4} \times B$
$\Rightarrow B=\frac{0.2}{100 \times 2 \times 5 \times 4 \times 10^{-4}}=0.5$ Tesla
54. $n=50, r=0.02 \mathrm{~m}$
$A=\pi \times(0.02)^{2}, \quad B=0.02 T$
$\mathrm{i}=5 \mathrm{~A}, \quad \mu=n \mathrm{ni}=50 \times 5 \times \pi \times 4 \times 10^{-4}$
τ is max. when $\theta=90^{\circ}$
$\tau=\mu \times B=\mu B \operatorname{Sin} 90^{\circ}=\mu B=50 \times 5 \times 3.14 \times 4 \times 10^{-4} \times 2 \times 10^{-1}=6.28 \times 10^{-2} \mathrm{~N}-\mathrm{M}$
Given $\tau=(1 / 2) \tau_{\text {max }}$
$\Rightarrow \operatorname{Sin} \theta=(1 / 2)$
or, $\theta=30^{\circ}=$ Angle between area vector \& magnetic field.
\Rightarrow Angle between magnetic field and the plane of the coil $=90^{\circ}-30^{\circ}=60^{\circ}$
55. $\mathrm{I}=20 \mathrm{~cm}=20 \times 10^{-2} \mathrm{~m}$
$B=10 \mathrm{~cm}=10 \times 10^{-2} \mathrm{~m}$
$\mathrm{i}=5 \mathrm{~A}, \quad \mathrm{~B}=0.2 \mathrm{~T}$
(a) There is no force on the sides $A B$ and CD. But the force on the sides $A D$ and $B C$ are opposite. So they cancel each other.
(b) Torque on the loop
$\tau=$ ni $\vec{A} \times \vec{B}=n i A B \operatorname{Sin} 90^{\circ}$
$=1 \times 5 \times 20 \times 10^{-2} \times 10 \times 10^{-2} 0.2=2 \times 10^{-2}=0.02 \mathrm{~N}-\mathrm{M}$
Parallel to the shorter side.

56. $\mathrm{n}=500, \quad \mathrm{r}=0.02 \mathrm{~m}, \quad \theta=30^{\circ}$
$i=1 A, \quad B=4 \times 10^{-1} T$
$i=\mu \times B=\mu B \operatorname{Sin} 30^{\circ}=n i A B \operatorname{Sin} 30^{\circ}$
$=500 \times 1 \times 3.14 \times 4 \times 10^{-4} \times 4 \times 10^{-1} \times(1 / 2)=12.56 \times 10^{-2}=0.1256 \approx 0.13 \mathrm{~N}-\mathrm{M}$
57. (a) radius $=r$

Circumference $=L=2 \pi r$
$\Rightarrow r=\frac{L}{2 \pi}$
$\Rightarrow \pi \mathrm{r}^{2}=\frac{\pi \mathrm{L}^{2}}{4 \pi^{2}}=\frac{\mathrm{L}^{2}}{4 \pi}$
$\tau=i \vec{A} \times \vec{B}=\frac{i L^{2} B}{4 \pi}$
(b) Circumfernce $=\mathrm{L}$
$4 S=L \Rightarrow S=\frac{L}{4}$
Area $=S^{2}=\left(\frac{L}{4}\right)^{2}=\frac{L^{2}}{16}$
$\tau=i \vec{A} \times \vec{B}=\frac{i L^{2} B}{16}$
58. Edge $=\mathrm{I}, \quad$ Current $=\mathrm{i} \quad$ Turns $=\mathrm{n}, \quad$ mass $=\mathrm{M}$

Magnetic filed $=B$
$\tau=\mu \mathrm{B} \operatorname{Sin} 90^{\circ}=\mu \mathrm{B}$
Min Torque produced must be able to balance the torque produced due to weight Now, $\tau \mathrm{B}=\tau$ Weight

$\mu \mathrm{B}=\mu \mathrm{g}\left(\frac{\mathrm{I}}{2}\right) \Rightarrow \mathrm{n} \times \mathrm{i} \times \mathrm{I}^{2} \mathrm{~B}=\mu \mathrm{g}\left(\frac{\mathrm{I}}{2}\right) \quad \Rightarrow \mathrm{B}=\frac{\mu \mathrm{g}}{2 \mathrm{nil}}$
59. (a) $i=\frac{q}{t}=\frac{q}{(2 \pi / \omega)}=\frac{q \omega}{2 \pi}$
(b) $\mu=\mathrm{n}$ ia $=\mathrm{iA}[\because \mathrm{n}=1]=\frac{\mathrm{q} \omega \pi \mathrm{r}^{2}}{2 \pi}=\frac{\mathrm{q} \omega \mathrm{r}^{2}}{2}$
(c) $\mu=\frac{\mathrm{q} \omega \mathrm{r}^{2}}{2}, \mathrm{~L}=\mathrm{I} \omega=\mathrm{mr}^{2} \omega, \frac{\mu}{\mathrm{~L}}=\frac{\mathrm{q} \omega \mathrm{r}^{2}}{2 m r^{2} \omega}=\frac{\mathrm{q}}{2 \mathrm{~m}} \Rightarrow \mu=\left(\frac{\mathrm{q}}{2 \mathrm{~m}}\right) \mathrm{L}$
60. $d p$ on the small length $d x$ is $\frac{q}{\pi r^{2}} 2 \pi x d x$.
$\mathrm{di}=\frac{\mathrm{q} 2 \pi \times \mathrm{dx}}{\pi r^{2} \mathrm{t}}=\frac{\mathrm{q} 2 \pi \mathrm{xdx} \omega}{\pi \mathrm{r}^{2} \mathrm{q} 2 \pi}=\frac{\mathrm{q} \omega}{\pi \mathrm{r}^{2}} \mathrm{xdx}$
$\mathrm{d} \mu=\mathrm{n}$ di $\mathrm{A}=\mathrm{di} \mathrm{A}=\frac{\mathrm{q} \omega \mathrm{xdx}}{\pi \mathrm{r}^{2}} \pi \mathrm{x}^{2}$

$\mu=\int_{0}^{\mu} d \mu=\int_{0}^{r} \frac{q \omega}{r^{2}} x^{3} d x=\frac{q \omega}{r^{2}}\left[\frac{x^{4}}{4}\right]^{r}=\frac{q \omega r^{4}}{r^{2} \times 4}=\frac{q \omega r^{2}}{4}$
$I=I \omega=(1 / 2) \mathrm{mr}^{2} \omega \quad\left[\therefore\right.$ M.I. for disc is $\left.(1 / 2) \mathrm{mr}^{2}\right]$
$\frac{\mu}{\mathrm{l}}=\frac{\mathrm{q} \omega \mathrm{r}^{2}}{4 \times\left(\frac{1}{2}\right) \mathrm{mr}^{2} \omega} \Rightarrow \frac{\mu}{\mathrm{l}}=\frac{\mathrm{q}}{2 \mathrm{~m}} \Rightarrow \mu=\frac{\mathrm{q}}{2 \mathrm{~m}} \mathrm{l}$
61. Considering a strip of width dx at a distance x from centre,
$d q=\frac{q}{\left(\frac{4}{3}\right) \pi R^{3}} 4 \pi x^{2} d x$
$d i=\frac{d q}{d t}=\frac{q 4 \pi x^{2} d x}{\left(\frac{4}{3}\right) \pi R^{3} t}=\frac{3 q x^{2} d x \omega}{R^{3} 2 \pi}$
$d \mu=d i \times A=\frac{3 q x^{2} d x \omega}{R^{3} 2 \pi} \times 4 \pi x^{2}=\frac{6 q \omega}{R^{3}} x^{4} d x$

$\mu=\int_{0}^{\mu} d \mu=\int_{0}^{R} \frac{6 q \omega}{R^{3}} x^{4} d x=\frac{6 q \omega}{R^{3}}\left[\frac{x^{5}}{5}\right]_{0}^{R}=\frac{6 q \omega}{R^{3}} \frac{R^{5}}{5}=\frac{6}{5} q \omega R^{2}$

