ELECTRIC CURRENT IN CONDUCTORS
 CHAPTER - 32

1. $Q(t)=A t^{2}+B t+c$
a) $A t^{2}=Q$

$$
\Rightarrow A=\frac{Q}{t^{2}}=\frac{A^{\prime} T^{\prime}}{T^{-2}}=A^{1} T^{-1}
$$

b) $B t=Q$

$$
\Rightarrow B=\frac{Q}{t}=\frac{A^{\prime} T^{\prime}}{T}=A
$$

c) $\mathrm{C}=[\mathrm{Q}]$

$$
\Rightarrow \mathrm{C}=\mathrm{A}^{\prime} \mathrm{T}^{\prime}
$$

d) Current $t=\frac{d Q}{d t}=\frac{d}{d t}\left(A t^{2}+B t+C\right)$

$$
=2 A t+B=2 \times 5 \times 5+3=53 A .
$$

2. No. of electrons per second $=2 \times 10^{16}$ electrons $/ \mathrm{sec}$.

Charge passing per second $=2 \times 10^{16} \times 1.6 \times 10^{-9} \frac{\text { coulomb }}{\mathrm{sec}}$

$$
=3.2 \times 10^{-9} \text { Coulomb } / \mathrm{sec}
$$

Current $=3.2 \times 10^{-3} \mathrm{~A}$.
3. $\mathrm{i}^{\prime}=2 \mu \mathrm{~A}, \mathrm{t}=5 \mathrm{~min}=5 \times 60 \mathrm{sec}$.
$q=i t=2 \times 10^{-6} \times 5 \times 60$

$$
=10 \times 60 \times 10^{-6} c=6 \times 10^{-4} c
$$

4. $\mathrm{i}=\mathrm{i}_{0}+\alpha \mathrm{t}, \mathrm{t}=10 \mathrm{sec}, \mathrm{i}_{0}=10 \mathrm{~A}, \alpha=4 \mathrm{~A} / \mathrm{sec}$.
$q=\int_{0}^{t} i d t=\int_{0}^{t}\left(i_{0}+\alpha t\right) d t=\int_{0}^{t} i_{0} d t+\int_{0}^{t} \alpha t d t$

$$
\begin{aligned}
& =\mathrm{i}_{0} \mathrm{t}+\alpha \frac{\mathrm{t}^{2}}{2}=10 \times 10+4 \times \frac{10 \times 10}{2} \\
& =100+200=300 \mathrm{C} .
\end{aligned}
$$

5. $i=1 A, A=1 \mathrm{~mm}^{2}=1 \times 10^{-6} \mathrm{~m}^{2}$

$$
\mathrm{f}^{\prime} \mathrm{cu}=9000 \mathrm{~kg} / \mathrm{m}^{3}
$$

Molecular mass has N_{0} atoms
$=\mathrm{m} \mathrm{Kg}$ has $\left(\mathrm{N}_{0} / \mathrm{M} \times \mathrm{m}\right)$ atoms $=\frac{\mathrm{N}_{0} \mathrm{~A} 19000}{63.5 \times 10^{-3}}$
No.of atoms $=$ No.of electrons
$n=\frac{\text { No.of electrons }}{\text { Unit volume }}=\frac{N_{0} A f}{m A l}=\frac{N_{0} f}{M}$

$$
=\frac{6 \times 10^{23} \times 9000}{63.5 \times 10^{-3}}
$$

$i=V_{d} n A e$.
$\Rightarrow V_{d}=\frac{i}{n A e}=\frac{1}{\frac{6 \times 10^{23} \times 9000}{63.5 \times 10^{-3}} \times 10^{-6} \times 1.6 \times 10^{-19}}$
$=\frac{63.5 \times 10^{-3}}{6 \times 10^{23} \times 9000 \times 10^{-6} \times 1.6 \times 10^{-19}}=\frac{63.5 \times 10^{-3}}{6 \times 9 \times 1.6 \times 10^{26} \times 10^{-19} \times 10^{-6}}$
$=\frac{63.5 \times 10^{-3}}{6 \times 9 \times 1.6 \times 10}=\frac{63.5 \times 10^{-3}}{6 \times 9 \times 16}$
$=0.074 \times 10^{-3} \mathrm{~m} / \mathrm{s}=0.074 \mathrm{~mm} / \mathrm{s}$.
6. $\ell=1 \mathrm{~m}, \mathrm{r}=0.1 \mathrm{~mm}=0.1 \times 10^{-3} \mathrm{~m}$
$R=100 \Omega, f=$?
$\Rightarrow R=f \ell / a$
$\Rightarrow \mathrm{f}=\frac{\mathrm{Ra}}{\ell}=\frac{100 \times 3.14 \times 0.1 \times 0.1 \times 10^{-6}}{1}$

$$
=3.14 \times 10^{-6}=\pi \times 10^{-6} \Omega-\mathrm{m}
$$

7. $\ell^{\prime}=2 \ell$
volume of the wire remains constant.

$$
\mathrm{A} \ell=\mathrm{A}^{\prime} \ell^{\prime}
$$

$\Rightarrow A \ell=A^{\prime} \times 2 \ell$
$\Rightarrow A^{\prime}=A / 2$
$\mathrm{f}=$ Specific resistance
$\mathrm{R}=\frac{\mathrm{f} \ell}{\mathrm{A}} ; \mathrm{R}^{\prime}=\frac{\mathrm{f} \ell^{\prime}}{\mathrm{A}^{\prime}}$
$100 \Omega=\frac{\mathrm{f} 2 \ell}{\mathrm{~A} / 2}=\frac{4 \mathrm{f} \ell}{\mathrm{A}}=4 \mathrm{R}$
$\Rightarrow 4 \times 100 \Omega=400 \Omega$
8. $\ell=4 \mathrm{~m}, \mathrm{~A}=1 \mathrm{~mm}^{2}=1 \times 10^{-6} \mathrm{~m}^{2}$
$\mathrm{I}=2 \mathrm{~A}, \mathrm{n} / \mathrm{V}=10^{29}, \mathrm{t}=$?
$\mathrm{i}=\mathrm{nA} \mathrm{V}_{\mathrm{d}} \mathrm{e}$
$\Rightarrow e=10^{29} \times 1 \times 10^{-6} \times V_{d} \times 1.6 \times 10^{-19}$
$\Rightarrow V_{d}=\frac{2}{10^{29} \times 10^{-6} \times 1.6 \times 10^{-19}}$

$$
=\frac{1}{0.8 \times 10^{4}}=\frac{1}{8000}
$$

$\mathrm{t}=\frac{\ell}{\mathrm{V}_{\mathrm{d}}}=\frac{4}{1 / 8000}=4 \times 8000$
$=32000=3.2 \times 10^{4} \mathrm{sec}$.
9. $f_{c u}=1.7 \times 10^{-8} \Omega-\mathrm{m}$
$A=0.01 \mathrm{~mm}^{2}=0.01 \times 10^{-6} \mathrm{~m}^{2}$
$\mathrm{R}=1 \mathrm{~K} \Omega=10^{3} \Omega$
$R=\frac{f \ell}{a}$
$\Rightarrow 10^{3}=\frac{1.7 \times 10^{-8} \times \ell}{10^{-6}}$
$\Rightarrow \ell=\frac{10^{3}}{1.7}=0.58 \times 10^{3} \mathrm{~m}=0.6 \mathrm{~km}$.
10. $d R$, due to the small strip $d x$ at a distanc $x d=R=\frac{f d x}{\pi y^{2}}$
$\tan \theta=\frac{y-a}{x}=\frac{b-a}{L}$
$\Rightarrow \frac{\mathrm{y}-\mathrm{a}}{\mathrm{x}}=\frac{\mathrm{b}-\mathrm{a}}{\mathrm{L}}$
$\Rightarrow L(y-a)=x(b-a)$

$\Rightarrow L y-L a=x b-x a$
$\Rightarrow \mathrm{L} \frac{\mathrm{dy}}{\mathrm{dx}}-0=\mathrm{b}-\mathrm{a}$ (diff. w.r.t. x)
$\Rightarrow \mathrm{L} \frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{b}-\mathrm{a}$
$\Rightarrow \mathrm{dx}=\frac{\mathrm{Ldy}}{\mathrm{b}-\mathrm{a}}$
Putting the value of $d x$ in equation (1)
$\mathrm{dR}=\frac{\mathrm{fLdy}}{\pi \mathrm{y}^{2}(\mathrm{~b}-\mathrm{a})}$
$\Rightarrow d R=\frac{f l}{\pi(b-a)} \frac{d y}{y^{2}}$
$\Rightarrow \int_{0}^{R} d R=\frac{f l}{\pi(b-a)} \int_{a}^{b} \frac{d y}{y^{2}}$
$\Rightarrow R=\frac{f l}{\pi(b-a)} \frac{(b-a)}{a b}=\frac{f l}{\pi a b}$.
11. $r=0.1 \mathrm{~mm}=10^{-4} \mathrm{~m}$
$\mathrm{R}=1 \mathrm{~K} \Omega=10^{3} \Omega, \mathrm{~V}=20 \mathrm{~V}$
a) No.of electrons transferred
$\mathrm{i}=\frac{\mathrm{V}}{\mathrm{R}}=\frac{20}{10^{3}}=20 \times 10^{-3}=2 \times 10^{-2} \mathrm{~A}$
$q=i t=2 \times 10^{-2} \times 1=2 \times 10^{-2} \mathrm{C}$.
No. of electrons transferred $=\frac{2 \times 10^{-2}}{1.6 \times 10^{-19}}=\frac{2 \times 10^{-17}}{1.6}=1.25 \times 10^{17}$.
b) Current density of wire

$$
\begin{aligned}
& =\frac{i}{A}=\frac{2 \times 10^{-2}}{\pi \times 10^{-8}}=\frac{2}{3.14} \times 10^{+6} \\
& =0.6369 \times 10^{+6}=6.37 \times 10^{5} \mathrm{~A} / \mathrm{m}^{2}
\end{aligned}
$$

12. $A=2 \times 10^{-6} \mathrm{~m}^{2}, \mathrm{I}=1 \mathrm{~A}$
$\mathrm{f}=1.7 \times 10^{-8} \Omega-\mathrm{m}$
$\mathrm{E}=$?
$\mathrm{R}=\frac{\mathrm{f} \ell}{\mathrm{A}}=\frac{1.7 \times 10^{-8} \times \ell}{2 \times 10^{-6}}$
$V=I R=\frac{1 \times 1.7 \times 10^{-8} \times \ell}{2 \times 10^{-6}}$
$E=\frac{d V}{d L}=\frac{V}{l}=\frac{1.7 \times 10^{-8} \times \ell}{2 \times 10^{-6} \ell}=\frac{1.7}{2} \times 10^{-2} \mathrm{~V} / \mathrm{m}$
$=8.5 \mathrm{mV} / \mathrm{m}$.
13. $\mathrm{I}=2 \mathrm{~m}, \mathrm{R}=5 \Omega, \mathrm{i}=10 \mathrm{~A}, \mathrm{E}=$?
$V=i R=10 \times 5=50 \mathrm{~V}$
$E=\frac{V}{l}=\frac{50}{2}=25 \mathrm{~V} / \mathrm{m}$.
14. $R_{F e}^{\prime}=R_{F e}\left(1+\alpha_{F e} \Delta \theta\right), R_{C u}^{\prime}=R_{C u}\left(1+\alpha_{C u} \Delta \theta\right)$
$\mathrm{R}_{\mathrm{Fe}}^{\prime}=\mathrm{R}^{\prime} \mathrm{Cu}$
$\Rightarrow R_{\mathrm{Fe}}\left(1+\alpha_{\mathrm{Fe}} \Delta \theta\right),=R_{\mathrm{Cu}}\left(1+\alpha_{\mathrm{Cu}} \Delta \theta\right)$
$\Rightarrow 3.9\left[1+5 \times 10^{-3}(20-\theta)\right]=4.1\left[1+4 \times 10^{-3}(20-\theta)\right]$
$\Rightarrow 3.9+3.9 \times 5 \times 10^{-3}(20-\theta)=4.1+4.1 \times 4 \times 10^{-3}(20-\theta)$
$\Rightarrow 4.1 \times 4 \times 10^{-3}(20-\theta)-3.9 \times 5 \times 10^{-3}(20-\theta)=3.9-4.1$
$\Rightarrow 16.4(20-\theta)-19.5(20-\theta)=0.2 \times 10^{3}$
$\Rightarrow(20-\theta)(-3.1)=0.2 \times 10^{3}$
$\Rightarrow \theta-20=200$
$\Rightarrow \theta=220^{\circ} \mathrm{C}$.
15. Let the voltmeter reading when, the voltage is 0 be X.
$\frac{l_{1} R}{I_{2} R}=\frac{V_{1}}{V_{2}}$
$\Rightarrow \frac{1.75}{2.75}=\frac{14.4-\mathrm{V}}{22.4-\mathrm{V}} \Rightarrow \frac{0.35}{0.55}=\frac{14.4-\mathrm{V}}{22.4-\mathrm{V}}$
$\Rightarrow \frac{0.07}{0.11}=\frac{14.4-\mathrm{V}}{22.4-\mathrm{V}} \Rightarrow \frac{7}{11}=\frac{14.4-\mathrm{V}}{22.4-\mathrm{V}}$
$\Rightarrow 7(22.4-V)=11(14.4-V) \Rightarrow 156.8-7 V=158.4-11 \mathrm{~V}$
$\Rightarrow(7-11) \mathrm{V}=156.8-158.4 \Rightarrow-4 \mathrm{~V}=-1.6$
$\Rightarrow \mathrm{V}=0.4 \mathrm{~V}$.
16. a) When switch is open, no current passes through the ammeter. In the upper part of the circuit the Voltmenter has ∞ resistance. Thus current in it is 0 .
\therefore Voltmeter read the emf. (There is not Pot. Drop across the resistor).
b) When switch is closed current passes through the circuit and if its value of i.

The voltmeter reads

$\Rightarrow 1.52$ - ir $=1.45$
$\Rightarrow \mathrm{ir}=0.07$
$\Rightarrow 1 r=0.07 \Rightarrow r=0.07 \Omega$.
17. $E=6 \mathrm{~V}, \mathrm{r}=1 \Omega, \mathrm{~V}=5.8 \mathrm{~V}, \mathrm{R}=$?
$I=\frac{E}{R+r}=\frac{6}{R+1}, V=E-I r$
$\Rightarrow 5.8=6-\frac{6}{R+1} \times 1 \Rightarrow \frac{6}{R+1}=0.2$
$\Rightarrow R+1=30 \Rightarrow R=29 \Omega$.
18. $\mathrm{V}=\varepsilon+\mathrm{ir}$
$\Rightarrow 7.2=6+2 \times r$
$\Rightarrow 1.2=2 r \Rightarrow r=0.6 \Omega$.

19. a) net emf while charging
$9-6=3 \mathrm{~V}$
Current $=3 / 10=0.3 \mathrm{~A}$
b) When completely charged.

Internal resistance 'r' = 1Ω
Current $=3 / 1=3 \mathrm{~A}$
20. a) $0.1 \mathrm{i}_{1}+1 \mathrm{i}_{1}-6+1 \mathrm{i}_{1}-6=0$
$\Rightarrow 0.1 \mathrm{i}_{1}+1 \mathrm{i}_{1}+1 \mathrm{i}_{1}=12$
$\Rightarrow \mathrm{i}_{1}=\frac{12}{2.1}$

ABCDA
$\Rightarrow 0.1 \mathrm{i}_{2}+1 \mathrm{i}-6=0$
$\Rightarrow 0.1 \mathrm{i}_{2}+1 \mathrm{i}$

ADEFA,
$\Rightarrow \mathrm{i}-6+6-\left(\mathrm{i}_{2}-\mathrm{i}\right) 1=0$
$\Rightarrow \mathrm{i}-\mathrm{i}_{2}+\mathrm{i}=0$
$\Rightarrow 2 \mathrm{i}-\mathrm{i}_{2}=0 \Rightarrow-2 \mathrm{i} \pm 0.2 \mathrm{i}=0$
$\Rightarrow \mathrm{i}_{2}=0$.
b) $1 i_{1}+1 i_{1}-6+1 i_{1}=0$
$\Rightarrow 3 i_{1}=12 \Rightarrow i_{1}=4$
DCFED
$\Rightarrow \mathrm{i}_{2}+\mathrm{i}-6=0 \Rightarrow \mathrm{i}_{2}+\mathrm{i}=6$

ABCDA,
$\mathrm{i}_{2}+\left(\mathrm{i}_{2}-\mathrm{i}\right)-6=0$
$\Rightarrow \mathrm{i}_{2}+\mathrm{i}_{2}-\mathrm{i}=6 \Rightarrow 2 \mathrm{i}_{2}-\mathrm{i}=6$
$\Rightarrow-2 \mathrm{i}_{2} \pm 2 \mathrm{i}=6 \Rightarrow \mathrm{i}=-2$
$\mathrm{i}_{2}+\mathrm{i}=6$
$\Rightarrow \mathrm{i}_{2}-2=6 \Rightarrow \mathrm{i}_{2}=8$
$\frac{i_{1}}{i_{2}}=\frac{4}{8}=\frac{1}{2}$.
c) $10 i_{1}+1 i_{1}-6+1 i_{1}-6=0$
$\Rightarrow 12 i_{1}=12 \Rightarrow i_{1}=1$
$10 \mathrm{i}_{2}-\mathrm{i}_{1}-6=0$
$\Rightarrow 10 \mathrm{i}_{2}-\mathrm{i}_{1}=6$
$\Rightarrow 10 \mathrm{i}_{2}+\left(\mathrm{i}_{2}-\mathrm{i}\right) 1-6=0$
$\Rightarrow 11 \mathrm{i}_{2}=6$
$\Rightarrow-\mathrm{i}_{2}=0$

21. a) Total emf $=n_{1} E$
in 1 row
Total emf in all news $=n_{1} E$
Total resistance in one row $=n_{1} r$
Total resistance in all rows $=\frac{n_{1} r}{n_{2}}$
Net resistance $=\frac{n_{1} r}{n_{2}}+R$

Current $=\frac{n_{1} E}{n_{1} / n_{2} r+R}=\frac{n_{1} n_{2} E}{n_{1} r+n_{2} R}$
b) $I=\frac{n_{1} n_{2} E}{n_{1} r+n_{2} R}$
for $\mathrm{I}=\max$,
$n_{1} r+n_{2} R=m i n$
$\Rightarrow\left(\sqrt{n_{1} r}-\sqrt{n_{2} R}\right)^{2}+2 \sqrt{n_{1} r n_{2} R}=\min$
it is min, when

$$
\begin{aligned}
& \sqrt{n_{1} r}=\sqrt{n_{2} R} \\
\Rightarrow n_{1} r= & n_{2} R
\end{aligned}
$$

l is max when $n_{1} r=n_{2} R$.
22. $\mathrm{E}=100 \mathrm{~V}, \mathrm{R}^{\prime}=100 \mathrm{k} \Omega=100000 \Omega$
$R=1-100$
When no other resister is added or $\mathrm{R}=0$.
$i=\frac{E}{R^{\prime}}=\frac{100}{100000}=0.001 \mathrm{Amp}$
When $R=1$
$i=\frac{100}{100000+1}=\frac{100}{100001}=0.0009 \mathrm{~A}$
When $R=100$
$i=\frac{100}{100000+100}=\frac{100}{100100}=0.000999 \mathrm{~A}$.
Upto $\mathrm{R}=100$ the current does not upto 2 significant digits. Thus it proved.
23. $A_{1}=2.4 \mathrm{~A}$

Since A_{1} and A_{2} are in parallel,
$\Rightarrow 20 \times 2.4=30 \times X$
$\Rightarrow X=\frac{20 \times 2.4}{30}=1.6 \mathrm{~A}$.
Reading in Ammeter A_{2} is 1.6 A .
$A_{3}=A_{1}+A_{2}=2.4+1.6=4.0 \mathrm{~A}$.

24.

$\mathrm{i}_{\text {min }}=\frac{5.5 \times 3}{110}=0.15$

$\mathrm{i}_{\max }=\frac{5.5 \times 3}{20}=\frac{16.5}{20}=0.825$.
25. a) $R_{\text {eff }}=\frac{180}{3}=60 \Omega$

$$
i=60 / 60=1 A
$$

b) $R_{\text {eff }}=\frac{180}{2}=90 \Omega$

$$
\mathrm{i}=60 / 90=0.67 \mathrm{~A}
$$

c) $R_{\text {eff }}=180 \Omega \Rightarrow i=60 / 180=0.33 \mathrm{~A}$
26. Max. $R=(20+50+100) \Omega=170 \Omega$
$\operatorname{Min} R=\frac{1}{\left(\frac{1}{20}+\frac{1}{50}+\frac{1}{100}\right)}=\frac{100}{8}=12.5 \Omega$.
27. The various resistances of the bulbs $=\frac{\mathrm{V}^{2}}{\mathrm{P}}$

Resistances are $\frac{(15)^{2}}{10}, \frac{(15)^{2}}{10}, \frac{(15)^{2}}{15}=45,22.5,15$.
Since two resistances when used in parallel have resistances less than both.
The resistances are 45 and 22.5.
28. $i_{1} \times 20=i_{2} \times 10$
$\Rightarrow \frac{i_{1}}{i_{2}}=\frac{10}{20}=\frac{1}{2}$

$$
\mathrm{i}_{1}=4 \mathrm{~mA}, \mathrm{i}_{2}=8 \mathrm{~mA}
$$

Current in $20 \mathrm{~K} \Omega$ resistor $=4 \mathrm{~mA}$
Current in $10 \mathrm{~K} \Omega$ resistor $=8 \mathrm{~mA}$
Current in $100 \mathrm{~K} \Omega$ resistor $=12 \mathrm{~mA}$
$\mathrm{V}=\mathrm{V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3}$

$$
\begin{aligned}
& =5 \mathrm{~K} \Omega \times 12 \mathrm{~mA}+10 \mathrm{~K} \Omega \times 8 \mathrm{~mA}+100 \mathrm{~K} \Omega \times 12 \mathrm{~mA} \\
& =60+80+1200=1340 \text { volts } .
\end{aligned}
$$

29. $R_{1}=R, i_{1}=5 A$
$R_{2}=\frac{10 R}{10+R}, i_{2}=6 A$
Since potential constant,
$\mathrm{i}_{1} \mathrm{R}_{1}=\mathrm{i}_{2} \mathrm{R}_{2}$
$\Rightarrow 5 \times R=\frac{6 \times 10 R}{10+R}$
$\Rightarrow(10+R) 5=60$
$\Rightarrow 5 R=10 \Rightarrow R=2 \Omega$.
30.

Eq. Resistance $=r / 3$.
31. a) $\mathrm{R}_{\text {eff }}=\frac{\frac{15 \times 5}{6} \times \frac{15}{6}}{\frac{15 \times 5}{6}+\frac{15}{6}}=\frac{\frac{15 \times 5 \times 15}{6 \times 6}}{\frac{75+15}{6}}$

$$
=\frac{15 \times 5 \times 15}{6 \times 90}=\frac{25}{12}=2.08 \Omega
$$

b) Across AC,

$$
\begin{aligned}
& R_{\text {eff }}=\frac{\frac{15 \times 4}{6} \times \frac{15 \times 2}{6}}{\frac{15 \times 4}{6}+\frac{15 \times 2}{6}}=\frac{\frac{15 \times 4 \times 15 \times 2}{6 \times 6}}{\frac{60+30}{6}} \\
& =\frac{15 \times 4 \times 15 \times 2}{6 \times 90}=\frac{10}{3}=3.33 \Omega
\end{aligned}
$$

c) Across AD,

$$
\begin{aligned}
& R_{\text {eff }}=\frac{\frac{15 \times 3}{6} \times \frac{15 \times 3}{6}}{\frac{15 \times 3}{6}+\frac{15 \times 3}{6}}=\frac{\frac{15 \times 3 \times 15 \times 3}{6 \times 6}}{\frac{60+30}{6}} \\
& =\frac{15 \times 3 \times 15 \times 3}{6 \times 90}=\frac{15}{4}=3.75 \Omega .
\end{aligned}
$$

32. a) When S is open
$R_{\text {eq }}=(10+20) \Omega=30 \Omega$.
$\mathrm{i}=$ When S is closed,
$R_{\text {eq }}=10 \Omega$
$\mathrm{i}=(3 / 10) \Omega=0.3 \Omega$.

33. a) Current through (1) 4Ω resistor $=0$
b) Current through (2) and (3)
net $E=4 V-2 V=2 V$
(2) and (3) are in series,

$$
\begin{aligned}
& \mathrm{R}_{\text {eff }}=4+6=10 \Omega \\
& \mathrm{i}=2 / 10=0.2 \mathrm{~A}
\end{aligned}
$$

Current through (2) and (3) are 0.2 A.
34. Let potential at the point be $x V$.
$(30-x)=10 i_{1}$
$(x-12)=20 \mathrm{i}_{2}$
$(x-2)=30 i_{3}$
$\mathrm{i}_{1}=\mathrm{i}_{2}+\mathrm{i}_{3}$
$\Rightarrow \frac{30-x}{10}=\frac{x-12}{20}+\frac{x-2}{30}$

$\Rightarrow 30-x=\frac{x-12}{2}+\frac{x-2}{3}$
$\Rightarrow 30-x=\frac{3 x-36+2 x-4}{6}$
$\Rightarrow 180-6 x=5 x-40$
$\Rightarrow 11 x=220 \Rightarrow x=220 / 11=20 \mathrm{~V}$.
$i_{1}=\frac{30-20}{10}=1 \mathrm{~A}$
$\mathrm{i}_{2}=\frac{20-12}{20}=0.4 \mathrm{~A}$
$\mathrm{i}_{3}=\frac{20-2}{30}=\frac{6}{10}=0.6 \mathrm{~A}$.
35. a) Potential difference between terminals of ' a ' is 10 V .
i through $a=10 / 10=1 \mathrm{~A}$
Potential different between terminals of b is $10-10=0 \mathrm{~V}$
i through $b=0 / 10=0 \mathrm{~A}$
b) Potential difference across ' a ' is 10 V
ithrough $a=10 / 10=1 \mathrm{~A}$
Potential different between terminals of b is $10-10=0 \mathrm{~V}$
ithrough $b=0 / 10=0 \mathrm{~A}$

36. a) In circuit, $A B$ ba A

$$
\begin{aligned}
& E_{2}+i R_{2}+i_{1} R_{3}=0 \\
& \text { In circuit, } i_{1} R_{3}+E_{1}-\left(i-i_{1}\right) R_{1}=0 \\
& \Rightarrow i_{1} R_{3}+E_{1}-i R_{1}+i_{1} R_{1}=0 \\
& {\left[\begin{array}{l}
\left.i R_{2}+i_{1} R_{3} \quad=-E_{2}\right] R_{1} \\
{\left[i R_{2}-i_{1}\left(R_{1}+R_{3}\right)=E_{1}\right] R_{2}}
\end{array} \begin{array}{l}
\begin{array}{l}
i R_{2} R_{1}+i_{1} R_{3} R_{1} \\
i R_{2} R_{1}-i_{1} R_{2}\left(R_{1}+R_{3}\right) \quad=-E_{2} R_{1} \\
=E_{1} R_{2}
\end{array} \\
\left.\quad \begin{array}{l}
i R_{3} R_{1}+i_{1} R_{2} R_{1}+i_{1} R_{2} R_{3}=E_{1} R_{2}-E_{2} R_{1} \\
\Rightarrow i_{1}\left(R_{3} R_{1}+R_{2} R_{1}+R_{2} R_{3}\right)=E_{1} R_{2}-E_{2} R_{1} \\
\Rightarrow i_{1}=\frac{E_{1} R_{2}-E_{2} R_{1}}{R_{3} R_{1}+R_{2} R_{1}+R_{2} R_{3}} \\
\Rightarrow \frac{E_{1} R_{2} R_{3}-E_{2} R_{1} R_{3}}{R_{3} R_{1}+R_{2} R_{1}+R_{2} R_{3}}=\left(\frac{E_{1}}{R_{1}}-\frac{E_{2}}{R_{2}}\right. \\
\frac{1}{R_{2}}+\frac{1}{R_{1}}+\frac{1}{R_{3}}
\end{array}\right)
\end{array}\right.}
\end{aligned}
$$

b) \therefore Same as a

37. In circuit ABDCA,

$$
\begin{equation*}
i_{1}+2-3+i=0 \tag{1}
\end{equation*}
$$

$\Rightarrow \mathrm{i}+\mathrm{i}_{1}-1=0$
In circuit CFEDC,

$$
\left(i-i_{1}\right)+1-3+i=0
$$

$\Rightarrow 2 \mathrm{i}-\mathrm{i}_{1}-2=0$
From (1) and (2)

$$
3 i=3 \Rightarrow i=1 A
$$

$i_{1}=1-i=0 A$
$i-i_{1}=1-0=1 \mathrm{~A}$
Potential difference between A and B

$$
=\mathrm{E}-\mathrm{ir}=3-1.1=2 \mathrm{~V}
$$

38. In the circuit ADCBA,

$$
3 i+6 i_{1}-4.5=0
$$

In the circuit GEFCG,

$$
\begin{array}{rlc}
& 3 i+6 i_{1}=4.5= & 10 i_{-}-10 i_{1}-6 i_{1}=-3 \\
\Rightarrow & {\left[10 i_{i}-16 i_{1}=-3\right] 3} & \ldots(1) \\
& {\left[3 i+6 i_{1}=4.5\right] 10} & \ldots(2) \tag{2}
\end{array}
$$

From (1) and (2)
$-108 \mathrm{i}_{1}=-54$
$\Rightarrow \mathrm{i}_{1}=\frac{54}{108}=\frac{1}{2}=0.5$

$$
3 i+6 \times 1 / 2-4.5=0
$$

$$
3 i-1.5=0 \Rightarrow i=0.5
$$

Current through 10Ω resistor $=0 \mathrm{~A}$.
39. In AHGBA,

$$
\begin{aligned}
& 2+\left(i-i_{1}\right)-2=0 \\
\Rightarrow & i-i_{1}=0
\end{aligned}
$$

In circuit CFEDC,

$$
-\left(\mathrm{i}_{1}-\mathrm{i}_{2}\right)+2+\mathrm{i}_{2}-2=0
$$

$\Rightarrow \mathrm{i}_{2}-\mathrm{i}_{1}+\mathrm{i}_{2}=0 \Rightarrow 2 \mathrm{i}_{2}-\mathrm{i}_{1}=0$.
In circuit BGFCB,

$$
\begin{align*}
& -\left(i_{1}-i_{2}\right)+2+\left(i_{1}-i_{2}\right)-2=0 \\
\Rightarrow & i_{1}-i+i_{1}-i_{2}=0 \tag{1}\\
\Rightarrow & \Rightarrow 2 i_{1}-i-i_{1}-\left(i-i_{1}\right)-i_{2}=0 \tag{2}
\end{align*} \quad \Rightarrow i_{1}-i_{2}=0, ~ l
$$

$\therefore \mathrm{i}_{1}-\mathrm{i}_{2}=0$
From (1) and (2)
Current in the three resistors is 0 .
40.

For an value of R, the current in the branch is 0 .
41. a) $R_{\text {eff }}=\frac{(2 r / 2) \times r}{(2 r / 2)+r}$

$$
=\frac{r^{2}}{2 r}=\frac{r}{2}
$$

b) At 0 current coming to the junction is current going from $\mathrm{BO}=$ Current going along OE.
Current on CO = Current on OD
Thus it can be assumed that current coming in OC goes in OB.

Thus the figure becomes

$$
\begin{aligned}
& {\left[r+\left(\frac{2 r \cdot r}{3 r}\right)+r\right]=2 r+\frac{2 r}{3}=\frac{8 r}{3}} \\
& R_{\text {eff }}=\frac{(8 r / 6) \times 2 r}{(8 r / 6)+2 r}=\frac{8 r^{2} / 3}{20 r / 6}=\frac{8 r^{2}}{3} \times \frac{6}{20}=\frac{8 r}{10}=4 r .
\end{aligned}
$$

42.

$\mathrm{I}=\frac{6}{15}=\frac{2}{5}=0.4 \mathrm{~A}$.
43. a) Applying Kirchoff's law,

$$
\begin{aligned}
& 10 \mathrm{i}-6+5 \mathrm{i}-12=0 \\
\Rightarrow & 10 \mathrm{i}+5 \mathrm{i}=18 \\
\Rightarrow & 15 \mathrm{i}=18 \\
\Rightarrow & \mathrm{i}=\frac{18}{15}=\frac{6}{5}=1.2 \mathrm{~A} .
\end{aligned}
$$

b) Potential drop across 5Ω resistor, i $5=1.2 \times 5 \mathrm{~V}=6 \mathrm{~V}$
c) Potential drop across 10Ω resistor

$$
\mathrm{i} 10=1.2 \times 10 \mathrm{~V}=12 \mathrm{~V}
$$

d) $10 i-6+5 i-12=0$
$\Rightarrow 10 i+5 i=18$
$\Rightarrow 15 i=18$
$\Rightarrow \mathrm{i}=\frac{18}{15}=\frac{6}{5}=1.2 \mathrm{~A}$.

Potential drop across 5Ω resistor $=6 \mathrm{~V}$
Potential drop across 10Ω resistor $=12 \mathrm{~V}$
44. Taking circuit ABHGA,
$\frac{i}{3 r}+\frac{i}{6 r}+\frac{i}{3 r}=V$
$\Rightarrow\left(\frac{2 i}{3}+\frac{i}{6}\right) r=V$
$\Rightarrow V=\frac{5 i}{6} r$
$\Rightarrow R_{\text {eff }}=\frac{V}{i}=\frac{5}{6 r}$

45. $R_{\text {eff }}=\frac{\left(\frac{2 r}{3}+r\right) r}{\left(\frac{2 r}{3}+r+r\right)}=\frac{5 r}{8}$

$R_{\text {eff }}=\frac{r}{3}+r=\frac{4 r}{3}$
$R_{\text {eff }}=\frac{2 r}{2}=r$
$R_{\text {eff }}=\frac{r}{4}$

$$
R_{\text {eff }}=r
$$

46. a) Let the equation resistance of the combination be R.

$$
\begin{aligned}
& \left(\frac{2 R}{R+2}\right)+1=R \\
\Rightarrow & \frac{2 R+R+2}{R+2}=R \Rightarrow 3 R+2=R^{2}+2 R \\
\Rightarrow & R^{2}-R-2=0 \\
\Rightarrow & R=\frac{+1 \pm \sqrt{1+4.1 .2}}{2.1}=\frac{1 \pm \sqrt{9}}{2}=\frac{1 \pm 3}{2}=2 \Omega
\end{aligned}
$$

b) Total current sent by battery $=\frac{6}{R_{\text {eff }}}=\frac{6}{2}=3$

$$
\text { Potential between } A \text { and } B
$$

$3.1+2 . i=6$

$\Rightarrow 3+2 \mathrm{i}=6 \Rightarrow 2 \mathrm{i}=3$
$\Rightarrow \mathrm{i}=1.5 \mathrm{a}$
47. a) In circuit ABFGA,

$$
\mathrm{i}_{1} 50+2 \mathrm{i}+\mathrm{i}-4.3=0
$$

$$
\begin{equation*}
\Rightarrow 50 i_{1}+3 i=4.3 \tag{1}
\end{equation*}
$$

In circuit BEDCB,

$$
50 i_{1}-\left(i-i_{1}\right) 200=0
$$

$$
\Rightarrow 50 \mathrm{i}_{1}-200 \mathrm{i}+200 \mathrm{i}_{1}=0
$$

$$
\Rightarrow 250 \mathrm{i}_{1}-200 \mathrm{i}=0
$$

$$
\begin{equation*}
\Rightarrow 50 \mathrm{i}_{1}-40 \mathrm{i}=0 \tag{2}
\end{equation*}
$$

From (1) and (2)
$43 \mathrm{i}=4.3 \quad \Rightarrow \mathrm{i}=0.1$
$5 i_{1}=4 \times i=4 \times 0.1 \quad \Rightarrow i_{1}=\frac{4 \times 0.1}{5}=0.08 \mathrm{~A}$.
Ammeter reads a current $=\mathrm{i}=0.1 \mathrm{~A}$.
Voltmeter reads a potential difference equal to $\mathrm{i}_{1} \times 50=0.08 \times 50=4 \mathrm{~V}$.
b) In circuit ABEFA,
$50 i_{1}+2 i_{1}+1 i-4.3=0$
$\Rightarrow 52 \mathrm{i}_{1}+\mathrm{i}=4.3$
$\Rightarrow 200 \times 52 \mathrm{i}_{1}+200 \mathrm{i}=4.3 \times 200$
In circuit BCDEB,
$\left(\mathrm{i}-\mathrm{i}_{1}\right) 200-\mathrm{i}_{1} 2-\mathrm{i}_{1} 50=0$
$\Rightarrow 200 \mathrm{i}-200 \mathrm{i}_{1}-2 \mathrm{i}_{1}-50 \mathrm{i}_{1}=0$
$\Rightarrow 200 \mathrm{i}-252 \mathrm{i}_{1}=0$

From (1) and (2)
$\mathrm{i}_{1}(10652)=4.3 \times 2 \times 100$
$\Rightarrow i_{1}=\frac{4.3 \times 2 \times 100}{10652}=0.08$
$\mathrm{i}=4.3-52 \times 0.08=0.14$
Reading of the ammeter $=0.08 \mathrm{a}$
Reading of the voltmeter $=\left(i-i_{1}\right) 200=(0.14-0.08) \times 200=12 \mathrm{~V}$.
48. a) $\mathrm{R}_{\text {eff }}=\frac{100 \times 400}{500}+200=280$

$$
\begin{aligned}
& i=\frac{84}{280}=0.3 \\
& 100 i=(0.3-i) 400 \\
\Rightarrow & i=1.2-4 i \\
\Rightarrow & 5 i=1.2 \Rightarrow i=0.24
\end{aligned}
$$

Voltage measured by the voltmeter $=\frac{0.24 \times 100}{24 \mathrm{~V}}$
b) If voltmeter is not connected

$$
\begin{aligned}
& R_{\text {eff }}=(200+100)=300 \Omega \\
& i=\frac{84}{300}=0.28 \mathrm{~A}
\end{aligned}
$$

Voltage across $100 \Omega=(0.28 \times 100)=28 \mathrm{~V}$.
49. Let resistance of the voltmeter be $\mathrm{R} \Omega$.
$R_{1}=\frac{50 R}{50+R}, R_{2}=24$
Both are in series.

$$
\begin{aligned}
& 30=V_{1}+V_{2} \\
& \Rightarrow 30=i R_{1}+i R_{2} \\
& \Rightarrow 30-i R_{2}=i R_{1} \\
& \Rightarrow i R_{1}=30-\frac{30}{R_{1}+R_{2}} R_{2} \\
& \Rightarrow V_{1}=30\left(1-\frac{R_{2}}{R_{1}+R_{2}}\right) \\
& \Rightarrow V_{1}=30\left(\frac{R_{1}}{R_{1}+R_{2}}\right)
\end{aligned}
$$

$$
\Rightarrow 18=30\left(\frac{50 R}{50+R\left(\frac{50 R}{50+R}+24\right)}\right)
$$

$$
\Rightarrow 18=30\left(\frac{50 R \times(50+R)}{(50+R)+(50 R+24)(50+R)}\right)=\frac{30(50 R)}{50 R+1200+24 R}
$$

$$
\Rightarrow 18=\frac{30 \times 50 \times R}{74 R+1200}=18(74 R+1200)=1500 R
$$

$$
\Rightarrow 1332 R+21600=1500 R \Rightarrow 21600=1.68 R
$$

$$
\Rightarrow R=21600 / 168=128.57
$$

50. Full deflection current $=10 \mathrm{~mA}=\left(10 \times 10^{-3}\right) \mathrm{A}$
$R_{\text {eff }}=(575+25) \Omega=600 \Omega$
$V=R_{\text {eff }} \times i=600 \times 10 \times 10^{-3}=6 \mathrm{~V}$.
51. $G=25 \Omega, \lg =1 \mathrm{ma}, \mathrm{I}=2 \mathrm{~A}, \mathrm{~S}=$?

Potential across A B is same

$$
\begin{aligned}
& 25 \times 10^{-3}=\left(2-10^{-3}\right) S \\
\Rightarrow & S=\frac{25 \times 10^{-3}}{2-10^{-3}}=\frac{25 \times 10^{-3}}{1.999} \\
= & 12.5 \times 10^{-3}=1.25 \times 10^{-2}
\end{aligned}
$$

52. $R_{\text {eff }}=(1150+50) \Omega=1200 \Omega$
$\mathrm{i}=(12 / 1200) \mathrm{A}=0.01 \mathrm{~A}$.
(The resistor of 50Ω can tolerate)
Let R be the resistance of sheet used.
The potential across both the resistors is same.
$0.01 \times 50=1.99 \times R$
$\Rightarrow R=\frac{0.01 \times 50}{1.99}=\frac{50}{199}=0.251 \Omega$.

53. If the wire is connected to the potentiometer wire so that $\frac{R_{A D}}{R_{D B}}=\frac{8}{12}$, then according to wheat stone's
 bridge no current will flow through galvanometer.
$\frac{R_{A B}}{R_{D B}}=\frac{L_{A B}}{L_{B}}=\frac{8}{12}=\frac{2}{3}$ (Acc. To principle of potentiometer).

$$
\mathrm{I}_{\mathrm{AB}}+\mathrm{I}_{\mathrm{DB}}=40 \mathrm{~cm}
$$

$\Rightarrow I_{D B} 2 / 3+I_{D B}=40 \mathrm{~cm}$
$\Rightarrow(2 / 3+1) \mathrm{l}_{\mathrm{DB}}=40 \mathrm{~cm}$

$\Rightarrow 5 / 3 \mathrm{I}_{\mathrm{DB}}=40 \Rightarrow \mathrm{~L}_{\mathrm{DB}}=\frac{40 \times 3}{5}=24 \mathrm{~cm}$.
$I_{A B}=(40-24) \mathrm{cm}=16 \mathrm{~cm}$.
54. The deflections does not occur in galvanometer if the condition is a balanced wheatstone bridge.
Let Resistance / unit length $=r$.
Resistance of 30 m length $=30 \mathrm{r}$.
Resistance of 20 m length $=20 \mathrm{r}$.
For balanced wheatstones bridge $=\frac{6}{R}=\frac{30 r}{20 r}$

$\Rightarrow 30 \mathrm{R}=20 \times 6 \Rightarrow \mathrm{R}=\frac{20 \times 6}{30}=4 \Omega$.
55. a) Potential difference between A and B is 6 V .
B is at 0 potential.
Thus potential of A point is 6 V .
The potential difference between Ac is 4 V .
$V_{A}-V_{C}=0.4$
$V_{C}=V_{A}-4=6-4=2 \mathrm{~V}$.

b) The potential at $\mathrm{D}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{AD}}=4 \mathrm{~V}$; $\mathrm{V}_{\mathrm{BD}}=\mathrm{OV}$ Current through the resisters R_{1} and R_{2} are equal.
Thus, $\frac{4}{\mathrm{R}_{1}}=\frac{2}{\mathrm{R}_{2}}$
$\Rightarrow \frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}=2$
$\Rightarrow \frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}=2$ (Acc. to the law of potentiometer)
$I_{1}+I_{2}=100 \mathrm{~cm}$
$\Rightarrow I_{1}+\frac{l_{1}}{2}=100 \mathrm{~cm} \Rightarrow \frac{3 l_{1}}{2}=100 \mathrm{~cm}$
$\Rightarrow I_{1}=\frac{200}{3} \mathrm{~cm}=66.67 \mathrm{~cm}$.
$A D=66.67 \mathrm{~cm}$
c) When the points C and D are connected by a wire current flowing through it is 0 since the points are equipotential.
d) Potential at $A=6 \mathrm{v}$

Potential at $\mathrm{C}=6-7.5=-1.5 \mathrm{~V}$
The potential at $B=0$ and towards A potential increases.
Thus -ve potential point does not come within the wire.
56. Resistance per unit length $=\frac{15 r}{6}$

For length $x, R x=\frac{15 r}{6} \times x$
a) For the loop PASQ $\left(i_{1}+i_{2}\right) \frac{15}{6} r x+\frac{15}{6}(6-x) i_{1}+i_{1} R=E$

For the loop AWTM, $-\mathrm{i}_{2} \cdot R-\frac{15}{6} r x\left(\mathrm{i}_{1}+\mathrm{i}_{2}\right)=\mathrm{E} / 2$
$\Rightarrow \mathrm{i}_{2} \mathrm{R}+\frac{15}{6} \mathrm{r} \times\left(\mathrm{i}_{1}+\mathrm{i}_{2}\right)=\mathrm{E} / 2$
For zero deflection galvanometer $\mathrm{i}_{2}=0 \Rightarrow \frac{15}{6} r x . i_{1}=E / 2=i_{1}=\frac{E}{5 x \cdot r}$
Putting $i_{1}=\frac{E}{5 x \cdot r}$ and $i_{2}=0$ in equation (1), we get $x=320 \mathrm{~cm}$.
b) Putting $x=5.6$ and solving equation (1) and (2) we get $i_{2}=\frac{3 E}{22 r}$.
57. In steady stage condition no current flows through the capacitor.
$R_{\text {eff }}=10+20=30 \Omega$
$i=\frac{2}{30}=\frac{1}{15} \mathrm{~A}$
Voltage drop across 10Ω resistor $=\mathrm{i} \times \mathrm{R}$

$$
=\frac{1}{15} \times 10=\frac{10}{15}=\frac{2}{3} V
$$

Charge stored on the capacitor $(Q)=C V$

$$
=6 \times 10^{-6} \times 2 / 3=4 \times 10^{-6} \mathrm{C}=4 \mu \mathrm{C} .
$$

58. Taking circuit, $A B C D A$,

$$
\begin{align*}
& 10 \mathrm{i}+20\left(\mathrm{i}-\mathrm{i}_{1}\right)-5=0 \\
\Rightarrow & 10 \mathrm{i}+20 \mathrm{i}-20 \mathrm{i}_{1}-5=0 \\
\Rightarrow & 30 \mathrm{i}-20 \mathrm{i}_{1}-5=0 \tag{1}
\end{align*}
$$

Taking circuit ABFEA,

$20\left(\mathrm{i}-\mathrm{i}_{1}\right)-5-10 \mathrm{i}_{1}=0$
$\Rightarrow 10 \mathrm{i}-20 \mathrm{i}_{1}-10 \mathrm{i}_{1}-5=0$
$\Rightarrow 20 \mathrm{i}-30 \mathrm{i}_{1}-5=0$
From (1) and (2)
$(90-40) i_{1}=0$
$\Rightarrow \mathrm{i}_{1}=0$
$30 i-5=0$
$\Rightarrow \mathrm{i}=5 / 30=0.16 \mathrm{~A}$
Current through 20Ω is 0.16 A .
59. At steady state no current flows through the capacitor.
$R_{\text {eq }}=\frac{3 \times 6}{3+6}=2 \Omega$.
$i=\frac{6}{2}=3$.
Since current is divided in the inverse ratio of the resistance in each branch, thus 2Ω will pass through $1,2 \Omega$ branch and 1 through $3,3 \Omega$ branch

$$
V_{A B}=2 \times 1=2 V
$$

Q on $1 \mu \mathrm{~F}$ capacitor $=2 \times 1 \mu \mathrm{C}=2 \mu \mathrm{C}$

$V_{B C}=2 \times 2=4 \mathrm{~V}$.
Q on $2 \mu \mathrm{~F}$ capacitor $=4 \times 2 \mu \mathrm{c}=8 \mu \mathrm{C}$

$$
V_{D E}=1 \times 3=2 V
$$

Q on $4 \mu \mathrm{~F}$ capacitor $=3 \times 4 \mu \mathrm{c}=12 \mu \mathrm{C}$

$$
V_{F E}=3 \times 1=V
$$

Q across $3 \mu \mathrm{~F}$ capacitor $=3 \times 3 \mu \mathrm{c}=9 \mu \mathrm{C}$.
60. $C_{\text {eq }}=[(3 \mu f p 3 \mu f) s(1 \mu f p 1 \mu f)] p(1 \mu f)$

$$
=[(3+3) \mu \mathrm{f} s(2 \mu \mathrm{f})] \mathrm{p} 1 \mu \mathrm{f}
$$

$$
=3 / 2+1=5 / 2 \mu f
$$

$\mathrm{V}=100 \mathrm{~V}$
$Q=C V=5 / 2 \times 100=250 \mu c$
Charge stored across $1 \mu \mathrm{f}$ capacitor $=100 \mu \mathrm{c}$
$C_{\text {eq }}$ between A and B is $6 \mu f=C$
Potential drop across $\mathrm{AB}=\mathrm{V}=\mathrm{Q} / \mathrm{C}=25 \mathrm{~V}$

Potential drop across $\mathrm{BC}=75 \mathrm{~V}$.
61. a) Potential difference $=E$ across resistor
b) Current in the circuit $=E / R$
c) Pd. Across capacitor $=E / R$
d) Energy stored in capacitor $=\frac{1}{2} C E^{2}$

e) Power delivered by battery $=E \times I=E \times \frac{E}{R}=\frac{E^{2}}{R}$
f) Power converted to heat $=\frac{E^{2}}{R}$
62. $\mathrm{A}=20 \mathrm{~cm}^{2}=20 \times 10^{-4} \mathrm{~m}^{2}$
$\mathrm{d}=1 \mathrm{~mm}=1 \times 10^{-3} \mathrm{~m} ; R=10 \mathrm{~K} \Omega$
$\mathrm{C}=\frac{\mathrm{E}_{0} \mathrm{~A}}{\mathrm{~d}}=\frac{8.85 \times 10^{-12} \times 20 \times 10^{-4}}{1 \times 10^{-3}}$

$$
=\frac{8.85 \times 10^{-12} \times 2 \times 10^{-3}}{10^{-3}}=17.7 \times 10^{-2} \mathrm{Farad}
$$

Time constant $=C R=17.7 \times 10^{-2} \times 10 \times 10^{3}$

$$
=17.7 \times 10^{-8}=0.177 \times 10^{-6} \mathrm{~s}=0.18 \mu \mathrm{~s} .
$$

63. $\mathrm{C}=10 \mu \mathrm{~F}=10^{-5} \mathrm{~F}, \mathrm{emf}=2 \mathrm{~V}$
$\mathrm{t}=50 \mathrm{~ms}=5 \times 10^{-2} \mathrm{~s}, \mathrm{q}=\mathrm{Q}\left(1-\mathrm{e}^{-\mathrm{tRC}}\right)$
$Q=C V=10^{-5} \times 2$
$\mathrm{q}=12.6 \times 10^{-6} \mathrm{~F}$
$\Rightarrow 12.6 \times 10^{-6}=2 \times 10^{-5}\left(1-\mathrm{e}^{-5 \times 10^{-2} / \mathrm{R} \times 10^{-5}}\right)$
$\Rightarrow \frac{12.6 \times 10^{-6}}{2 \times 10^{-5}}=1-\mathrm{e}^{-5 \times 10^{-2} / \mathrm{R} \times 10^{-5}}$
$\Rightarrow 1-0.63=\mathrm{e}^{-5 \times 10^{3} / \mathrm{R}}$
$\Rightarrow \frac{-5000}{R}=\ln 0.37$
$\Rightarrow R=\frac{5000}{0.9942}=5028 \Omega=5.028 \times 10^{3} \Omega=5 \mathrm{~K} \Omega$.
64. $C=20 \times 10^{-6} \mathrm{~F}, \mathrm{E}=6 \mathrm{~V}, \mathrm{R}=100 \Omega$
$\mathrm{t}=2 \times 10^{-3} \mathrm{sec}$
$q=E C\left(1-e^{-t / R C}\right)$

$$
\begin{aligned}
& =6 \times 20 \times 10^{-6}\left(1-\mathrm{e}^{\frac{-2 \times 10^{-3}}{100 \times 20 \times 10^{-6}}}\right) \\
& =12 \times 10^{-5}\left(1-\mathrm{e}^{-1}\right)=7.12 \times 0.63 \times 10^{-5}=7.56 \times 10^{-5} \\
& =75.6 \times 10^{-6}=76 \mu \mathrm{c} .
\end{aligned}
$$

65. $C=10 \mu F, Q=60 \mu C, R=10 \Omega$
a) at $t=0, q=60 \mu \mathrm{c}$
b) at $t=30 \mu \mathrm{~s}, \mathrm{q}=\mathrm{Q} \mathrm{e}^{-\mathrm{t} R \mathrm{RC}}$

$$
=60 \times 10^{-6} \times \mathrm{e}^{-0.3}=44 \mu \mathrm{c}
$$

c) at $t=120 \mu \mathrm{~s}, \mathrm{q}=60 \times 10^{-6} \times \mathrm{e}^{-1.2}=18 \mu \mathrm{c}$
d) at $\mathrm{t}=1.0 \mathrm{~ms}, \mathrm{q}=60 \times 10^{-6} \times \mathrm{e}^{-10}=0.00272=0.003 \mu \mathrm{c}$.
66. $C=8 \mu \mathrm{~F}, \mathrm{E}=6 \mathrm{~V}, \mathrm{R}=24 \Omega$
a) $I=\frac{V}{R}=\frac{6}{24}=0.25 \mathrm{~A}$
b) $q=Q\left(1-e^{-t / R C}\right)$

$$
=\left(8 \times 10^{-6} \times 6\right)\left[1-c^{-1}\right]=48 \times 10^{-6} \times 0.63=3.024 \times 10^{-5}
$$

$V=\frac{Q}{C}=\frac{3.024 \times 10^{-5}}{8 \times 10^{-6}}=3.78$

$$
E=V+i R
$$

$\Rightarrow 6=3.78+\mathrm{i} 24$
$\Rightarrow \mathrm{i}=0.09 \AA$
67. $A=40 \mathrm{~m}^{2}=40 \times 10^{-4}$
$\mathrm{d}=0.1 \mathrm{~mm}=1 \times 10^{-4} \mathrm{~m}$
$\mathrm{R}=16 \Omega$; emf $=2 \mathrm{~V}$
$C=\frac{E_{0} A}{d}=\frac{8.85 \times 10^{-12} \times 40 \times 10^{-4}}{1 \times 10^{-4}}=35.4 \times 10^{-11} \mathrm{~F}$
Now, $E=\frac{Q}{A E_{0}}\left(1-e^{-t / R C}\right)=\frac{C V}{A E_{0}}\left(1-e^{-t / R C}\right)$

$$
=\frac{35.4 \times 10^{-11} \times 2}{40 \times 10^{-4} \times 8.85 \times 10^{-12}}\left(1-\mathrm{e}^{-1.76}\right)
$$

$$
=1.655 \times 10^{-4}=1.7 \times 10^{-4} \mathrm{~V} / \mathrm{m}
$$

68. $A=20 \mathrm{~cm}^{2}, d=1 \mathrm{~mm}, \mathrm{~K}=5, \mathrm{e}=6 \mathrm{~V}$
$R=100 \times 10^{3} \Omega, t=8.9 \times 10^{-5} \mathrm{~s}$
$C=\frac{\mathrm{KE}_{0} \mathrm{~A}}{\mathrm{~d}}=\frac{5 \times 8.85 \times 10^{-12} \times 20 \times 10^{-4}}{1 \times 10^{-3}}$
$=\frac{10 \times 8.85 \times 10^{-3} \times 10^{-12}}{10^{-3}}=88.5 \times 10^{-12}$

$$
\begin{aligned}
q= & E C\left(1-e^{-t / R C}\right) \\
& =6 \times 88.5 \times 10^{-12}\left(1-e^{\frac{-89 \times 10^{-6}}{88.5 \times 10^{-12} \times 10^{4}}}\right)=530.97
\end{aligned}
$$

Energy $=\frac{1}{2} \times \frac{500.97 \times 530}{88.5 \times 10^{-12}}$

$$
=\frac{530.97 \times 530.97}{88.5 \times 2} \times 10^{12}
$$

69. Time constant $R C=1 \times 10^{6} \times 100 \times 10^{6}=100 \mathrm{sec}$
a) $q=V C\left(1-e^{-t / C R}\right)$

$$
\begin{aligned}
I & =\text { Current }=d q / d t=V C .(-) e^{-t / R C},(-1) / R C \\
& =\frac{V}{R} e^{-t / R C}=\frac{V}{R \cdot e^{t / R C}}=\frac{24}{10^{6}} \cdot \frac{1}{e^{t / 100}} \\
& =24 \times 10^{-6} 1 / e^{t / 100} \\
t & =10 \mathrm{~min}, 600 \mathrm{sec} . \\
Q & =24 \times 10+-4 \times\left(1-e^{-6}\right)=23.99 \times 10^{-4} \\
I & =\frac{24}{10^{6}} \cdot \frac{1}{e^{6}}=5.9 \times 10^{-8} \mathrm{Amp} .
\end{aligned}
$$

b) $q=V C\left(1-e^{-t / C R}\right)$
70. $\mathrm{Q} / 2=\mathrm{Q}\left(1-\mathrm{e}^{-\mathrm{t} / C \mathrm{R}}\right)$
$\Rightarrow \frac{1}{2}=\left(1-\mathrm{e}^{-t / C R}\right)$
$\Rightarrow \mathrm{e}^{-t / C R}=1 / 2$
$\Rightarrow \frac{\mathrm{t}}{\mathrm{RC}}=\log 2 \Rightarrow \mathrm{n}=0.69$.
71. $\mathrm{q}=\mathrm{Qe}^{-t / R C}$
$q=0.1 \% Q \quad R C \Rightarrow$ Time constant

$$
=1 \times 10^{-3} \mathrm{Q}
$$

So, $1 \times 10^{-3} \mathrm{Q}=\mathrm{Q} \times \mathrm{e}^{-t / R C}$
$\Rightarrow \mathrm{e}^{-t / R C}=\ln 10^{-3}$
$\Rightarrow \mathrm{t} / \mathrm{RC}=-(-6.9)=6.9$
72. $\mathrm{q}=\mathrm{Q}\left(1-\mathrm{e}^{-\mathrm{n}}\right)$
$\frac{1}{2} \frac{Q^{2}}{C}=$ Initial value ; $\frac{1}{2} \frac{q^{2}}{c}=$ Final value
$\frac{1}{2} \frac{q^{2}}{c} \times 2=\frac{1}{2} \frac{Q^{2}}{C}$
$\Rightarrow q^{2}=\frac{Q^{2}}{2} \Rightarrow q=\frac{Q}{\sqrt{2}}$
$\frac{Q}{\sqrt{2}}=Q\left(1-e^{-n}\right)$
$\Rightarrow \frac{1}{\sqrt{2}}=1-e^{-n} \Rightarrow e^{-n}=1-\frac{1}{\sqrt{2}}$
$\Rightarrow \mathrm{n}=\log \left(\frac{\sqrt{2}}{\sqrt{2}-1}\right)=1.22$
73. Power $=\mathrm{CV}^{2}=\mathrm{Q} \times \mathrm{V}$

Now, $\frac{Q V}{2}=Q V \times e^{-t / R C}$
$\Rightarrow 1 / 2=\mathrm{e}^{-t / R C}$
$\Rightarrow \frac{\mathrm{t}}{\mathrm{RC}}=-\ln 0.5$
$\Rightarrow-(-0.69)=0.69$
74. Let at any time $t, q=E C\left(1-e^{-t / C R}\right)$
$E=$ Energy stored $=\frac{q^{2}}{2 c}=\frac{E^{2} C^{2}}{2 c}\left(1-e^{-t / C R}\right)^{2}=\frac{E^{2} C}{2}\left(1-e^{-t / C R}\right)^{2}$
$R=$ rate of energy stored $=\frac{d E}{d t}=\frac{-E^{2} C}{2}\left(\frac{-1}{R C}\right)^{2}\left(1-e^{-t / R C}\right) e^{-t / R C}=\frac{E^{2}}{C R} \cdot e^{-t / R C}\left(1-e^{-t / C R}\right)$
$\frac{d R}{d t}=\frac{E^{2}}{2 R}\left[\frac{-1}{R C} e^{-t / C R} \cdot\left(1-e^{-t / C R}\right)+(-) \cdot e^{-t / C R(1-/ R C)} \cdot e^{-t / C R}\right]$
$\frac{E^{2}}{2 R}=\left(\frac{-e^{-t / C R}}{R C}+\frac{e^{-2 t / C R}}{R C}+\frac{1}{R C} \cdot e^{-2 t / C R}\right)=\frac{E^{2}}{2 R}\left(\frac{2}{R C} \cdot e^{-2 t / C R}-\frac{e^{-t / C R}}{R C}\right)$
For $R_{\max } d R / d t=0 \Rightarrow 2 . e^{-t / R C}-1=0 \Rightarrow e^{-t / C R}=1 / 2$
$\Rightarrow-t / R C=-n^{2} \Rightarrow t=R C \ln 2$
\therefore Putting $\mathrm{t}=\mathrm{RC} \ln 2$ in equation (1) We get $\frac{\mathrm{dR}}{\mathrm{dt}}=\frac{\mathrm{E}^{2}}{4 \mathrm{R}}$.
75. $C=12.0 \mu F=12 \times 10^{-6}$
$\mathrm{emf}=6.00 \mathrm{~V}, \mathrm{R}=1 \Omega$
$\mathrm{t}=12 \mu \mathrm{c}, \mathrm{i}=\mathrm{i}_{0} \mathrm{e}^{-\mathrm{t} R \mathrm{C}}$
$=\frac{C V}{T} \times \mathrm{e}^{-\mathrm{t} / R C}=\frac{12 \times 10^{-6} \times 6}{12 \times 10^{-6}} \times \mathrm{e}^{-1}$
$=2.207=2.1 \mathrm{~A}$
b) Power delivered by battery

We known, $V=V_{0} e^{-t / R C}$
(where V and V_{0} are potential VI)
$V I=V_{0} I e^{-t / R C}$
$\Rightarrow \mathrm{VI}=\mathrm{V}_{0} \mathrm{I} \times \mathrm{e}^{-1}=6 \times 6 \times \mathrm{e}^{-1}=13.24 \mathrm{~W}$
c) $U=\frac{C V^{2}}{T}\left(e^{-t / R C}\right)^{2} \quad\left[\frac{C V^{2}}{T}=\right.$ energy drawing per unit time $]$

$$
=\frac{12 \times 10^{-6} \times 36}{12 \times 10^{-6}} \times\left(\mathrm{e}^{-1}\right)^{2}=4.872
$$

76. Energy stored at a part time in discharging $=\frac{1}{2} \mathrm{CV}^{2}\left(\mathrm{e}^{-\mathrm{t} / \mathrm{RC}}\right)^{2}$

Heat dissipated at any time
$=($ Energy stored at $t=0)-($ Energy stored at time $t)$
$=\frac{1}{2} C V^{2}-\frac{1}{2} C V^{2}\left(-\mathrm{e}^{-1}\right)^{2}=\frac{1}{2} C V^{2}\left(1-\mathrm{e}^{-2}\right)$
77. $\int i^{2} R d t=\int i_{0}^{2} R e^{-2 t / R C} d t=i_{0}^{2} R \int e^{-2 t / R C} d t$
$=i_{0}^{2} R(-R C / 2) e^{-2 t / R C}=\frac{1}{2} \mathrm{Ci}_{0}^{2} \mathrm{R}^{2} \mathrm{e}^{-2 \mathrm{t} / \mathrm{RC}}=\frac{1}{2} C V^{2}$ (Proved).
78. Equation of discharging capacitor
$=q_{0} e^{-t / R C}=\frac{K \in_{0} A V}{d} e^{\frac{-1}{\left(\rho d K \epsilon_{0} A\right) / A d}}=\frac{K \epsilon_{0} A V}{d} e^{-t / \rho K \epsilon_{0}}$
$\therefore \tau=\rho \mathrm{K} \in_{0}$
\therefore Time constant is $\rho K \epsilon_{0}$ is independent of plate area or separation between the plate.
79. $\mathrm{q}=\mathrm{q}_{0}\left(1-\mathrm{e}^{-\mathrm{t} R \mathrm{C}}\right)$

$$
\begin{aligned}
& =25(2+2) \times 10^{-6}\left(1-\mathrm{e}^{\left.\frac{-0.2 \times 10^{-3}}{25 \times 4 \times 10^{-6}}\right)}\right. \\
& =24 \times 10^{-6}\left(1-\mathrm{e}^{-2}\right)=20.75
\end{aligned}
$$

Charge on each capacitor $=20.75 / 2=10.3$

80. In steady state condition, no current passes through the $25 \mu \mathrm{~F}$ capacitor,
\therefore Net resistance $=\frac{10 \Omega}{2}=5 \Omega$.

$$
\text { Net current }=\frac{12}{5}
$$

Potential difference across the capacitor $=5$
Potential difference across the 10Ω resistor

$$
=12 / 5 \times 10=24 \mathrm{~V}
$$

$\mathrm{q}=\mathrm{Q}\left(\mathrm{e}^{-t / R C}\right)=\mathrm{V} \times \mathrm{C}\left(\mathrm{e}^{-\mathrm{t} / R C}\right)=24 \times 25 \times 10^{-6}\left[\mathrm{e}^{-1 \times 10^{-3} / 10 \times 25 \times 10^{-4}}\right]$

$$
=24 \times 25 \times 10^{-6} e^{-4}=24 \times 25 \times 10^{-6} \times 0.0183=10.9 \times 10^{-6} \mathrm{C}
$$

Charge given by the capacitor after time t.
Current in the 10Ω resistor $=\frac{10.9 \times 10^{-6} \mathrm{C}}{1 \times 10^{-3} \mathrm{sec}}=11 \mathrm{~mA}$.
81. $C=100 \mu \mathrm{~F}, \mathrm{emf}=6 \mathrm{~V}, \mathrm{R}=20 \mathrm{~K} \Omega, \mathrm{t}=4 \mathrm{~S}$.

Charging : $Q=C V\left(1-e^{-t / R C}\right) \quad\left[\frac{-t}{R C}=\frac{4}{2 \times 10^{4} \times 10^{-4}}\right]$
$=6 \times 10^{-4}\left(1-\mathrm{e}^{-2}\right)=5.187 \times 10^{-4} \mathrm{C}=\mathrm{Q}$
Discharging : $q=Q\left(e^{-t / R C}\right)=5.184 \times 10^{-4} \times \mathrm{e}^{-2}$

$$
=0.7 \times 10^{-4} \mathrm{C}=70 \mu \mathrm{c}
$$

82. $C_{\text {eff }}=\frac{C_{1} C_{2}}{C_{1}+C_{2}}$
$Q=C_{\text {eff }} E\left(1-e^{-t / R C}\right)=\frac{C_{1} C_{2}}{C_{1}+C_{2}} E\left(1-e^{-t / R C}\right)$

83. Let after time t charge on plate B is $+Q$.

Hence charge on plate A is $Q-q$.
$V_{A}=\frac{Q-q}{C}, V_{B}=\frac{q}{C}$
$V_{A}-V_{B}=\frac{Q-q}{C}-\frac{q}{C}=\frac{Q-2 q}{C}$
Current $=\frac{V_{A}-V_{B}}{R}=\frac{Q-2 q}{C R}$

Current $=\frac{d q}{d t}=\frac{Q-2 q}{C R}$
$\Rightarrow \frac{d q}{Q-2 q}=\frac{1}{R C} \cdot d t \Rightarrow \int_{0}^{q} \frac{d q}{Q-2 q}=\frac{1}{R C} \cdot \int_{0}^{t} d t$
$\Rightarrow-\frac{1}{2}[\ln (Q-2 q)-\ln Q]=\frac{1}{R C} \cdot t \Rightarrow \ln \frac{Q-2 q}{Q}=\frac{-2}{R C} \cdot t$
$\Rightarrow Q-2 q=Q e^{-2 t / R C} \Rightarrow 2 q=Q\left(1-e^{-2 t / R C}\right)$
$\Rightarrow q=\frac{Q}{2}\left(1-e^{-2 t / R C}\right)$
84. The capacitor is given a charge Q. It will discharge and the capacitor will be charged up when connected with battery.
Net charge at time $t=Q e^{-t / R C}+Q\left(1-e^{-t / R C}\right)$.

