CHAPTER 28
 HEAT TRANSFER

1. $\mathrm{t}_{1}=90^{\circ} \mathrm{C}, \quad \mathrm{t}_{2}=10^{\circ} \mathrm{C}$
$\mathrm{I}=1 \mathrm{~cm}=1 \times 10^{-3} \mathrm{~m}$
$A=10 \mathrm{~cm} \times 10 \mathrm{~cm}=0.1 \times 0.1 \mathrm{~m}^{2}=1 \times 10^{-2} \mathrm{~m}^{2}$
$\mathrm{K}=0.80 \mathrm{w} / \mathrm{m}-{ }^{\circ} \mathrm{C}$
$\frac{\mathrm{Q}}{\mathrm{t}}=\frac{\mathrm{KA}\left(\theta_{1}-\theta_{2}\right)}{\mathrm{I}}=\frac{8 \times 10^{-1} \times 1 \times 10^{-2} \times 80}{1 \times 10^{-2}}=64 \mathrm{~J} / \mathrm{s}=64 \times 603840 \mathrm{~J}$.

2. $t=1 \mathrm{~cm}=0.01 \mathrm{~m}$,
$\mathrm{A}=0.8 \mathrm{~m}^{2}$
$\theta_{1}=300$,
$\theta_{2}=80$
$K=0.025$,
$\frac{\mathrm{Q}}{\mathrm{t}}=\frac{K A\left(\theta_{1}-\theta_{2}\right)}{\mathrm{l}}=\frac{0.025 \times 0.8 \times(30030)}{0.01}=440$ watt.
3. $\mathrm{K}=0.04 \mathrm{~J} / \mathrm{m}-5^{\circ} \mathrm{C}, \quad \mathrm{A}=1.6 \mathrm{~m}^{2}$
$\mathrm{t}_{1}=97^{\circ} \mathrm{F}=36.1^{\circ} \mathrm{C} \quad \mathrm{t}_{2}=47^{\circ} \mathrm{F}=8.33^{\circ} \mathrm{C}$
$\mathrm{I}=0.5 \mathrm{~cm}=0.005 \mathrm{~m}$
$\frac{\mathrm{Q}}{\mathrm{t}}=\frac{\mathrm{KA}\left(\theta_{1}-\theta_{2}\right)}{\mathrm{l}}=\frac{4 \times 10^{-2} \times 1.6 \times 27.78}{5 \times 10^{-3}}=356 \mathrm{~J} / \mathrm{s}$
4. $\mathrm{A}=25 \mathrm{~cm}^{2}=25 \times 10^{-4} \mathrm{~m}^{2}$
$\mathrm{I}=1 \mathrm{~mm}=10^{-3} \mathrm{~m}$
$\mathrm{K}=50 \mathrm{w} / \mathrm{m}-{ }^{\circ} \mathrm{C}$
$\frac{Q}{t}=$ Rate of conversion of water into steam

$$
=\frac{100 \times 10^{-3} \times 2.26 \times 10^{6}}{1 \mathrm{~min}}=\frac{10^{-1} \times 2.26 \times 10^{6}}{60}=0.376 \times 10^{4}
$$

$\frac{\mathrm{Q}}{\mathrm{t}}=\frac{\mathrm{KA}\left(\theta_{1}-\theta_{2}\right)}{\mathrm{I}} \Rightarrow 0.376 \times 10^{4}=\frac{50 \times 25 \times 10^{-4} \times(\theta-100)}{10^{-3}}$

$$
\Rightarrow \theta=\frac{10^{-3} \times 0.376 \times 10^{4}}{50 \times 25 \times 10^{-4}}=\frac{10^{5} \times 0.376}{50 \times 25}=30.1 \approx 30
$$

5. $\mathrm{K}=46 \mathrm{w} / \mathrm{m}-\mathrm{s}^{\circ} \mathrm{C}$
$\mathrm{I}=1 \mathrm{~m}$
$\mathrm{A}=0.04 \mathrm{~cm}^{2}=4 \times 10^{-6} \mathrm{~m}^{2}$
$L_{\text {fussion ice }}=3.36 \times 10^{5} \mathrm{j} / \mathrm{Kg}$
$\frac{\mathrm{Q}}{\mathrm{t}}=\frac{46 \times 4 \times 10^{-6} \times 100}{1}=5.4 \times 10^{-8} \mathrm{~kg} \approx 5.4 \times 10^{-5} \mathrm{~g}$.

6. $A=2400 \mathrm{~cm}^{2}=2400 \times 10^{-4} \mathrm{~m}^{2}$
$\ell=2 \mathrm{~mm}=2 \times 10^{-3} \mathrm{~m}$
$\mathrm{K}=0.06 \mathrm{w} / \mathrm{m}-{ }^{\circ} \mathrm{C}$
$\theta_{1}=20^{\circ} \mathrm{C}$
$\theta_{2}=0^{\circ} \mathrm{C}$
$\frac{\mathrm{Q}}{\mathrm{t}}=\frac{\mathrm{KA}\left(\theta_{1}-\theta_{2}\right)}{\ell}=\frac{0.06 \times 2400 \times 10^{-4} \times 20}{2 \times 10^{-3}}=24 \times 6 \times 10^{-1} \times 10=24 \times 6=144 \mathrm{~J} / \mathrm{sec}$
Rate in which ice melts $=\frac{\mathrm{m}}{\mathrm{t}}=\frac{\mathrm{Q}}{\mathrm{t} \times \mathrm{L}}=\frac{144}{3.4 \times 10^{5}} \mathrm{Kg} / \mathrm{h}=\frac{144 \times 3600}{3.4 \times 10^{5}} \mathrm{Kg} / \mathrm{s}=1.52 \mathrm{~kg} / \mathrm{s}$.
7. $\ell=1 \mathrm{~mm}=10^{-3} \mathrm{~m} \quad \mathrm{~m}=10 \mathrm{~kg}$
$A=200 \mathrm{~cm}^{2}=2 \times 10^{-2} \mathrm{~m}^{2}$
$\mathrm{L}_{\text {vap }}=2.27 \times 10^{6} \mathrm{~J} / \mathrm{kg}$
$\mathrm{K}=0.80 \mathrm{~J} / \mathrm{m}-\mathrm{s}^{\circ}{ }^{\circ} \mathrm{C}$
$d Q=2.27 \times 10^{6} \times 10$,
$\frac{\mathrm{dQ}}{\mathrm{dt}}=\frac{2.27 \times 10^{7}}{10^{5}}=2.27 \times 10^{2} \mathrm{~J} / \mathrm{s}$
Again we know
$\frac{\mathrm{dQ}}{\mathrm{dt}}=\frac{0.80 \times 2 \times 10^{-2} \times(42-\mathrm{T})}{1 \times 10^{-3}}$
So, $\frac{8 \times 2 \times 10^{-3}(42-\mathrm{T})}{10^{-3}}=2.27 \times 10^{2}$
$\Rightarrow 16 \times 42-16 \mathrm{~T}=227 \Rightarrow \mathrm{~T}=27.8 \approx 28^{\circ} \mathrm{C}$
8. $\mathrm{K}=45 \mathrm{w} / \mathrm{m}-{ }^{\circ} \mathrm{C}$
$\ell=60 \mathrm{~cm}=60 \times 10^{-2} \mathrm{~m}$
$\mathrm{A}=0.2 \mathrm{~cm}^{2}=0.2 \times 10^{-4} \mathrm{~m}^{2}$
Rate of heat flow,
$=\frac{K A\left(\theta_{1}-\theta_{2}\right)}{\ell}=\frac{45 \times 0.2 \times 10^{-4} \times 20}{60 \times 10^{-2}}=30 \times 10^{-3} 0.03 \mathrm{w}$

9. $\mathrm{A}=10 \mathrm{~cm}^{2}$,

$$
\mathrm{h}=10 \mathrm{~cm}
$$

$\frac{\Delta \mathrm{Q}}{\Delta \mathrm{t}}=\frac{\mathrm{KA}\left(\theta_{1}-\theta_{2}\right)}{\ell}=\frac{200 \times 10^{-3} \times 30}{1 \times 10^{-3}}=6000$
Since heat goes out from both surfaces. Hence net heat coming out.
$=\frac{\Delta \mathrm{Q}}{\Delta \mathrm{t}}=6000 \times 2=12000, \quad \frac{\Delta \mathrm{Q}}{\Delta \mathrm{t}}=\mathrm{MS} \frac{\Delta \theta}{\Delta \mathrm{t}}$
$\Rightarrow 6000 \times 2=10^{-3} \times 10^{-1} \times 1000 \times 4200 \times \frac{\Delta \theta}{\Delta \mathrm{t}}$
$\Rightarrow \frac{\Delta \theta}{\Delta \mathrm{t}}=\frac{72000}{420}=28.57$
So, in $1 \mathrm{Sec} .28 .57^{\circ} \mathrm{C}$ is dropped
Hence for drop of $1^{\circ} \mathrm{C} \frac{1}{28.57}$ sec. $=0.035$ sec. is required
10. $\ell=20 \mathrm{~cm}=20 \times 10^{-2} \mathrm{~m}$
$A=0.2 \mathrm{~cm}^{2}=0.2 \times 10^{-4} \mathrm{~m}^{2}$
$\theta_{1}=80^{\circ} \mathrm{C}, \quad \theta_{2}=20^{\circ} \mathrm{C}, \quad \mathrm{K}=385$
(a) $\frac{\mathrm{Q}}{\mathrm{t}}=\frac{\mathrm{KA}\left(\theta_{1}-\theta_{2}\right)}{\ell}=\frac{385 \times 0.2 \times 10^{-4}(80-20)}{20 \times 10^{-2}}=385 \times 6 \times 10^{-4} \times 10=2310 \times 10^{-3}=2.31$
(b) Let the temp of the 11 cm point be θ

$$
\begin{aligned}
& \frac{\Delta \theta}{\Delta l}=\frac{\mathrm{Q}}{\mathrm{tKA}} \\
& \Rightarrow \frac{\Delta \theta}{\Delta l}=\frac{2.31}{385 \times 0.2 \times 10^{-4}} \\
& \Rightarrow \frac{\theta-20}{11 \times 10^{-2}}=\frac{2.31}{385 \times 0.2 \times 10^{-4}} \\
& \Rightarrow \theta-20=\frac{2.31 \times 10^{4}}{385 \times 0.2} \times 11 \times 10^{-2}=33 \\
& \Rightarrow \theta=33+20=53
\end{aligned}
$$

11. Let the point to be touched be ' B '

No heat will flow when, the temp at that point is also $25^{\circ} \mathrm{C}$
i.e. $Q_{A B}=Q_{B C}$

So, $\frac{K A(100-25)}{100-x}=\frac{K A(25-0)}{x}$

$\Rightarrow 75 x=2500-25 x \Rightarrow 100 x=2500 \Rightarrow x=25 \mathrm{~cm}$ from the end with $0^{\circ} \mathrm{C}$
12. $V=216 \mathrm{~cm}^{3}$
$a=6 \mathrm{~cm}, \quad$ Surface area $=6 \mathrm{a}^{2}=6 \times 36 \mathrm{~m}^{2}$
$\mathrm{t}=0.1 \mathrm{~cm} \quad \frac{\mathrm{Q}}{\mathrm{t}}=100 \mathrm{~W}$,
$\frac{\mathrm{Q}}{\mathrm{t}}=\frac{\mathrm{KA}\left(\theta_{1}-\theta_{2}\right)}{\ell}$
$\Rightarrow 100=\frac{\mathrm{K} \times 6 \times 36 \times 10^{-4} \times 5}{0.1 \times 10^{-2}}$

$\Rightarrow \mathrm{K}=\frac{100}{6 \times 36 \times 5 \times 10^{-1}}=0.9259 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C} \approx 0.92 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}$
13. Given $\theta_{1}=1^{\circ} \mathrm{C}, \quad \theta_{2}=0^{\circ} \mathrm{C}$
$\mathrm{K}=0.50 \mathrm{w} / \mathrm{m}-{ }^{\circ} \mathrm{C}, \quad \mathrm{d}=2 \mathrm{~mm}=2 \times 10^{-3} \mathrm{~m}$
$A=5 \times 10^{-2} \mathrm{~m}^{2}, \quad v=10 \mathrm{~cm} / \mathrm{s}=0.1 \mathrm{~m} / \mathrm{s}$
Power $=$ Force \times Velocity $=M g \times v$
Again Power $=\frac{d Q}{d t}=\frac{K A\left(\theta_{1}-\theta_{2}\right)}{d}$
So, $M g v=\frac{K A\left(\theta_{1}-\theta_{2}\right)}{d}$

$\Rightarrow M=\frac{K A\left(\theta_{1}-\theta_{2}\right)}{\operatorname{dvg}}=\frac{5 \times 10^{-1} \times 5 \times^{-2} \times 1}{2 \times 10^{-3} \times 10^{-1} \times 10}=12.5 \mathrm{~kg}$.
14. $\mathrm{K}=1.7 \mathrm{~W} / \mathrm{m}-{ }^{\circ} \mathrm{C} \quad f_{\mathrm{w}}=1000 \mathrm{Kg} / \mathrm{m}^{3}$

$$
\mathrm{L}_{\text {ice }}=3.36 \times 10^{5} \mathrm{~J} / \mathrm{kg} \quad \mathrm{~T}=10 \mathrm{~cm}=10 \times 10^{-2} \mathrm{~m}
$$

(a) $\frac{\mathrm{Q}}{\mathrm{t}}=\frac{\mathrm{KA}\left(\theta_{1}-\theta_{2}\right)}{\ell} \Rightarrow \frac{\ell}{\mathrm{t}}=\frac{\mathrm{KA}\left(\theta_{1}-\theta_{2}\right)}{\mathrm{Q}}=\frac{\mathrm{KA}\left(\theta_{1}-\theta_{2}\right)}{\mathrm{mL}}$

$$
\begin{aligned}
& =\frac{\mathrm{KA}\left(\theta_{1}-\theta_{2}\right)}{\mathrm{At} f_{\mathrm{w}} \mathrm{~L}}=\frac{1.7 \times[0-(-10)]}{10 \times 10^{-2} \times 1000 \times 3.36 \times 10^{5}} \\
& =\frac{17}{3.36} \times 10^{-7}=5.059 \times 10^{-7} \approx 5 \times 10^{-7} \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

(b) let us assume that x length of ice has become formed to form a small strip of ice of length $d x$, dt time is required.
$\frac{\mathrm{dQ}}{\mathrm{dt}}=\frac{\mathrm{KA}(\Delta \theta)}{\mathrm{x}} \Rightarrow \frac{\mathrm{dmL}}{\mathrm{dt}}=\frac{\mathrm{KA}(\Delta \theta)}{\mathrm{x}} \Rightarrow \frac{\mathrm{Adx} f \omega \mathrm{~L}}{\mathrm{dt}}=\frac{\mathrm{KA}(\Delta \theta)}{\mathrm{x}}$
$\Rightarrow \frac{\mathrm{dxf} \omega \mathrm{L}}{\mathrm{dt}}=\frac{\mathrm{K}(\Delta \theta)}{\mathrm{x}} \Rightarrow \mathrm{dt}=\frac{\mathrm{xdxf} \mathrm{\omega L}}{\mathrm{~K}(\Delta \theta)}$
$\Rightarrow \int_{0}^{\mathrm{t}} \mathrm{dt}=\frac{f \omega \mathrm{~L}}{\mathrm{~K}(\Delta \theta)} \int_{0}^{\mathrm{t}} \mathrm{xdx} \quad \Rightarrow \mathrm{t}=\frac{f \omega \mathrm{~L}}{\mathrm{~K}(\Delta \theta)}\left[\frac{\mathrm{x}^{2}}{2}\right]_{0}^{1}=\frac{f \omega \mathrm{~L}}{\mathrm{~K} \Delta \theta} \frac{2^{2}}{2}$

Putting values
$\Rightarrow \mathrm{t}=\frac{1000 \times 3.36 \times 10^{5} \times\left(10 \times 10^{-2}\right)^{2}}{1.7 \times 10 \times 2}=\frac{3.36}{2 \times 17} \times 10^{6} \mathrm{sec} .=\frac{3.36 \times 10^{6}}{2 \times 17 \times 3600} \mathrm{hrs}=27.45 \mathrm{hrs} \approx 27.5 \mathrm{hrs}$.
15. let ' B ' be the maximum level upto which ice is formed. Hence the heat conducted at that point from both the levels is the same.
Let $A B=x$
i.e. $\frac{Q}{t}$ ice $=\frac{Q}{t}$ water $\quad \Rightarrow \frac{K_{\text {ice }} \times A \times 10}{x}=\frac{K_{\text {water }} \times A \times 4}{(1-x)}$
$\Rightarrow \frac{1.7 \times 10}{x}=\frac{5 \times 10^{-1} \times 4}{1-x} \Rightarrow \frac{17}{x}=\frac{2}{1-x}$

$\Rightarrow 17-17 x=2 x \Rightarrow 19 x=17 \Rightarrow x=\frac{17}{19}=0.894 \approx 89 \mathrm{~cm}$
16. $\mathrm{K}_{\mathrm{AB}}=50 \mathrm{j} / \mathrm{m}-\mathrm{s}-{ }^{\circ} \mathrm{C} \quad \theta_{\mathrm{A}}=40^{\circ} \mathrm{C}$
$\mathrm{K}_{\mathrm{BC}}=200 \mathrm{j} / \mathrm{m}-\mathrm{s}-{ }^{\circ} \mathrm{C} \quad \theta_{\mathrm{B}}=80^{\circ} \mathrm{C}$
$\mathrm{K}_{\mathrm{AC}}=400 \mathrm{j} / \mathrm{m}-\mathrm{s}-{ }^{\circ} \mathrm{C} \quad \theta_{\mathrm{C}}=80^{\circ} \mathrm{C}$
Length $=20 \mathrm{~cm}=20 \times 10^{-2} \mathrm{~m}$
$A=1 \mathrm{~cm}^{2}=1 \times 10^{-4} \mathrm{~m}^{2}$
(a) $\frac{Q_{A B}}{t}=\frac{K_{A B} \times A\left(\theta_{B}-\theta_{A}\right)}{I}=\frac{50 \times 1 \times 10^{-4} \times 40}{20 \times 10^{-2}}=1 \mathrm{~W}$.
(b) $\frac{Q_{A C}}{t}=\frac{K_{A C} \times A\left(\theta_{C}-\theta_{A}\right)}{\mathrm{I}}=\frac{400 \times 1 \times 10^{-4} \times 40}{20 \times 10^{-2}}=800 \times 10^{-2}=8$
(c) $\frac{Q_{B C}}{t}=\frac{K_{B C} \times A\left(\theta_{B}-\theta_{C}\right)}{I}=\frac{200 \times 1 \times 10^{-4} \times 0}{20 \times 10^{-2}}=0$
17. We know $Q=\frac{K A\left(\theta_{1}-\theta_{2}\right)}{d}$
$Q_{1}=\frac{K A\left(\theta_{1}-\theta_{2}\right)}{d_{1}}$,
$Q_{2}=\frac{K A\left(\theta_{1}-\theta_{2}\right)}{d_{2}}$
$\frac{Q_{1}}{Q_{2}}=\frac{\frac{K A\left(\theta_{1}-\theta_{1}\right)}{\pi r}}{\frac{K A\left(\theta_{1}-\theta_{1}\right)}{2 r}}=\frac{2 r}{\pi r}=\frac{2}{\pi}$

$$
\left[\mathrm{d}_{1}=\pi \mathrm{r}, \quad \mathrm{~d}_{2}=2 \mathrm{r}\right]
$$

18. The rate of heat flow per sec.
$=\frac{d Q_{A}}{d t}=K A \frac{d \theta}{d t}$
The rate of heat flow per sec.
$=\frac{d Q_{B}}{d t}=K A \frac{d \theta_{B}}{d t}$
This part of heat is absorbed by the red.
$\frac{\mathrm{Q}}{\mathrm{t}}=\frac{\mathrm{ms} \Delta \theta}{\mathrm{dt}} \quad$ where $\frac{\mathrm{d} \theta}{\mathrm{dt}}=$ Rate of net temp. variation
$\Rightarrow \frac{\mathrm{msd} \theta}{\mathrm{dt}}=K A \frac{d \theta_{\mathrm{A}}}{\mathrm{dt}}-K A \frac{d \theta_{\mathrm{B}}}{\mathrm{dt}} \Rightarrow \mathrm{ms} \frac{\mathrm{d} \theta}{\mathrm{dt}}=K A\left(\frac{\mathrm{~d} \theta_{\mathrm{A}}}{\mathrm{dt}}-\frac{\mathrm{d} \theta_{\mathrm{B}}}{\mathrm{dt}}\right)$
$\Rightarrow 0.4 \times \frac{\mathrm{d} \theta}{\mathrm{dt}}=200 \times 1 \times 10^{-4}(5-2.5)^{\circ} \mathrm{C} / \mathrm{cm}$
$\Rightarrow 0.4 \times \frac{\mathrm{d} \theta}{\mathrm{dt}}=200 \times 10^{-4} \times 2.5$
$\Rightarrow \frac{\mathrm{d} \theta}{\mathrm{dt}}=\frac{200 \times 2.5 \times 10^{-4}}{0.4 \times 10^{-2}}{ }^{\circ} \mathrm{C} / \mathrm{m}=1250 \times 10^{-2}=12.5^{\circ} \mathrm{C} / \mathrm{m}$
19. Given
$\mathrm{K}_{\text {rubber }}=0.15 \mathrm{~J} / \mathrm{m}-\mathrm{s}-{ }^{\circ} \mathrm{C}$
$\mathrm{T}_{2}-\mathrm{T}_{1}=90^{\circ} \mathrm{C}$
We know for radial conduction in a Cylinder
$\frac{\mathrm{Q}}{\mathrm{t}}=\frac{2 \pi \mathrm{KI}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)}{\ln \left(\mathrm{R}_{2} / \mathrm{R}_{1}\right)}$
$=\frac{2 \times 3.14 \times 15 \times 10^{-2} \times 50 \times 10^{-1} \times 90}{\ln (1.2 / 1)}=232.5 \approx 233 \mathrm{j} / \mathrm{s}$.

20. $\frac{d Q}{d t}=$ Rate of flow of heat

Let us consider a strip at a distance r from the center of thickness dr .

$$
\frac{d Q}{d t}=\frac{\mathrm{K} \times 2 \pi \mathrm{rd} \times \mathrm{d} \theta}{\mathrm{dr}} \quad[\mathrm{~d} \theta=\text { Temperature diff across the thickness } \mathrm{dr}]
$$

$\Rightarrow \mathrm{C}=\frac{\mathrm{K} \times 2 \pi \mathrm{rd} \times \mathrm{d} \theta}{\mathrm{dr}} \quad\left[\mathrm{c}=\frac{\mathrm{d} \theta}{\mathrm{dr}}\right]$
$\Rightarrow C \frac{d r}{r}=K 2 \pi d d \theta$
Integrating
$\Rightarrow C \int_{r_{1}}^{r_{2}} \frac{d r}{r}=K 2 \pi d \int_{\theta_{1}}^{\theta_{2}} d \theta \quad \Rightarrow C[\operatorname{logr}]_{r_{1}}^{r_{2}}=K 2 \pi d\left(\theta_{2}-\theta_{1}\right)$
$\Rightarrow C\left(\log r_{2}-\log r_{1}\right)=K 2 \pi d\left(\theta_{2}-\theta_{1}\right) \Rightarrow C \log \left(\frac{r_{2}}{r_{1}}\right)=K 2 \pi d\left(\theta_{2}-\theta_{1}\right)$
$\Rightarrow C=\frac{\operatorname{K} 2 \pi d\left(\theta_{2}-\theta_{1}\right)}{\log \left(r_{2} / r_{1}\right)}$
21. $\mathrm{T}_{1}>\mathrm{T}_{2}$
$\mathrm{A}=\pi\left(\mathrm{R}_{2}{ }^{2}-\mathrm{R}_{1}{ }^{2}\right)$
So, $\mathrm{Q}=\frac{\mathrm{KA}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)}{\mathrm{I}}=\frac{\mathrm{KA}\left(\mathrm{R}_{2}{ }^{2}-\mathrm{R}_{1}{ }^{2}\right)\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)}{\mathrm{I}}$
Considering a concentric cylindrical shell of radius ' r ' and thickness 'dr'. The radial heat flow through the shell
$H=\frac{d Q}{d t}=-K A \frac{d \theta}{d t} \quad[(-)$ ve because as $r-$ increases θ

decreases]
$\mathrm{A}=2 \pi \mathrm{rl}$
$H=-2 \pi r l K \frac{d \theta}{d t}$
or $\int_{R_{1}}^{R_{2}} \frac{d r}{r}=-\frac{2 \pi L K}{H} \int_{T_{1}}^{T_{2}} d \theta$
Integrating and simplifying we get
$H=\frac{d Q}{d t}=\frac{2 \pi K L\left(T_{2}-T_{1}\right)}{\operatorname{Loge}\left(R_{2} / R_{1}\right)}=\frac{2 \pi K L\left(T_{2}-T_{1}\right)}{\ln \left(R_{2} / R_{1}\right)}$
22. Here the thermal conductivities are in series,
$\therefore \frac{\frac{K_{1} A\left(\theta_{1}-\theta_{2}\right)}{I_{1}} \times \frac{K_{2} A\left(\theta_{1}-\theta_{2}\right)}{I_{2}}}{\frac{K_{1} A\left(\theta_{1}-\theta_{2}\right)}{I_{1}}+\frac{K_{2} A\left(\theta_{1}-\theta_{2}\right)}{I_{2}}}=\frac{K A\left(\theta_{1}-\theta_{2}\right)}{I_{1}+I_{2}}$

$\Rightarrow \frac{\frac{\mathrm{K}_{1}}{\mathrm{I}_{1}} \times \frac{\mathrm{K}_{2}}{\mathrm{I}_{2}}}{\frac{\mathrm{~K}_{1}}{\mathrm{I}_{1}}+\frac{\mathrm{K}_{2}}{\mathrm{I}_{2}}}=\frac{\mathrm{K}}{\mathrm{I}_{1}+\mathrm{I}_{2}}$

$\Rightarrow \frac{\mathrm{K}_{1} \mathrm{~K}_{2}}{\mathrm{~K}_{1} \mathrm{I}_{2}+\mathrm{K}_{2} \mathrm{I}_{1}}=\frac{\mathrm{K}}{\mathrm{I}_{1}+\mathrm{I}_{2}} \Rightarrow \mathrm{~K}=\frac{\left(\mathrm{K}_{1} \mathrm{~K}_{2}\right)\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right)}{\mathrm{K}_{1} \mathrm{I}_{2}+\mathrm{K}_{2} \mathrm{I}_{1}}$
23. $\mathrm{K}_{\mathrm{Cu}}=390 \mathrm{w} / \mathrm{m}-{ }^{\circ} \mathrm{C} \quad \mathrm{K}_{\mathrm{St}}=46 \mathrm{w} / \mathrm{m}-{ }^{\circ} \mathrm{C}$

Now, Since they are in series connection,
So, the heat passed through the crossections in the same.
So, $Q_{1}=Q_{2}$
Or $\frac{\mathrm{K}_{\mathrm{Cu}} \times \mathrm{A} \times(\theta-0)}{\mathrm{I}}=\frac{\mathrm{K}_{\mathrm{St}} \times \mathrm{A} \times(100-\theta)}{\mathrm{I}}$

$\Rightarrow 390(\theta-0)=46 \times 100-46 \theta \Rightarrow 436 \theta=4600$
$\Rightarrow \theta=\frac{4600}{436}=10.55 \approx 10.6^{\circ} \mathrm{C}$
24. As the Aluminum rod and Copper rod joined are in parallel
$\frac{Q}{t}=\left(\frac{Q}{t_{1}}\right)_{\mathrm{Al}}+\left(\frac{\mathrm{Q}}{\mathrm{t}}\right)_{\mathrm{Cu}}$

$\Rightarrow \frac{\mathrm{KA}\left(\theta_{1}-\theta_{2}\right)}{\mathrm{I}}=\frac{\mathrm{K}_{1} \mathrm{~A}\left(\theta_{1}-\theta_{2}\right)}{\mathrm{I}}+\frac{\mathrm{K}_{2} \mathrm{~A}\left(\theta_{1}-\theta_{2}\right)}{\mathrm{I}}$
$\Rightarrow \mathrm{K}=\mathrm{K}_{1}+\mathrm{K}_{2}=(390+200)=590$
$\frac{\mathrm{Q}}{\mathrm{t}}=\frac{\mathrm{KA}\left(\theta_{1}-\theta_{2}\right)}{\mathrm{l}}=\frac{590 \times 1 \times 10^{-4} \times(60-20)}{1}=590 \times 10^{-4} \times 40=2.36 \mathrm{Watt}$
25. $\mathrm{K}_{\mathrm{Al}}=200 \mathrm{w} / \mathrm{m}-{ }^{\circ} \mathrm{C} \quad \mathrm{K}_{\mathrm{Cu}}=400 \mathrm{w} / \mathrm{m}-{ }^{\circ} \mathrm{C}$
$A=0.2 \mathrm{~cm}^{2}=2 \times 10^{-5} \mathrm{~m}^{2}$
$\mathrm{I}=20 \mathrm{~cm}=2 \times 10^{-1} \mathrm{~m}$
Heat drawn per second
$=Q_{A l}+Q_{C u}=\frac{\mathrm{K}_{\mathrm{Al}} \times \mathrm{A}(80-40)}{\mathrm{I}}+\frac{\mathrm{K}_{\mathrm{Cu}} \times \mathrm{A}(80-40)}{\mathrm{I}}=\frac{2 \times 10^{-5} \times 40}{2 \times 10^{-1}}[200+400]=2.4 \mathrm{~J}$
Heat drawn per min $=2.4 \times 60=144 \mathrm{~J}$
26. $(Q / t)_{A B}=(Q / t)_{B E \text { bent }}+(Q / t)_{B E}$
$(Q / t)_{B E \text { bent }}=\frac{K A\left(\theta_{1}-\theta_{2}\right)}{70} \quad(Q / t)_{B E}=\frac{K A\left(\theta_{1}-\theta_{2}\right)}{60}$
$\frac{(Q / t)_{B E \text { bent }}}{(Q / t)_{B E}}=\frac{60}{70}=\frac{6}{7}$
$(Q / t)_{B E \text { bent }}+(Q / t)_{B E}=130$
$\Rightarrow(\mathrm{Q} / \mathrm{t})_{\mathrm{BE} \text { bent }}+(\mathrm{Q} / \mathrm{t})_{\mathrm{BE}} 7 / 6=130$

$\Rightarrow\left(\frac{7}{6}+1\right)\left(\mathrm{Q} / \mathrm{t}_{\mathrm{BE} \text { bent }}=130 \quad \Rightarrow(\mathrm{Q} / \mathrm{t})_{\mathrm{BE} \mathrm{bent}}=\frac{130 \times 6}{13}=60\right.$
27. $\frac{\mathrm{Q}}{\mathrm{t}}$ bent $=\frac{780 \times \mathrm{A} \times 100}{70}$
$\frac{\mathrm{Q}}{\mathrm{t}} \operatorname{str}=\frac{390 \times \mathrm{A} \times 100}{60}$
$\frac{(\mathrm{Q} / \mathrm{t}) \text { bent }}{(\mathrm{Q} / \mathrm{t}) \mathrm{str}}=\frac{780 \times \mathrm{A} \times 100}{70} \times \frac{60}{390 \times \mathrm{A} \times 100}=\frac{12}{7}$

28. (a) $\frac{Q}{t}=\frac{K A\left(\theta_{1}-\theta_{2}\right)}{\ell}=\frac{1 \times 2 \times 1(40-32)}{2 \times 10^{-3}}=8000 \mathrm{~J} / \mathrm{sec}$.
(b) Resistance of glass $=\frac{\ell}{\mathrm{ak}_{\mathrm{g}}}+\frac{\ell}{\mathrm{ak}_{\mathrm{g}}}$

Resistance of air $=\frac{\ell}{\mathrm{ak}_{\mathrm{a}}}$

Net resistance $=\frac{\ell}{\mathrm{ak}_{\mathrm{g}}}+\frac{\ell}{\mathrm{ak}_{\mathrm{g}}}+\frac{\ell}{\mathrm{ak}_{\mathrm{a}}}$

$$
\begin{aligned}
&=\frac{\ell}{\mathrm{a}}\left(\frac{2}{\mathrm{k}_{\mathrm{g}}}+\frac{1}{\mathrm{k}_{\mathrm{a}}}\right)=\frac{\ell}{\mathrm{a}}\left(\frac{2 \mathrm{k}_{\mathrm{a}}+\mathrm{k}_{\mathrm{g}}}{\mathrm{~K}_{\mathrm{g}} \mathrm{k}_{\mathrm{a}}}\right) \\
&=\frac{1 \times 10^{-3}}{2}\left(\frac{2 \times 0.025+1}{0.025}\right) \\
&=\frac{1 \times 10^{-3} \times 1.05}{0.05} \\
& \frac{\mathrm{Q}}{\mathrm{t}}=\frac{\theta_{1}-\theta_{2}}{\mathrm{R}}=\frac{8 \times 0.05}{1 \times 10^{-3} \times 1.05}=380.9 \approx 381 \mathrm{~W}
\end{aligned}
$$

29. Now; Q/t remains same in both cases

In Case I : $\frac{\mathrm{K}_{\mathrm{A}} \times \mathrm{A} \times(100-70)}{\ell}=\frac{\mathrm{K}_{\mathrm{B}} \times \mathrm{A} \times(70-0)}{\ell}$
$\Rightarrow 30 \mathrm{~K}_{\mathrm{A}}=70 \mathrm{~K}_{\mathrm{B}}$
In Case II : $\frac{\mathrm{K}_{\mathrm{B}} \times \mathrm{A} \times(100-\theta)}{\ell}=\frac{\mathrm{K}_{\mathrm{A}} \times \mathrm{A} \times(\theta-0)}{\ell}$
$\Rightarrow 100 \mathrm{~K}_{\mathrm{B}}-\mathrm{K}_{\mathrm{B}} \theta=\mathrm{K}_{\mathrm{A}} \theta$
$\Rightarrow 100 \mathrm{~K}_{\mathrm{B}}-\mathrm{K}_{\mathrm{B}} \theta=\frac{70}{30} \mathrm{~K}_{\mathrm{B}} \theta$
$\Rightarrow 100=\frac{7}{3} \theta+\theta \quad \Rightarrow \theta=\frac{300}{10}=30^{\circ} \mathrm{C}$

30. $\theta_{1}-\theta_{2}=100$

$\frac{\mathrm{Q}}{\mathrm{t}}=\frac{\theta_{1}-\theta_{2}}{\mathrm{R}} \quad 0^{\circ} \mathrm{C}$| Al | Cu | Al |
| :---: | :---: | :---: |
| $100^{\circ} \mathrm{C}$ | | |

$\mathrm{R}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}=\frac{\ell}{\mathrm{aK}_{\mathrm{Al}}}+\frac{\ell}{\mathrm{aK}_{\mathrm{Cu}}}+\frac{\ell}{\mathrm{aK}_{\mathrm{Al}}}=\frac{\ell}{\mathrm{a}}\left(\frac{2}{200}+\frac{1}{400}\right)=\frac{\ell}{\mathrm{a}}\left(\frac{4+1}{400}\right)=\frac{\ell}{\mathrm{a}} \frac{1}{80}$
$\frac{\mathrm{Q}}{\mathrm{t}}=\frac{100}{(\ell / \mathrm{a})(1 / 80)} \Rightarrow 40=80 \times 100 \times \frac{\mathrm{a}}{\ell}$
$\Rightarrow \frac{\mathrm{a}}{\ell}=\frac{1}{200}$
For (b)
$R=R_{1}+R_{2}=R_{1}+\frac{R_{C u} R_{A l}}{R_{C u}+R_{A l}}=R_{A l}+\frac{R_{C u} R_{A l}}{R_{C u}+R_{A l}}=\frac{\frac{1}{A K_{A l}}+\frac{1}{A K_{C u}}+\frac{1}{A K_{A l}}}{\frac{I}{A_{C u}}+\frac{I}{A_{A l}}}$

$=\frac{\mathrm{I}}{\mathrm{AK}_{\mathrm{Al}}}+\frac{\mathrm{I}}{\mathrm{A}}+\frac{\mathrm{I}}{\mathrm{K}_{\mathrm{Al}}+\mathrm{K}_{\mathrm{Cu}}}=\frac{\mathrm{I}}{\mathrm{A}}\left(\frac{1}{200}+\frac{1}{200+400}\right)=\frac{1}{\mathrm{~A}} \times \frac{4}{600}$
$\frac{\mathrm{Q}}{\mathrm{t}}=\frac{\theta_{1}-\theta_{2}}{\mathrm{R}}=\frac{100}{(\mathrm{I} / \mathrm{A})(4 / 600)}=\frac{100 \times 600}{4} \frac{\mathrm{~A}}{\mathrm{l}}=\frac{100 \times 600}{4} \times \frac{1}{200}=75$
For (c)
$\frac{1}{\mathrm{R}}=\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}+\frac{1}{\mathrm{R}_{3}}=\frac{1}{\frac{1}{\mathrm{aK}_{\mathrm{Al}}}}+\frac{1}{\frac{1}{\mathrm{aK}_{\mathrm{Cu}}}}+\frac{\frac{1}{\frac{1}{\mathrm{aK}}}}{\mathrm{Al}}$

$=\frac{a}{l}\left(\mathrm{~K}_{\mathrm{Al}}+\mathrm{K}_{\mathrm{Cu}}+\mathrm{K}_{\mathrm{Al}}\right)=\frac{\mathrm{a}}{\mathrm{l}}(2 \times 200+400)=\frac{\mathrm{a}}{\mathrm{l}}(800)$
$\Rightarrow R=\frac{1}{a} \times \frac{1}{800}$
$\Rightarrow \frac{\mathrm{Q}}{\mathrm{t}}=\frac{\theta_{1}-\theta_{2}}{\mathrm{R}}=\frac{100 \times 800 \times \mathrm{a}}{\mathrm{I}}$
$=\frac{100 \times 800}{200}=400 \mathrm{~W}$

31. Let the temp. at B be T
$\frac{Q_{A}}{t}=\frac{Q_{B}}{t}+\frac{Q_{C}}{t} \quad \Rightarrow \frac{K A\left(T_{1}-T\right)}{I}=\frac{K A\left(T-T_{3}\right)}{I+(I / 2)}+\frac{K A\left(T-T_{2}\right)}{I+(I / 2)}$
$\Rightarrow \frac{\mathrm{T}_{1}-\mathrm{T}}{\mathrm{I}}=\frac{\mathrm{T}-\mathrm{T}_{3}}{3 \mathrm{I} / 2}+\frac{\mathrm{T}-\mathrm{T}_{2}}{3 \mathrm{I} / 2} \quad \Rightarrow 3 \mathrm{~T}_{1}-3 \mathrm{~T}=4 \mathrm{~T}-2\left(\mathrm{~T}_{2}+\mathrm{T}_{3}\right)$
$\Rightarrow-7 \mathrm{~T}=-3 \mathrm{~T}_{1}-2\left(\mathrm{~T}_{2}+\mathrm{T}_{3}\right) \quad \Rightarrow \mathrm{T}=\frac{3 \mathrm{~T}_{1}+2\left(\mathrm{~T}_{2}+\mathrm{T}_{3}\right)}{7}$

32. The temp at the both ends of bar F is same

Rate of Heat flow to right = Rate of heat flow through left
$\Rightarrow(Q / t)_{A}+(Q / t)_{C}=(Q / t)_{B}+(Q / t)_{D}$
$\Rightarrow \frac{\mathrm{K}_{\mathrm{A}}\left(\mathrm{T}_{1}-\mathrm{T}\right) \mathrm{A}}{\mathrm{I}}+\frac{\mathrm{K}_{\mathrm{C}}\left(\mathrm{T}_{1}-\mathrm{T}\right) \mathrm{A}}{\mathrm{I}}=\frac{\mathrm{K}_{\mathrm{B}}\left(\mathrm{T}-\mathrm{T}_{2}\right) \mathrm{A}}{\mathrm{I}}+\frac{\mathrm{K}_{\mathrm{D}}\left(\mathrm{T}-\mathrm{T}_{2}\right) \mathrm{A}}{\mathrm{I}}$
$\Rightarrow 2 \mathrm{~K}_{0}\left(\mathrm{~T}_{1}-\mathrm{T}\right)=2 \times 2 \mathrm{~K}_{0}\left(\mathrm{~T}-\mathrm{T}_{2}\right)$
$\Rightarrow \mathrm{T}_{1}-\mathrm{T}=2 \mathrm{~T}-2 \mathrm{~T}_{2}$
$\Rightarrow \mathrm{T}=\frac{\mathrm{T}_{1}+2 \mathrm{~T}_{2}}{3}$
33. $\operatorname{Tan} \phi=\frac{r_{2}-r_{1}}{L}=\frac{\left(y-r_{1}\right)}{x}$
$\Rightarrow \mathrm{xr}_{2}-\mathrm{xr}_{1}=\mathrm{yL}-\mathrm{r}_{1} \mathrm{~L}$
Differentiating wr to ' x '
$\Rightarrow r_{2}-r_{1}=\frac{L d y}{d x}-0$
$\Rightarrow \frac{d y}{d x}=\frac{r_{2}-r_{1}}{L} \Rightarrow d x=\frac{d y L}{\left(r_{2}-r_{1}\right)}$
Now $\frac{Q}{T}=\frac{K \pi y^{2} d \theta}{d x} \Rightarrow \frac{\theta d x}{T}=k \pi y^{2} d \theta$
$\Rightarrow \frac{\theta L d y}{r_{2} r_{1}}=K \pi y^{2} d \theta \quad$ from(1)

$\Rightarrow d \theta \frac{\text { QLdy }}{\left(r_{2}-r_{1}\right) K \pi y^{2}}$
Integrating both side
$\Rightarrow \int_{\theta_{1}}^{\theta_{2}} d \theta=\frac{Q L}{\left(r_{2}-r_{1}\right) k \pi} \int_{r_{1}}^{r_{2}} \frac{d y}{y}$
$\Rightarrow\left(\theta_{2}-\theta_{1}\right)=\frac{Q L}{\left(r_{2}-r_{1}\right) K \pi} \times\left[\frac{-1}{y}\right]_{r_{1}}^{r_{2}}$
$\Rightarrow\left(\theta_{2}-\theta_{1}\right)=\frac{Q L}{\left(r_{2}-r_{1}\right) K \pi} \times\left[\frac{1}{r_{1}}-\frac{1}{r_{2}}\right]$
$\Rightarrow\left(\theta_{2}-\theta_{1}\right)=\frac{Q L}{\left(r_{2}-r_{1}\right) K \pi} \times\left[\frac{r_{2}-r_{1}}{r_{1}+r_{2}}\right]$
$\Rightarrow Q=\frac{K \pi r_{1} r_{2}\left(\theta_{2}-\theta_{1}\right)}{L}$
34. $\frac{\mathrm{d} \theta}{\mathrm{dt}}=\frac{60}{10 \times 60}=0.1^{\circ} \mathrm{C} / \mathrm{sec}$
$\frac{d Q}{d t}=\frac{K A}{d}\left(\theta_{1}-\theta_{2}\right)$
$=\frac{K A \times 0.1}{d}+\frac{K A \times 0.2}{d}+\ldots \ldots .+\frac{K A \times 60}{d}$
$=\frac{\mathrm{KA}}{\mathrm{d}}(0.1+0.2+\ldots \ldots . .+60)=\frac{\mathrm{KA}}{\mathrm{d}} \times \frac{600}{2} \times(2 \times 0.1+599 \times 0.1)$
$[\therefore a+2 a+\ldots \ldots \ldots+n a=n / 2\{2 a+(n-1) a\}]$
$=\frac{200 \times 1 \times 10^{-4}}{20 \times 10^{-2}} \times 300 \times(0.2+59.9)=\frac{200 \times 10^{-2} \times 300 \times 60.1}{20}$
$=3 \times 10 \times 60.1=1803 \mathrm{w} \approx 1800 \mathrm{w}$
35. $a=r_{1}=5 \mathrm{~cm}=0.05 \mathrm{~m}$
$b=r_{2}=20 \mathrm{~cm}=0.2 \mathrm{~m}$
$\theta_{1}=\mathrm{T}_{1}=50^{\circ} \mathrm{C}$

$$
\theta_{2}=\mathrm{T}_{2}=10^{\circ} \mathrm{C}
$$

Now, considering a small strip of thickness 'dr' at a distance ' r '.
$\mathrm{A}=4 \pi \mathrm{r}^{2}$
$H=-4 \pi r^{2} K \frac{d \theta}{d r} \quad$ [(-)ve because with increase of r, θ decreases]

$=\int_{a}^{b} \frac{d r}{r^{2}}=\frac{-4 \pi \mathrm{~K}}{\mathrm{H}} \int_{\theta_{1}}^{\theta_{2}} d \theta \quad$ On integration,
$\mathrm{H}=\frac{\mathrm{dQ}}{\mathrm{dt}}=\mathrm{K} \frac{4 \pi \mathrm{ab}\left(\theta_{1}-\theta_{2}\right)}{(\mathrm{b}-\mathrm{a})}$
Putting the values we get
$\frac{\mathrm{K} \times 4 \times 3.14 \times 5 \times 20 \times 40 \times 10^{-3}}{15 \times 10^{-2}}=100$
$\Rightarrow \mathrm{K}=\frac{15}{4 \times 3.14 \times 4 \times 10^{-1}}=2.985 \approx 3 \mathrm{w} / \mathrm{m}-{ }^{\circ} \mathrm{C}$

36. $\frac{Q}{t}=\frac{K A\left(T_{1}-T_{2}\right)}{L} \quad$ Rise in Temp. in $T_{2} \Rightarrow \frac{K A\left(T_{1}-T_{2}\right)}{L m s}$

Fall in Temp in $T_{1}=\frac{K A\left(T_{1}-T_{2}\right)}{L m s} \quad$ Final Temp. $T_{1} \Rightarrow T_{1}-\frac{K A\left(T_{1}-T_{2}\right)}{L m s}$
Final Temp. $T_{2}=T_{2}+\frac{K A\left(T_{1}-T_{2}\right)}{L m s}$
Final $\frac{\Delta T}{d t}=T_{1}-\frac{K A\left(T_{1}-T_{2}\right)}{L m s}-T_{2}-\frac{K A\left(T_{1}-T_{2}\right)}{L m s}$
$=\left(T_{1}-T_{2}\right)-\frac{2 K A\left(T_{1}-T_{2}\right)}{L m s}=\frac{d T}{d t}=-\frac{2 K A\left(T_{1}-T_{2}\right)}{L m s} \Rightarrow \int_{\left(T_{1}-T_{2}\right)}^{\left(T_{1}-T_{2}\right)} \frac{d t}{\left(T_{1}-T_{2}\right)}=\frac{-2 K A}{L m s} d t$
$\Rightarrow \operatorname{Ln} \frac{\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right) / 2}{\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right)}=\frac{-2 K A t}{L \mathrm{~ms}} \quad \Rightarrow \ln (1 / 2)=\frac{-2 K A t}{L m s} \quad \Rightarrow \ln _{2}=\frac{2 K A t}{L m s} \Rightarrow t=\ln _{2} \frac{L m s}{2 K A}$
37. $\frac{Q}{t}=\frac{K A\left(T_{1}-T_{2}\right)}{L} \quad$ Rise in Temp. in $T_{2} \Rightarrow \frac{K A\left(T_{1}-T_{2}\right)}{L m_{1} s_{1}}$

Fall in Temp in $T_{1} \Rightarrow \frac{K A\left(T_{1}-T_{2}\right)}{L m_{2} S_{2}}$ Final Temp. $T_{1}=T_{1}-\frac{K A\left(T_{1}-T_{2}\right)}{L m_{1} S_{1}}$
Final Temp. $T_{2}=T_{2}+\frac{K A\left(T_{1}-T_{2}\right)}{L m_{1} \mathrm{~s}_{1}}$
$\frac{\Delta T}{d t}=T_{1}-\frac{K A\left(T_{1}-T_{2}\right)}{L m_{1} s_{1}}-T_{2}-\frac{K A\left(T_{1}-T_{2}\right)}{L m_{2} s_{2}}=\left(T_{1}-T_{2}\right)-\left[\frac{K A\left(T_{1}-T_{2}\right)}{L m_{1} s_{1}}+\frac{K A\left(T_{1}-T_{2}\right)}{L m_{2} s_{2}}\right]$
$\Rightarrow \frac{d T}{d t}=-\frac{K A\left(T_{1}-T_{2}\right)}{L}\left(\frac{1}{m_{1} s_{1}}+\frac{1}{m_{2} s_{2}}\right) \Rightarrow \frac{d T}{\left(T_{1}-T_{2}\right)}=-\frac{K A}{L}\left(\frac{m_{2} s_{2}+m_{1} s_{1}}{m_{1} s_{1} m_{2} s_{2}}\right) d t$
$\Rightarrow \ln \Delta t=-\frac{K A}{L}\left(\frac{m_{2} s_{2}+m_{1} s_{1}}{m_{1} s_{1} m_{2} s_{2}}\right) t+C$
At time $t=0, T=T_{0}, \quad \Delta T=\Delta T_{0} \quad \Rightarrow C=\ln \Delta T_{0}$
$\Rightarrow \ln \frac{\Delta T}{\Delta T_{0}}=-\frac{K A}{L}\left(\frac{m_{2} s_{2}+m_{1} s_{1}}{m_{1} s_{1} m_{2} s_{2}}\right) t \Rightarrow \frac{\Delta T}{\Delta T_{0}}=e^{-\frac{K A}{L}\left(\frac{m_{1} s_{1}+m_{2} s_{2}}{m_{1} s_{1} m_{2} s_{2}}\right) t}$
$\Rightarrow \Delta T=\Delta T_{0} e^{-\frac{K A}{L}\left(\frac{m_{1} s_{1}+m_{2} s_{2}}{m_{1} s_{1} m_{2} s_{2}}\right) t}=\left(T_{2}-T_{1}\right) e^{-\frac{K A}{L}\left(\frac{m_{1} s_{1}+m_{2} s_{2}}{m_{1} s_{1} m_{2} s_{2}}\right) t}$
38. $\frac{\mathrm{Q}}{\mathrm{t}}=\frac{\mathrm{KA}\left(\mathrm{T}_{\mathrm{s}}-\mathrm{T}_{0}\right)}{\mathrm{x}} \Rightarrow \frac{\mathrm{nC} \mathrm{C}_{\mathrm{p}} \mathrm{dT}}{\mathrm{dt}}=\frac{\mathrm{KA}\left(\mathrm{T}_{\mathrm{s}}-\mathrm{T}_{0}\right)}{\mathrm{x}}$
$\Rightarrow \frac{\mathrm{n}(5 / 2) R \mathrm{RdT}}{\mathrm{dt}}=\frac{\mathrm{KA}\left(\mathrm{T}_{\mathrm{s}}-\mathrm{T}_{0}\right)}{\mathrm{x}} \Rightarrow \frac{\mathrm{dT}}{\mathrm{dt}}=\frac{-2 \mathrm{LA}}{5 \mathrm{nRx}}\left(\mathrm{T}_{\mathrm{S}}-\mathrm{T}_{0}\right)$
$\Rightarrow \frac{d T}{\left(T_{\mathrm{S}}-\mathrm{T}_{0}\right)}=-\frac{2 \mathrm{KAdt}}{5 \mathrm{nRx}} \Rightarrow \ln \left(\mathrm{T}_{\mathrm{S}}-\mathrm{T}_{0}\right)_{\mathrm{T}_{0}}^{\mathrm{T}}=-\frac{2 \mathrm{KAdt}}{5 \mathrm{nRx}}$
$\Rightarrow \ln \frac{T_{\mathrm{S}}-T}{T_{\mathrm{S}}-\mathrm{T}_{0}}=-\frac{2 K A d t}{5 n R x} \Rightarrow \mathrm{~T}_{\mathrm{S}}-T=\left(\mathrm{T}_{\mathrm{S}}-\mathrm{T}_{0}\right) \mathrm{e}^{-\frac{2 K A t}{5 n R x}}$
$\Rightarrow \mathrm{T}=\mathrm{T}_{\mathrm{S}}-\left(\mathrm{T}_{\mathrm{S}}-\mathrm{T}_{0}\right) \mathrm{e}^{-\frac{2 K A t}{5 n R x}}=\mathrm{T}_{\mathrm{S}}+\left(\mathrm{T}_{\mathrm{S}}+\mathrm{T}_{0}\right) \mathrm{e}^{+\frac{2 K A t}{5 n R x}}$
$\Rightarrow \Delta T=T-T_{0}=\left(T_{S}-T_{0}\right)+\left(T_{S}-T_{0}\right) e^{+\frac{2 K A t}{5 n R x}}=\left(T_{S}-T_{0}\right)+\left(1+e^{+\frac{2 K A t}{5 n R x}}\right)$
$\Rightarrow \frac{P_{a} A L}{n R}=\left(T_{S}-T_{0}\right)+\left(1+e^{+\frac{2 K A t}{5 n R x}}\right) \quad\left[p_{a} d v=n R d t \quad P_{a} A I=n R d t \quad d T=\frac{P_{a} A L}{n R}\right]$
$\Rightarrow L=\frac{n R}{P_{a} A}\left(T_{S}-T_{0}\right)+\left(1-e^{-\frac{2 K A t}{5 n R x}}\right)$
39. $\mathrm{A}=1.6 \mathrm{~m}^{2}, \quad \mathrm{~T}=37^{\circ} \mathrm{C}=310 \mathrm{~K}, \quad \sigma=6.0 \times 10^{-8} \mathrm{w} / \mathrm{m}^{2}-\mathrm{K}^{4}$

Energy radiated per second
$=A \sigma T^{4}=1.6 \times 6 \times 10^{-8} \times(310)^{4}=8865801 \times 10^{-4}=886.58 \approx 887 \mathrm{~J}$
40. $\mathrm{A}=12 \mathrm{~cm}^{2}=12 \times 10^{-4} \mathrm{~m}^{2} \quad \mathrm{~T}=20^{\circ} \mathrm{C}=293 \mathrm{~K}$
$e=0.8 \quad \sigma=6 \times 10^{-8} \mathrm{w} / \mathrm{m}^{2}-\mathrm{k}^{4}$
$\frac{\mathrm{Q}}{\mathrm{t}}=\operatorname{Ae} \sigma \mathrm{T}^{4}=12 \times 10^{-4} 0.8 \times 6 \times 10^{-8}(293)^{4}=4.245 \times 10^{12} \times 10^{-13}=0.4245 \approx 0.42$
41. $\mathrm{E} \rightarrow$ Energy radiated per unit area per unit time

Rate of heat flow \rightarrow Energy radiated
(a) Per time $=E \times A$

So, $E_{A l}=\frac{e \sigma T^{4} \times A}{e \sigma T^{4} \times A}=\frac{4 \pi r^{2}}{4 \pi(2 r)^{2}}=\frac{1}{4}$
(b) Emissivity of both are same
$=\frac{\mathrm{m}_{1} \mathrm{~S}_{1} \mathrm{dT}_{1}}{\mathrm{~m}_{2} \mathrm{~S}_{2} \mathrm{dT}_{2}}=1$
$\Rightarrow \frac{\mathrm{dT}_{1}}{\mathrm{dT}_{2}}=\frac{\mathrm{m}_{2} \mathrm{~S}_{2}}{\mathrm{~m}_{1} \mathrm{~S}_{1}}=\frac{\mathrm{s}_{1} 4 \pi r_{1}^{3} \times \mathrm{S}_{2}}{\mathrm{~s}_{2} 4 \pi r_{2}{ }^{3} \times \mathrm{S}_{1}}=\frac{1 \times \pi \times 900}{3.4 \times 8 \pi \times 390}=1: 2: 9$
42. $\frac{Q}{t}=A e \sigma T^{4}$
$\Rightarrow \mathrm{T}^{4}=\frac{\theta}{\text { teA } \sigma} \Rightarrow \mathrm{T}^{4}=\frac{100}{0.8 \times 2 \times 3.14 \times 4 \times 10^{-5} \times 1 \times 6 \times 10^{-8}}$
$\Rightarrow T=1697.0 \approx 1700 \mathrm{~K}$
43. (a) $\mathrm{A}=20 \mathrm{~cm}^{2}=20 \times 10^{-4} \mathrm{~m}^{2}, \quad \mathrm{~T}=57^{\circ} \mathrm{C}=330 \mathrm{~K}$
$\mathrm{E}=\mathrm{A} \sigma \mathrm{T}^{4}=20 \times 10^{-4} \times 6 \times 10^{-8} \times(330)^{4} \times 10^{4}=1.42 \mathrm{~J}$
(b) $\frac{E}{t}=\operatorname{A\sigma e}\left(T_{1}{ }^{4}-T_{2}{ }^{4}\right), \quad A=20 \mathrm{~cm}^{2}=20 \times 10^{-4} \mathrm{~m}^{2}$
$\sigma=6 \times 10^{-8}$
$\mathrm{T}_{1}=473 \mathrm{~K}$,
$\mathrm{T}_{2}=330 \mathrm{~K}$
$=20 \times 10^{-4} \times 6 \times 10^{-8} \times 1\left[(473)^{4}-(330)^{4}\right]$
$=20 \times 6 \times\left[5.005 \times 10^{10}-1.185 \times 10^{10}\right]$
$=20 \times 6 \times 3.82 \times 10^{-2}=4.58 \mathrm{w}$
from the ball.
44. $r=1 \mathrm{~cm}=1 \times 10^{-3} \mathrm{~m}$
$A=4 \pi\left(10^{-2}\right)^{2}=4 \pi \times 10^{-4} \mathrm{~m}^{2}$
$E=0.3, \quad \sigma=6 \times 10^{-8}$
$\frac{\mathrm{E}}{\mathrm{t}}=\operatorname{A\sigma e}\left(\mathrm{T}_{1}{ }^{4}-\mathrm{T}_{2}{ }^{4}\right)$
$=0.3 \times 6 \times 10^{-8} \times 4 \pi \times 10^{-4} \times\left[(100)^{4}-(300)^{4}\right]$
$=0.3 \times 6 \times 4 \pi \times 10^{-12} \times[1-0.0081] \times 10^{12}$
$=0.3 \times 6 \times 4 \times 3.14 \times 9919 \times 10^{-4}$
$=4 \times 18 \times 3.14 \times 9919 \times 10^{-5}=22.4 \approx 22 \mathrm{~W}$
45. Since the Cube can be assumed as black body
$\mathrm{e}=\ell$
$\sigma=6 \times 10^{-8} \mathrm{w} / \mathrm{m}^{2}-\mathrm{k}^{4}$
$\mathrm{A}=6 \times 25 \times 10^{-4} \mathrm{~m}^{2}$
$\mathrm{m}=1 \mathrm{~kg}$
$\mathrm{s}=400 \mathrm{~J} / \mathrm{kg}-{ }^{\circ} \mathrm{K}$
$\mathrm{T}_{1}=227^{\circ} \mathrm{C}=500 \mathrm{~K}$
$\mathrm{T}_{2}=27^{\circ} \mathrm{C}=300 \mathrm{~K}$
$\Rightarrow \mathrm{ms} \frac{\mathrm{d} \theta}{\mathrm{dt}}=\operatorname{e\sigma A}\left(\mathrm{T}_{1}{ }^{4}-\mathrm{T}_{2}{ }^{4}\right)$
$\Rightarrow \frac{\mathrm{d} \theta}{\mathrm{dt}}=\frac{\mathrm{e} \sigma \mathrm{A}\left(\mathrm{T}_{1}{ }^{4}-\mathrm{T}_{2}{ }^{4}\right)}{\mathrm{ms}}$
$=\frac{1 \times 6 \times 10^{-8} \times 6 \times 25 \times 10^{-4} \times\left[(500)^{4}-(300)^{4}\right]}{1 \times 400}$
$=\frac{36 \times 25 \times 544}{400} \times 10^{-4}=1224 \times 10^{-4}=0.1224^{\circ} \mathrm{C} / \mathrm{s} \approx 0.12^{\circ} \mathrm{C} / \mathrm{s}$.
46. $\mathrm{Q}=\operatorname{e} \sigma \mathrm{A}\left(\mathrm{T}_{2}^{4}-\mathrm{T}_{1}{ }^{4}\right)$

For any body, $210=\mathrm{eA} \sigma\left[(500)^{4}-(300)^{4}\right]$
For black body, $\left.700=1 \times \operatorname{A\sigma [(500)^{4}}-(300)^{4}\right]$
Dividing $\frac{210}{700}=\frac{e}{1} \Rightarrow e=0.3$
47. $\mathrm{A}_{\mathrm{A}}=20 \mathrm{~cm}^{2}$,
$A_{B}=80 \mathrm{~cm}^{2}$
$(\mathrm{mS})_{\mathrm{A}}=42 \mathrm{~J} /{ }^{\circ} \mathrm{C}, \quad(\mathrm{mS})_{\mathrm{B}}=82 \mathrm{~J} /{ }^{\circ} \mathrm{C}$,
$T_{A}=100^{\circ} \mathrm{C}, \quad T_{B}=20^{\circ} \mathrm{C}$
K_{B} is low thus it is a poor conducter and K_{A} is high.
Thus A will absorb no heat and conduct all

$\left(\frac{E}{t}\right)_{A}=\sigma A_{A}\left[(373)^{4}-(293)^{4}\right] \quad \Rightarrow(m S)_{A}\left(\frac{d \theta}{d t}\right)_{A}=\sigma A_{A}\left[(373)^{4}-(293)^{4}\right]$
$\Rightarrow\left(\frac{\mathrm{d} \theta}{\mathrm{dt}}\right)_{\mathrm{A}}=\frac{\sigma \mathrm{A}_{\mathrm{a}}\left[(373)^{4}-(293)^{4}\right]}{(\mathrm{mS})_{\mathrm{A}}}=\frac{6 \times 10^{-8}\left[(373)^{4}-(293)^{4}\right]}{42}=0.03^{\circ} \mathrm{C} / \mathrm{S}$
Similarly $\left(\frac{d \theta}{d t}\right)_{B}=0.043{ }^{\circ} \mathrm{C} / \mathrm{S}$
48. $\frac{\mathrm{Q}}{\mathrm{t}}=\mathrm{eAe}\left(\mathrm{T}_{2}^{4}-\mathrm{T}_{1}^{4}\right)$
$\Rightarrow \frac{\mathrm{Q}}{\mathrm{At}}=1 \times 6 \times 10^{-8}\left[(300)^{4}-(290)^{4}\right] \quad=6 \times 10^{-8}\left(81 \times 10^{8}-70.7 \times 10^{8}\right)=6 \times 10.3$
$\frac{Q}{t}=\frac{K A\left(\theta_{1}-\theta_{2}\right)}{I}$
$\Rightarrow \frac{Q}{t A}=\frac{K\left(\theta_{1}-\theta_{2}\right)}{\mathrm{I}}=\frac{\mathrm{K} \times 17}{0.5}=6 \times 10.3=\frac{\mathrm{K} \times 17}{0.5} \Rightarrow \mathrm{~K}=\frac{6 \times 10.3 \times 0.5}{17}=1.8$

28.11

49. $\sigma=6 \times 10^{-8} \mathrm{w} / \mathrm{m}^{2}-\mathrm{k}^{4}$
$\mathrm{L}=20 \mathrm{~cm}=0.2 \mathrm{~m}, \quad \mathrm{~K}=$?
$\Rightarrow E=\frac{K A\left(\theta_{1}-\theta_{2}\right)}{d}=A \sigma\left(T_{1}{ }^{4}-T_{2}{ }^{4}\right)$
$\Rightarrow K=\frac{s\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right) \times \mathrm{d}}{\theta_{1}-\theta_{2}}=\frac{6 \times 10^{-8} \times\left(750^{4}-300^{4}\right) \times 2 \times 10^{-1}}{50}$
$\Rightarrow K=73.993 \approx 74$.
50. $v=100 c c$
$\Delta \theta=5^{\circ} \mathrm{C}$
$\mathrm{t}=5 \mathrm{~min}$
For water
$\frac{\mathrm{mS} \Delta \theta}{\mathrm{dt}}=\frac{\mathrm{KA}}{\mathrm{l}} \Delta \theta$
$\Rightarrow \frac{100 \times 10^{-3} \times 1000 \times 4200}{5}=\frac{\mathrm{KA}}{\mathrm{I}}$
For Kerosene
$\frac{\mathrm{ms}}{\mathrm{at}}=\frac{\mathrm{KA}}{\mathrm{l}}$
$\Rightarrow \frac{100 \times 10^{-3} \times 800 \times 2100}{\mathrm{t}}=\frac{\mathrm{KA}}{\mathrm{l}}$
$\Rightarrow \frac{100 \times 10^{-3} \times 800 \times 2100}{\mathrm{t}}=\frac{100 \times 10^{-3} \times 1000 \times 4200}{5}$
$\Rightarrow \mathrm{T}=\frac{5 \times 800 \times 2100}{1000 \times 4200}=2 \mathrm{~min}$
51. $50^{\circ} \mathrm{C} \quad 45^{\circ} \mathrm{C} \quad 40^{\circ} \mathrm{C}$

Let the surrounding temperature be ' T ' ${ }^{\circ} \mathrm{C}$
Avg. $\mathrm{t}=\frac{50+45}{2}=47.5$
Avg. temp. diff. from surrounding
$\mathrm{T}=47.5-\mathrm{T}$
Rate of fall of temp $=\frac{50-45}{5}=1^{\circ} \mathrm{C} / \mathrm{mm}$
From Newton's Law
$1^{\circ} \mathrm{C} / \mathrm{mm}=\mathrm{bA} \times \mathrm{t}$
$\Rightarrow \mathrm{bA}=\frac{1}{\mathrm{t}}=\frac{1}{47.5-\mathrm{T}}$
In second case,
Avg, temp $=\frac{40+45}{2}=42.5$
Avg. temp. diff. from surrounding
$\mathrm{t}^{\prime}=42.5-\mathrm{t}$
Rate of fall of temp $=\frac{45-40}{8}=\frac{5}{8}{ }^{\circ} \mathrm{C} / \mathrm{mm}$
From Newton's Law
$\frac{5}{B}=b A t^{\prime}$
$\Rightarrow \frac{5}{8}=\frac{1}{(47.5-\mathrm{T})} \times(42.5-\mathrm{T})$
By C \& D [Componendo \& Dividendo method]
We find, $\mathrm{T}=34.1^{\circ} \mathrm{C}$
52. Let the water eq. of calorimeter $=m$
$\frac{\left(\mathrm{m}+50 \times 10^{-3}\right) \times 4200 \times 5}{10}=$ Rate of heat flow
$\frac{\left(\mathrm{m}+100 \times 10^{-3}\right) \times 4200 \times 5}{18}=$ Rate of flow
$\Rightarrow \frac{\left(\mathrm{m}+50 \times 10^{-3}\right) \times 4200 \times 5}{10}=\frac{\left(\mathrm{m}+100 \times 10^{-3}\right) \times 4200 \times 5}{18}$
$\Rightarrow\left(\mathrm{m}+50 \times 10^{-3}\right) 18=10 \mathrm{~m}+1000 \times 10^{-3}$
$\Rightarrow 18 \mathrm{~m}+18 \times 50 \times 10^{-3}=10 \mathrm{~m}+1000 \times 10^{-3}$
$\Rightarrow 8 \mathrm{~m}=100 \times 10^{-3} \mathrm{~kg}$
$\Rightarrow \mathrm{m}=12.5 \times 10^{-3} \mathrm{~kg}=12.5 \mathrm{~g}$
53. In steady state condition as no heat is absorbed, the rate of loss of heat by conduction is equal to that of the supplied.
i.e. $H=P$
$\mathrm{m}=1 \mathrm{Kg}$, Power of Heater $=20 \mathrm{~W}$, Room Temp. $=20^{\circ} \mathrm{C}$
(a) $\mathrm{H}=\frac{\mathrm{d} \theta}{\mathrm{dt}}=\mathrm{P}=20$ watt
(b) by Newton's law of cooling

$\frac{-\mathrm{d} \theta}{\mathrm{dt}}=\mathrm{K}\left(\theta-\theta_{0}\right)$
$-20=K(50-20) \Rightarrow K=2 / 3$
Again, $\frac{-d \theta}{d t}=K\left(\theta-\theta_{0}\right)=\frac{2}{3} \times(30-20)=\frac{20}{3} w$
(c) $\left(\frac{\mathrm{dQ}}{\mathrm{dt}}\right)_{20}=0, \quad\left(\frac{\mathrm{dQ}}{\mathrm{dt}}\right)_{30}=\frac{20}{3} \quad\left(\frac{\mathrm{dQ}}{\mathrm{dt}}\right)_{\mathrm{avg}}=\frac{10}{3}$
$\mathrm{T}=5 \mathrm{~min}=300^{\prime}$
Heat liberated $=\frac{10}{3} \times 300=1000 \mathrm{~J}$
Net Heat absorbed $=$ Heat supplied - Heat Radiated $=6000-1000=5000 \mathrm{~J}$
Now, $m \Delta \theta^{\prime}=5000$
$\Rightarrow S=\frac{5000}{m \Delta \theta}=\frac{5000}{1 \times 10}=500 \mathrm{~J} \mathrm{Kg}^{-1 \circ} \mathrm{C}^{-1}$
54. Given:

Heat capacity $=\mathrm{m} \times \mathrm{s}=80 \mathrm{~J} /{ }^{\circ} \mathrm{C}$
$\left(\frac{d \theta}{d t}\right)_{\text {increase }}=2^{\circ} \mathrm{C} / \mathrm{s}$
$\left(\frac{\mathrm{d} \theta}{\mathrm{dt}}\right)_{\text {decrease }}=0.2^{\circ} \mathrm{C} / \mathrm{s}$
(a) Power of heater $=\mathrm{mS}\left(\frac{\mathrm{d} \theta}{\mathrm{dt}}\right)_{\text {increasing }}=80 \times 2=160 \mathrm{~W}$
(b) Power radiated $=\mathrm{mS}\left(\frac{\mathrm{d} \theta}{\mathrm{dt}}\right)_{\text {decreasing }}=80 \times 0.2=16 \mathrm{~W}$
(c) Now mS $\left(\frac{d \theta}{d t}\right)_{\text {decreasing }}=K\left(T-T_{0}\right)$
$\Rightarrow 16=\mathrm{K}(30-20) \quad \Rightarrow \mathrm{K}=\frac{16}{10}=1.6$
Now, $\frac{d \theta}{d t}=K\left(T-T_{0}\right)=1.6 \times(30-25)=1.6 \times 5=8 \mathrm{~W}$
(d) P.t $=\mathrm{H} \Rightarrow 8 \times \mathrm{t}$
55. $\frac{\mathrm{d} \theta}{\mathrm{dt}}=-\mathrm{K}\left(\mathrm{T}-\mathrm{T}_{0}\right)$

Temp. at $\mathrm{t}=0$ is θ_{1}
(a) Max. Heat that the body can loose $=\Delta Q_{m}=m s\left(\theta_{1}-\theta_{0}\right)$
(\therefore as, $\Delta \mathrm{t}=\theta_{1}-\theta_{0}$)
(b) if the body loses 90% of the max heat the decrease in its temp. will be $\frac{\Delta Q_{m} \times 9}{10 \mathrm{~ms}}=\frac{\left(\theta_{1}-\theta_{0}\right) \times 9}{10}$
If it takes time t_{1}, for this process, the temp. at t_{1}
$=\theta_{1}-\left(\theta_{1}-\theta_{0}\right) \frac{9}{10}=\frac{10 \theta_{1}-9 \theta_{1}-9 \theta_{0}}{10}=\frac{\theta_{1}-9 \theta_{0}}{10} \times 1$
Now, $\frac{\mathrm{d} \theta}{\mathrm{dt}}=-\mathrm{K}\left(\theta-\theta_{1}\right)$
Let $\theta=\theta_{1}$ at $\mathrm{t}=0 ; \quad \& \theta$ be temp. at time t
$\int_{\theta}^{\theta} \frac{d \theta}{\theta-\theta_{0}}=-K \int_{0}^{t} d t$
or, $\ln \frac{\theta-\theta_{0}}{\theta_{1}-\theta_{0}}=-\mathrm{Kt}$
or, $\theta-\theta_{0}=\left(\theta_{1}-\theta_{0}\right) e^{-k t}$
Putting value in the Eq (1) and Eq (2)
$\frac{\theta_{1}-9 \theta_{0}}{10}-\theta_{0}=\left(\theta_{1}-\theta_{0}\right) \mathrm{e}^{-\mathrm{kt}}$
$\Rightarrow t_{1}=\frac{\ln 10}{k}$

