PART ONE

PHYSICAL FUNDAMENTALS OF MECHANICS

1.1

KINEMATICS

11 Let Y be the stream velocity and V' the velocity of motorboat with respect to water. The

motorboat reached point B while going downstream with velocity (vo + V') and thea returned
with velocity (v' - vo) and passed the raft at point C. Let ¢ be the time for the raft (which
flows with stream with velocity vo) to move from point A to C, during which the motorboat

moves from A to B and then from B to C.

Therefore

1 (vp+v)T-1 e (Vo'fvl)l c——->

—=T+
PR Al %, B>V
On solving we get v, = -2—1; l -C _:;

1.2 Let s be the total distance traversed by the point and ¢, the time taken to cover half the

distance. Further let 2 be the time to cover the rest half of the distance.

s s
Therefore 7= Voh oOr = i—v; 1
and S (v + v)t or U= 5 2)
2 1 Vi+V,

Hence the sought average velocity
- s - s - 2 Vo (Vl + V2)
h+2t [s/2v JH[s/(vi+ V)] v+ v 42

<>

1.3 As the car starts from rest and finally comes to a stop, and the rate of acceleration and

deceleration are equal, the distances as well as the times taken are same in these phases
of motion.
Let At be the time for which the car moves uniformly. Then the acceleration / deceleration

A —2At each. So,

time is
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!-_ (,t_At)?\
<V>T 2{2w ! Jl+u/» 2
2_4<v>1:

w

or At’= 1

Hence A= 1-4<V>
wT

(a) Sought average velocity Sm

s 200cm 20
<v>=t- 20s =10 cm/s A

.

(b) For the maximum velocity, % should be

S~

maximum. From the figure ¢ 1S maximum for /

all points on the line "ac, thus the sought
maximum velocity becomes average velocity -
for the line ac and is equal to : 0 10 20 t,S

bc 100 cm
Pl =25 cm/s

() Time ¢, should be such that corresponding to it the slope % should pass through the

point O (origin), to satisfy the relationship %a ti From figure the tangent at point d
0

passes through the origin and thus corresponding time ¢t = f,= 16s.

1.5 .Let the particles collide at the point A (Fig.), whose position vector is ?3’ (say). If ¢ be the

1.6

time taken by each particle to reach at point A, from triangle law of vector addition :
- - > - —>
ry=ri+vit=r,+v,t

A -
o, F-7= @G- o vt
e |77- 731 " . .
erefore = — =3
’ [vz-vil Ty nt
From Egs. (1) and (2)
. -7
—_ —> - —>
Fi=ry= (v, =V, ) = =7
12 2 1 |V2"{1| 0 2 >
Fmfp Vv _— x
or, =——=3; = 7=s—=>7, Which is the sought relationship.
[ri=rl lvy-vi] -
We have
—p! — -
v =V-V, (1)

From the vector diagram [of Eq. (1)] and using properties of triangle



1.7

v’-\rv(z,+v2+2vovcosqaa 39.7km/br  (2)

’ .
and L =~ or sinB= ysng s“,‘
sin(k-¢) sind v
or 0= sin”! ysing s‘l:,l
Using (2) and putting the values of v and d i T
0= 19.1° JVO

Let one of the swimmer (say 1) cross the river along AB, which is obviously the shortest
path. Time taken to cross the river by the swimmer 1.

-—d——', (where AB = d is the width of the river) (¢h)]

2

t = -
V' e-v,

For the other swimmer (say 2), which follows the quickest -path, the time taken to
cross the river.

L= gf )
1 /’ [
T Vo § = T 3
d. x  — e =
l v: VT :: VI‘ _-—-:
l v =

In the time ¢,, drifting of the swimmer 2, becomes

V
X= vy, = ;(,ld, (using Eq. 2) 3)
If ¢, be the time for swimmer 2 to walk the distance x to come from C to B (Fig.), then
x_ vod . 3 4
== (using Eq. 3) 4)
According to the problem t, = £, +13
d d Vvod
AT
vl2 _ Vg
On solving we get
Yo
U= 1 = 3 km/hl'.
"2



1.8 Let ! be the distance covered by the boat A along the river as well as by the boat B acrc

1.9

1.10

the river. Let v, be the stream velocity and V' the velocity of each boat with respect

water. Therefore time taken by the boat A in its journey
l l

) +I
Vv, V-y

tA-
‘- 1 N l i 21

B VI VI VRV
() 0 0

and for the boat B

z Vv n 4
Hence, AL = where 1} = —

5 Vvi-v; Vni-1 ( i V)
On substitution t,/tg= 18

Let v, be the stream velocity and v/ the velocity of boat with respect to water. A
17
;‘,1 = n= 2> 0, some drifting of boat is inevitable.

Let v~ make an angle 0 with flow direction. (Fig.), then the time taken to cross the rive

t= (where d is the width of the river)

d
V' sin 0
In this time intezval, the drifting of the boat
x= (VcosO+vy)t

-(v’cos6+v0);,:m- (cot 0 + vy cosec 0) d T

|

For x_;, (minimum drifting) ?3’ —_—

d 0 0) = 0, which yield d Yol
de(cot + 1 cosec 0) = 0, which yields V' —
1 1 v —p
coSBm - == - [\
n 2 > X
Hence, 0= 120° 0
The solution of this problem becomes simple in the frame attached with one of the bodies.

Let the body thrown straight up be 1 and the other body be 2, then for the body 1 in the
frame of 2 from the kinematic equation for constant acceleration :

- — — 1 -
2= Toaz) * Vo2 + 5 W2 !

So, o= \_’&12) 1, (because Wy, = 0 and ;0.(12)' 0)
T —>

or, [72]= |"o(12)|‘ @)
—> P

But |vgl=|vez|= v

So, from properties of triangle

Voz) = \/vg + V2 = 2 vy v, cos (/2 - )
Hence, the sought distance

|75 )= vV 2(1-5in@) t= 22m.
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5

Let the velocities of the paricles (say 71' and "72’ ) becomes mutually perpendicuiar aftcr
time ¢. Then their velocitis become

—3! — = - —_ =

V, =V +8L v, = V48t 1)
As WLE so, Vv =0

o, (V;+81):(v,+g8t)=0

2 :
or -, v, +gt°=0 1
172 ¢ Vp Pe—— Vot 2e—Vit ——WV
Vo,
Hence, t= —% 3)

1
Now form the Eq. Tpp= ?;(12) + V&mt + Ei&'utz

— —> — —
| 732 | = | Vozy | % (because here wip = O and reg) = 0)
Hence the sought djstance

V1

|72l =

From the symmetry of the problem all the three points are always located at the vertices
of equilateral triangles of varying side length and finally meet at the centriod of the initial
equilateral triangle whose side Jength is a, in the sought time interval (say ¢t).

o>

%
)1\
3

2 >
A 0=120° e
vy (3
Let us consider an arbitrary equilateral triangie

of edge length ! (say).
Then the rate by which 1 approaches 2, 2 approches 3, and 3 approches 1, becomes :

=dl_ o cos[2E
dt

+V;
g Vv v, (as| Vgl = vi+v)

4
On integrating : - f dl = -3-2! f dt
0
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1.13

1.14

Let us locate the points A and B at an arbitrary instant of time (Fig.).
If A and B are separated by the distance s at this moment, then the points converge or

point A approaches B with velocity ;és-- v - u cos o where angle o varies with time.

dt
On intergating, {I’ <
T L9
-fds-f(v—ucosa)dt, //’, B
1 0 - P 4
(where T is the sought time.) v /"
T { ‘
or l-f(v-ucosa)dt (6)) A
0

As both A and B cover the same distance in x-direction during the sought time interval,
so the other condition which is required, can be obtained by the equation

Ax-fvxat
T
So, uT-fvcosadt )
0
ul
Solving (1) and (2), we get T=
ng (1) and (2), we g T

One can see that if u= v, or u<v, point A cannot catch B.

In the reference frame fixed to the train, the distance between the two events is obviously
equal to L Suppose the train starts moving at time = O in the positive x direction and
take the origin ( x = 0 ) at the head-light of the train at £ = 0. Then the coordinate of first

event in the earth’s frame is
X = 5w
and similarly the coordinate of the second event is
xXy= %w(t-m)z-l

The distance between the two events is obviously.
X -x;= l-wr(t+v/2) =0242 km

in the reference frame fixed on the earth..

For the two events to occur at the same point in the reference frame K, moving with
constant velocity V relative to the earth, the distance travelled by the frame in the time
interval T must be equal to the above distance.

Thus Vi=l-wit(t+1/2)

So, V-.%—w(t+t/2)-4-03 m/s
The frame K must clearly be moving in a direction opposite to the train so that if (for

example) the origin of the frame coincides with the point x; on the earth at time £ it
coincides with the point x, at time ¢ +T.
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1.15 (a) One good way to solve the problem is to work in the elevator’s frame having the

1.16

observer at its bottom (Fig.).

Let us denote the separation between floor and celing by /# = 2:7 m. and the acceleration
of the elevator by w= 12 m/! s

From the kinematical formula

1
y= y0+voyt+§wyt2 ()] ;\yl
Here y=0,y,= +h,voy=- 0
and Wy = Woat (y) = Wele () I
=(-8)-w=-(g+w) h=27m.
2
So, 0= h+}-{—(g+w)}t2 T\V‘:]'ka
2 !
0
or, t= v Zh = 07s.
g+w

(b) At the moment the bolt loses contact with the elevator, it has already aquired the
velocity equal to elevator,given by :

vo= (12) (2) = 2-4m/s
In the reference frame attached with the elevator shaft

(ground) and pointing the y-axis upward, we have for
the displacement of the bolt, Vo i

1
Ay==v0},t+iwyt2 T v

1
=Vt + :-2-(-g) t?
or, Ay= (2:4) (07) + %(- 9-8) (07)* = - 07 m.

Hence the bolt comes down or displaces downward relative to the point, when it loses
contact with the elevator by the amount 0-7 m (Fig.).

Obviously the total distance covered by the bolt during its free fall time
24
(9-8)

2
= |Ay|+2 Yo 0-7m +
s y 28

m= 1-3m.

Let the particle 1 and 2 be at points B and A at = 0 at the distances /; and [, from
intersection point O.

Let us fix the inertial frame with the particle 2. Now the particle 1 moves in relative to
this reference frame with a relative velocity 5;2 = ‘71' - 3;, and its trajectory is the straight

line BP. Obviously, the minimum distance between the particles is equal to the length of
the perpendicular AP dropped from point A on to the straight line BP (Fig.).
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-l —r

T

-t
N

M
e

} ->
' 9 Viz - | )
B er——7—00 k:
%
From Fig. (b), vy= VVZ+ V2, and tane-s-:' @)

The shortest distarice
AP = AMsin 0 = (OA - OM)sin @ = (I,-1, cot 0) sin 0

Va Y1 vibh-vl .
or AP = -, - = using 1
(’2 1v,)vv§+g Ve el
The sought time can be obtained directly from the condition that (I, - v, 1+ (L-v, 1)
Lvi+Lv
is minimum. This gives ¢ = 11 22,
Vl + V2

Let the car turn off the highway at a distance x from the point D.
So, CD = x, and if the speed of the car in the field is v, then the time taken by the car
to cover the distance AC = AD - x on the highway

AD-x

== @
nv Ce—X —p
and the time taken to travel the distance CB A
in the field
ViZe s
h=—"F ? R
i
So, the total time elapsed to move the car from point A to B &) A
AD-x VIZ+2
=1L +1= +
nv v

For ¢ to be minimum \ B

dt 1[ 1 x

—=0 of ~|-—+—7=—|=0

dx v [ n ViZ: ]
or 2= 1%+x% or x= !
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1.18 To plot x (¢), s (#) and w, (z) let us partion the given plot v, (f) into five segments (for
detailed analysis) as shown in the figure.
For the part oa:w_ = 1 and v = t= v

: v,
t? *la b
Thus, Axl(t)-fvxdt-fdt- T=50 1 el
° L 0T+ 16| A7
Putting =1, we get, Ax; = 5= > unit -1
For the part ab : -2 d
w,= O and v = v = constant= 1
t
Thus v, @) = [v,dt= [dt= (t-1)= 5,0)
1
Putting t=3, Ax, = 5, = 2 unit
Forthepart b4: w,= 1 and v, = 1 ~-(t-3)=4-f)=v
t
2
t© 15
Thus Ax:,(t)-{(4—t)dt- 4t—?—?- s3(0)
Putting t=4, Ax;= x;= %um’t
For the part 4d : vo=-land v,= ~(1-4)=4-1
So, v=|v |=1-4 for t>4
y 2
t
Thus Ax4(t)=_[(1—t)dt- 41-%-8
t
2
Similarly s4(t)=f|vx|dt=f(t-4)dt= %-4t+8
4
Putting t= 6, s, = 2unit
For the partd 7 : w,=2and v,= -2+2(-6)=2(-7)

v= v, |=2(7-1) for t< 7
6

Now, Ax(t)= |2 (t-T)dt= t?-14r+48
- t
Putting t=4, Axg= -1
6
Similarly ss@= [2(7-1)dt=141-12-48
t
Putting t=17, ss=1

On the basis of these obtained expressions w, (1), x () and s () plots can be easily plotted
as shown in the figure of answersheet.
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1.19 (a) Mean velocity
_ Total distance covered
- Time elapsed

LB seas ) Vo

(b) Modulus of mean velocity vector i
|<v>|= ﬁ: 2R =32cm/s (2

(c) Let the point moves from i to falong the half circle (Fig.) and v, and v be the spe

at the points respectively.

We have % =-w,

or, v= vy+w,t (as w, is constant, according to the problem)

JGorwpa

Vot (vg+wp) vo+v

So, <w> =2 - - 5 -
Ja
0
So, from (1) and (3)
Vo+V xR

2 T
Now the modulus of the mean vector of total acceleration

—_ -
IA‘TT, |v-v0|= Vo +V

[<W>]|= = (see Fig.)
Using (4) in (5), we get : .
- 2nR
~ [<w>|= ==
T
1.20 (a) we have r=at(l-ar)
ar’
So, V= dt-_'(l 2al)
> dv —
and W= = 2aa
(b) From the equation
r=at(l-of),

r=0, at t= 0and also at £ = At = &1—

So, the sought time Ar= (—i—
As v=a(l1-2a1)

a(l-2ar)) forrs 1
a

ﬂ= 21
a(2at-1)| fort>—
2a

So,

<
(]

3

G
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Hence, the sought distance
12a Va

s=fvdt-f a(l-2apdt+ f aat-NDadr
0 12a
Simplifying, we get, s= -2—%
1.21 (a) As the particle leaves the origin at = 0

So, Ax= x= fvxdt (1)
As 7= 1 -g),
where Vg is directed towards the +ve x-axis

So, v = v, (1 - %) @)

From (1) and (2),
x=fv0(1——_:;-)dt= w(hi) ©)

0
Hence x coordinate of the particle at £ = 6.

6
x= 10x6(1-2x5)- 24cm= 024m
Similarly at t=10s
10
x= 10x10(1-2x5)-0
and at t=20s
x=10%x20(1- 20 ) -200cm=-2m
2x35
(b) At the moments the particle is at a distance of 10 cm from the origin, x = = 10 cm.
Putting x= +10 in Eq. (3)

10= 10:(1-1'5) or, t>-10t+10= 0,

- 10:\/100—40#5:\,1—5S

So, t=t 2
Now putting x= —10in Eqn (3)
t
-10= 10 (1 - 10),
On solving, t=5+ V35 s

As t cannot be negative, so,

t=(5+V35)s
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1.22

Hence the particle is at a distance of 10 cm from the origin at three moments of time :

t=52V1S 5, 5+V35 s
t
() We have V= \7;(1 —_-‘-)

t
vo(l—-'_" forts <t

So, ve|v]=
,,0(_‘.-1) fort>=
T
¢
t
So ss_{vo(l--t-)dtfor ts T = vyt (l-#r)
T 4
t t
and s‘f"o(l‘i)d""f"o(;'l)d‘ for t>1
0 T
= vpT[l+(1-%)%/2 for 1>1 (A)
4 4
t t
- Juft-ga froft-gar- 2ecm
0 0
And for t= 8s
.S 8
s-flO 1-% d:+f10 Lo1)ar
5 5
[} 5
On integrating and simplifying, we get
s= 34 cm.

On the basis of Eqs. (3) and (4), x (r) and s () plots can be drawn as shown in the answer
sheet.

As particle is in unidirectional motion it is directed along the x-axis all the time. As at
t=0,x=0
So, Ax=x= s, and %-w
Therefore, v=avx = avs
or, W= dv_ o ds_ a
’ t 2Vsdt 2Vs
_av_aavs of 1
Vs 2V 2 @)
2
v a
As, w-dt- >
v 4
o? o?
On integrating, fdv= ?dt or, v=>-t 2
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(b) Let s be the time to cover first s m of the path. From the Eq.

=fvdt

2 2
o a’t .
=f—2 dt = DI) (using 2)
0

or = i-\/; A3)

~N

The mean velocity of particle

2\/;/a

f %—2 tdt
fria aVs

0 -

<> = =
fdt 2Vs/a 2

1.23 According to the problem

- %- avv (as v decreases with time)
0 s
or, - f \/1—’ dv = afds
Vo 0
On integrating we get s = lv?,”

3a
Again according to the problem

_ﬂ, aVv or —‘—1-‘1- adt
dt Vv

0
or, f
V

ﬂl
o'—r

Thus

1.24 (a) As
So,

and therefore
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1.25

which is Eq. of a parabola, whose graph is shown in the Fig.

(d) As r=atizbe?j”
-
v= d—t’=a?-2btj" 6))
So, v=\/a2(—2bt)2=\/az+4b2t2

Diff. Eq. (1) w.r.t. time, we get
e 4L 26
dt J

So, | W|=w=2b

VW (aT22btj)-(-2bj7

(<) cos o =
vw (Va*+4b7%) 20
2bt
or, COs Ol = =,
VaZ+4b%:?
50 tano = —o—
’ 2bt
_m‘l _a_..
or, a=tan |-
(d) The mean velocity vector
((aiZ2b i3d
. f?dt _!;(at- tj)dt Lo
<V >= = =ai-btj
Ja t
Hence, |<}7’>|--\/;zz+(-bt)"r==\/a2+b2t2
(a) We have
x=atand y=at(l-at) 1)

Hence, y (x) becomes,

y= ax (1—%15)- x-%x2 (parabola)

(b) Diiferentiating Eq. (1) we get
v,=aand v,=a(l-2at) ?)

x
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So, V= \/vxz+vyz-a\/1+(1-20n‘)2
Diff. Eq. (2) with respect to time

w,=0ad w,=-2aa

So, w-\/wx2+wy2-2aa
(c) From Egs. (2) and (3)
We have \7’-ai_-7-a(1-2at)j_’and W= 2aaj_’
x 1 vw -a(l-2at)2aa
SO, COS —= == - 5
4 v2 vw gV1+(l-2at)) 2aa
On simplifying. 1-2aty==1
1
As, tyn 0, ty= —
o™ 0= o

Differentiating motion law : x= asinw¢, y= a(1-cosw¢), with respect to time,
V,= AW COS O, V= a o sin ot

So, V=awcosotj+ amsinwtj )
and v=aw= Const. )]
Differentiating Eq. (1) with respect to time

- dv 2. 2

o rad
W= —r=-ao sinwti+a®”cos wtj 3)

(a) The distance s traversed by the point during the time <t is given by

T, T

s-fvdt-facodt- aot (using2)

0 (i

(b) Taking inner product of v and w
— —> rd . 2 2 . . 2 FxY

Weget, vV'w= (awcoswti+awsinwtj) (aow’sinwt(-i)+an’coswt-j)
So, 7 W= - a® ©?sin ot cos 0t + a*> > sin ot cos ot = 0

. . . n
Thus, V'L W, i.c., the angle between velocity vector and acceleration vector equals 2

Accordiing to the problem
— bx ¢
w=w(-j)

dv, v,
= -——= = '—l L
So, We= 0 and w,= — w @
Differentiating Eq. of trajectory, y= ax - bxz, with respect to time
dy_adx_,,, dx @

ar dt dt
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1.28

L4
ds

==a-‘-i—x—
dt

x=0

So,

x=0

_Again differentiating with respect to time

d’y —-——"dz"-zb(ii)z-sz d’x

FTCPTE dt dt?

2
or, —w=a(0)—2b(%—f) -2bx(0) (using 1)

dx 1 / w . .

or, it b (using 1) C
w

- \/ L (¢
-0 2b

Hence, the velocity of the particle at the origin

2 2
V() () sV Eea 2
v= V( dt )x-o+( dt )x-o =Vapt2 5 (using Eqns (3) and (4))

As the body is under gravity of constant accelration g, it’s velocity vector and displacemen
vectors are:

Using (3) in (2) 4y

v=io+ gt @
and Ar=r= §;t+%gt2 (7= 0ate = 0) 2
So, <v> over the first f seconds
— —> —>
<F§=%=§= & )
Hence from Eq. (3), <v> over the first ¢ seconds ) y,
—> —> g’
<KV>= Y+ 27T “)
0 2 %
For evaluating ¢, take
Vv = (170)+§’t)-(\7;+?t)= v?,+2(\7;-§7t+g2t2 oc
s 2 22 (t=2) ~
or, V= vi+(voglt+gt >
0(t=0) p\ﬁc
But we have v= v, at t= 0 and Vo

Also at t = 7 (Fig.) (also from energy conservation)
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17
Hence using this propety in Eq. (5)
Ve = vg +2 (gt + g2

20,8

As t=0, s0, T= -———
4
Putting this value of v in Eq. (4), the average velocity over the time of flight
—>
—> —;(VO : éy

The body thrown in air with velocity v, at an angle o from the horizontal lands at point

P on the Earth’s surface at same horizontal level (Fig.). The point of projection is taken
as origin, so, Ax=x and Ay=y

(a) From the Eq. Ay= vo‘;+%wytz

0=VSiIl(1‘C—lgtz y’?
0 2 Yo
2vysina
As t= 0, so, time of motion t= —— '
g ] H
(b) At the maximum height of ascent, v, = 0 L ! P
so, from the Eq. vis vgy+2wyAy o ;._Rlz.q ;
0= (vpsina)’-2gH +_._> W
W=
v(z, sin® o }
Hence maximum height H = —-2—é—-—

During the time of motion the net horizontal displacement or horizontal range, will be
obtained by the equation

1
Ax = voxt+—wx1:2

2
2.

1 2 Vpsin 2 a
or, R=vocosar-§(0)1: = yco80tT= ——
when R=H

vg sin’ a vgsinza

or tano = 4, so, o.= tan” ' 4
8 2g

(c) For the body, x () and y (¢) are

X= yycosat 1)
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1.30

and y= vosinott—%gt2 ()]

Hence putting the value of ¢ from (1) into (2) we get,

1 2 2
) —( x )-xtana-—gx——

-58
27 {vpcosa 212 cos’ o’

= y,sina
Y=o (vocosa

Which is the sought equation of trajectory i.e. y (x)
(d) As the body thrown in air follows a curve, it has some normal acceleration at all the
moments of time during it’s motion in air.
At the initial point (x = 0,y = 0), from the equation :
2
w,= -}% , (Where R is the radius of curvature)

2 2
= =2 (see Fig) or Ry= —
gcosa= R, (see Fig.) or R, 2005 G

At the peak point v, = 0, v = v, =v, cos « and the angential acceleration is zero.

Now from the Eq. w, = YE
v(z, cos® o R vﬁ cos?
= N or =
8 R g

Note : We may use the formula of curvature radius of a trajectory y (x), to solve

part (d),
3

2 =
2
[1+(dy/dx) J
I dzy/dx2 I
We have, v, = vycosa, v, = vpsina - gt
As vt 3, all the moments of time.
Thus V= v,2-2gtvosina+g2t2
v, 1.d 1 ,

Now, W= = 2tht(v,Z)- v‘(gzt—gvosma)

=—£ i —-—pt)= - _vl
; (vosina-g1) g :,

v
Hence [w,| = gl—‘fi

Now wn-VW—w,Z- gz—gz—v‘;-
- t

v,
X

or Wy= 8" (where Ve= Vv -,
4
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1.32

19

As 1 G,, during time of motion

v,
2
Wy=W,=~-§g v

On the basis of obtained expressions or facts the sought plots can be drawn as shown in
the figure of answer sheet.

The ball strikes the inclined plane (Ox) at point O (origin) with velocity v, = V 2gh (1)
As the ball elastically rebounds, it recalls with same velocity v, at the same angle a from
the normal or y axis (Fig.). Let the ball strikes the incline second time at P, which is at
a distance / (say) from the point O, along the incline. From the equation

y= v(,),t+%wyt2

0= vocoson:—%goosou2

where T is the time of motion of ball in air
while moving from O to P.

2v,
As 1= 0, so,1:=—g— 2)

Now from the equation.

X= vy t+=w.

2

= . 1 . 2
= vpsinat+5gsinat

pe
. 2vl 1 . 2v, \\
so, l= v;sina ——g—— +5gsina|—=
4visina

= ———— (using 2
2 (using 2)

Hence the sought distance, /= &g%)ﬁﬂ—o—ls 8hsin o (Using Eq. 1)

Total time of motion

2v,sina . g 98«
TS Ty YT T 2k240 @
and horizontal range
R 5100 _ 85

R= vycosat or coso= -v-o—;g S ac [0))

From Egs. (1) and (2)
©8’v (85 _
(480 (47’

On simplifying t* - 2400 v* + 1083750 = 0
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1.33

1.34

Solving for 2 we get :
5 2400 x V 1425000 2400 + 1194
T = =
2 2
Thus T = 42395 = 0-71 min and

T= 24-55s = 0-41 min depending on the angle o.

Let the shells collide at the point P (x, y). If the first shell takes ¢ s to collide with second
and At be the time interval between the firings, then

x=vycos0,t=v,cos0,(t-A1) (1)

and y= v,sin0, t-% 2 1\3

= vosin 0, (- A) -2 (- AP @) |7

At cos 0, 3) (x}%")
cos 0, - cos 6, P
From Egs. (2) and (3) 92 01

2 vy sin (6, - 6,)
" g(cos 0, + cos 0,)

From Eq. (1) ¢=

as At= 0 O

According to the problem
(a) %= Vp or dy= vydt

y
Integrating f dy = v, f dt or y= vyt (¢))
0 0

And also we have %= ay or dc=aydt= avytd:t (using 1)

x t
2
So, fdx=av0ftdt, or, x-%avot2= %%‘L(using 1)
A (]
(b) According to the problem
v,= vy and v, = ay 2

So, v==\/v2+v2=-\/v;‘;+a2y2

Therefore ——-—-—X—-—— d ——-———L—-—
Vvg+ay” dt V1+(ay/v0)

Diff. Eq. (2) with respect to time.
dv,

So, w=|w/|=ay,
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VT AV S
Hence w, t 0 14 (ay /Vo)2 V1+/av/v\2 (ay / Vo)2

1.35 (a) The velocity vector of the particle
—> - kng
v=ai+bxj

&_ .Y
So, 2= s bx @
x ¢
From (1) fdx= afdt o, x=at ?2)
0 [}
And dy = bx dt= batdt
y t
Integrating f dy = ab f tdt or, y= -;—ab t? 3)
0 0
b
From Egs. (2) and (3), we get, y= Z—xz @)

(b) The curvature radius of trajectory y (x) is :
3

[1+@yran? ]5
Idzy/dle ' ®

Let us differentiate the path Eq. y = %xz with respect to x,

dy_b £y_b
it and 2 6)

From Egs. (5) and (6), the sought curvature radius :
3

sl |

1.36 In accordance with the problem

— —>
w,=a-1
v
But W, = % or vdv = w,ds
So, vdv= (a"T)ds=a-dr
rade —>, . .
or, vdv= ai-dr= adx (because a'is directed towards the x-axis)
\4 x

So, fvdv=afdx
0

0

Hence V= 2ax or, v=V2ax
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1.37 The velocity of the particle v= at

1.38

dv
So, LA
0 =W
And v2 2,2
Wam TR (using v = ar)
From s-fvdt
t
1 2
-2nRn=a|vdt= Tk
[}
2
So, dmm _t-
a R

From Egs. (2) and (3) w, = 4nan

Hence w= wf + wi

=V a§+(4ata“r])7 =aV 1+16;21f|i = 08 m/s?

According to the problem
[w,|=|w,|
-dv
F. 3 — = —
or v (1), & " K

Integrating this equation from vop< vs v and 0 r=< ¢

v t
dv 1 Vo
-fvzstdt or, v=-( vot—)
Y 0 1+——
()]

R
vdv v

Now for v (s), - % - R , Integrating this equation from vps vs vand 0s ss s

v s

dav 1 v s

SO, fv-—Rfds or, lnv°=—-R

Vo o
Hence v=y,e” R

(b) The normal acceleration of the point
2 2 -2/R
vi Ve .
Wom gT TR (sing2)

And as accordance with the problem
A A
Iw,l= |w,| and w,&,Lw,&,

2

v,
50, w=\/2_w,,=\/_; e % \/——

™
)

©)

@
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From the equation v= aVs
w ﬂ i ——a ;k—
dt

2
Gl aw/.;-z,and

= -2
2Vs

As w, is a positive constant, the speed of the particle increases with time, and the tangential

acceleration vector and velocity vector coincides in direction.

Hence the angle between v and W is equal to between w,u; an W, and o can be found
w 2

by means of the formula : mnasl-—"-l- QTS/j, Z

[wl a2 R

From the equation l=asinwt

ﬂ: V= awcosmt
dt

So, w,= %- -aw’sinwt, and (6))]

V2 azmzcoszmt
w,= L. do'a @

(a) Atthe point /= 0,sinw¢= 0 and coswz= = 1 so, wr= 0, = etc.
2
Hence W= w, = Rm

Similarly at/= x a, sinowf= = 1 and coswt= 0, so, w,= 0

Hence w--lw,lasam2

As w,= a and at t= 0, the point is at rest
So, v(t) and s(t) are, v= at and s = %at2 (6]

Let R be the curvature radius, then

2 2,2
v a‘t 2as .

But according to the problem
w, = bt*

2t2 a2 2

So, br*= L2~ or, R= el 2—"b—s (using 1) o))

Therefore w=V w?+w2 = V a*+(2as/R)* = \/a2+(4bs2/a2)2(using 2)

Hence w= aV 1+(4bs2/a3)
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1.42 (a) Let us differentiate twice the path equation y (x) with respect to time.

2 2
D ®, LY | (), Lx
P 2axdt, Za[(dt) +x

Since the particle moves uniformly, its acceleration at all points of the path is normal and
at the point x = 0 it coincides with the direction of derivative d y/dr> Keeping in mind

that at the point x = 0, dgj— =V,
Weget W= é"zz -2av2' Wn
x=0
2
2 v - L
So, w,=2av R,orR >a

Note that we can also calculate it from the formula of problem (1.35 b)
(b) Differentiating the equation of the trajectory with respect to time we see that

2 dy _
bx d+aydt 1)

which implies that the vector (b xi'+a yﬂ' is normal to the velocity vector

? = % T+ %f’which, of course, is along the tangent. Thus the former vactor is along
the normal and the normal component of acceleration is clearly
b x éc_ 2 & y

d12+aydt2

¥n = (b%* +ay 2y2

onusing w,=w-n/|n].Atx=0,y= 2 bandsoatx=0

W’tdtz

Differentiating (1)
2 2

Also from (1) £Z%--Oatx-o

So (%) = x v (since tangential velocity is constant = v )

Thus (?): + -b—v2

and

This gives R = a*/b.
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Let us fix the co-ordinate system at the point O as shown in the figure, such that the
radius vector 7 of point A makes an angle 8 with x axis at the moment shown.

Note that the radius vector of the particle A

rotates clockwise and we here take line ox as
reference line, so in this case obviously the y

angular velocity w= -ﬁ taking

dt
anticlockwise sense of angular displacement as
positive.

Also from the geometry of the triangle OAC
R r

sin®  sin(n-28)

Let us write,

= rcosB,'_-'rrsian_; 2Rcoszei_-’r Rsinzer

Differentiating with respect to time.

—

or, r= 2R cos 0.

do »

dr — . do —»
— or v= 2R2cos9(—sm9)-2;—,+2Rcos29EJ

dt

—» -do . rad -
o, v= 2R Z [sin20i-cos20j]

or, V= 2Rm(sin26i—:cos29j_;

—
So, |vlor ve 2wR=0-4m/s.

. . dv
As o is constant, v is also constant and w, = 7 0,

2 2
So, W= w = %—-g_z_%i_)_

Alternate : From the Fig. the angular velocity of the point A, with respect to centre of
the circle C becomes

d(26)_2(-de

= 4w’R= 032 m/s?

dt dt

Thus we have the problem of finding the velocity and acceleration of a particle moving
along a circle of radius R with constant angular velocity 2 w.

) =2 @ = constant

Hence v=2wR and
2 2
W= W = -R—- T—- 4(02R
Differentiating ¢ ( ¢} with respect to time
99 o - 2ar )

dt
For fixed axis rotation, the speed of the point A:

v
v=wR=2atR or R= T )
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1.46

Differentiating with respect to time

w2 2aR l;-,(using 1)

dt
v? v? .
But wo= R " v/2at-2atv (using 2)
So, W= \/w,2+w,,2 =V (v/t)+(2atv)
- *V1i+aa’s?

The shell acquires a constant angular acceleration at the same time as it accelerates linearly.
The two are related by (assuming both are constant)

w. B

! 2xn
Where w = linear acceleration and f =_angular acceleration

Then, w=V2f2nn= V 2-—‘;—(27:11)2

But v2= 2wl hence finally
= 2nrny
1

Let us take the rotation axis as z-axis whose positive direction is associated with the
positive direction of the cordinate ¢, the rotation angle, in accordance with the right-hand
screw rule (Fig.)

(a) Defferentiating @ (¢) with respect to time.

47
%:B. a-3bt’= o, (1) and K
d’e do
<7 4 - B~ -6bt @)

From (1) the solid comes to stop at At = ¢ = V L

G
The angular velocity o= a-3bt?, for 0stsVa/3b
Vaj}b

(a-3b7)dt
wdt Va/3b
So, <(o>-f .l -[at—bts] ud /Va/3b-2a/3
Jar Vaj;!b ’
dt

Similarly B = |B,|= 6b¢ for all values of r.
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Va/3b
6bt dt
So, <p>= '[Bdt= - = V3g)
fdt Va/3b
dt
0
(b) From Eq. (2) B,= -6b¢
So, (B,),= Va/3b = - 6b 5--2\/—
Hence ﬁ' I(ﬁz)‘_ml-2v3a3

Angle a is related with |w,| and w, by means of the fomula :

tan o = where w, = ®’R and |w,|= BR @)

M
[w ]’
where R is the radius of the circle which an arbitrary point of the body circumscribes.

From the given equation f§ = Z—? = at (here f§ = ﬁ—? » as B is positive for all values of 7)

© t
Integrating within the limit.g‘d(n- aftdt or, m-%at2
0

2
2 2.4
So, w,= 0’ R= (“—'—) R=2LR

2 4
and |w,|=BR= atR
Putting the values of |w,| and w, in Eq. (1), we get,

2 4 3
a’t"R/4 at 4
tan o = 2iR --—4— or, t-[(a)tana]

v3

In accordance with the problem, B, < 0

Thus - %—(:)-- k Vo , where k is proportionality constant

do r kt
or, - —\,:-k{dt or, Vo = Ya, - 5 6))

V@,
When @ = 0, total time of rotation t= v = 2 k 0
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1.49

1.50

2V, /k
2,2
f (w0+ -ktio)dt
4
A | locity fo)dt ()}
verage angular velocity < @ > =
far 2Vw, /k
2V /k
Hence < @ > = u)t+£—2-li-£ w, ’ 2—@- /3
of YT T ™ Kk - %
0

We have w =wy-a@ = gd?

Integratin this Eq. within its limit for ()¢

® . &
f__ii_L=fdtor,ln 2o ‘p=—kt
b Yo-ko

wg

o,
Hence Q= To(l—e"”)

(b) From the Eq., ® = 0y~ k@ and Eq. (1) or by differentiating Eq. (1)

o= wye ¥

@)

Let us choose the positive direction of z-axis (stationary rotation axis) along the vector

. In accordance with the equation
o q

do, o,
a = ﬁz or mz_d(p = Bz ZI\

o, w,dw,= B, do=Bcospdo, wz
Integrating this Eq. within its limit for ﬁz

w, (p) X /2

ll)‘ ) O
or, fd(ozs Bofcosquq)
0 0

w2
or, 3'- = Bysing

Hence w,=xV2p;sing

SV

The plot w, (¢) is shown in the Fig. It can be scen that as the angle ¢ grows, the vector
o first increases, coinciding with the direction of the vector B'; {(w, > 0), reaches the maximum

at @ = /2, then starts decreasing and finally turns into zero at ¢ = . After that the body
starts rotating in the opposite direction in a similar fashion (w, < 0). As a result, the body

will oscillate about the position ¢ = @/2 with an amplitude equal to 7/2.
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1.51 Rotating disc moves along the x-axis, in plane motion in x -y plane. Plane motion of a
solid can be imagined to be in pure rotation about a point (say /) at a certain instant
known as instantaneous centre of rotation. The instantaneous axis whose positive sense is
directed along @ of the solid and which passes through the point /, is known as instantaneous
axis of rotation.

Therefore the velocity vector of an arbitrary point (P) of the solid can be represented as :
Ve WX Ty m
On the basis of Eq. (1) for the C. M. (C) of

the disc

V.= WXy ¢))

. — 2>
According to the problem v, %%i and

@1t Eie @Lx- -~y plane, so to satisy the
Eqn. (2) 7¢y is directed along (- j ) Hence point

I is at a distance r, = y, above the centre of () )
the disc along y - axis. Using all these facts

in Eq. (2), we get
v
Vo= 0y ory--mi 3)

(a) From the angular kinematical equation

W, = Wg, + ﬁz t (4)
o= f§t
On the other hand x = v, (where x is the x coordinate of the C.M.)
x
or, t= ” &)

From Egs. (4) and (5), w = %

v2
- ﬂx/v Bx ( hyperbola )

(b) As centre C moves with constant acceleration w, with zero initial velocity

Using this value of o in Eq. (3) we get y= —=

So, X = *;-wtz and v, = wt
2x
Therefore, V.= w gl V2xw
Ve YV2wx
Hence Y= p (parabola)
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1.53

The plane motion of a solid can be imagined as the combination of translation of the C.M.
and rotation about C.M.
— - — —_

So, we may write v, = Vo +V,

";;"'(.l;x’_,:c (1) and y
Wy Wet W, /|
—_ — - - z
=wet@?(=r, )+ (Bxrec) (2 A

;:c is the position of vector of A with respect to C+
In the problem v, = v = constant, and the rolling is without slipping i.e., Ve=v=0R,
So, w-= 0 and § = 0. Using these conditions in Eq. (2)
—> 2 - 2 A v A
wWa= 0 (=ryc)= 0 R(-u,c)= _RT('“AC)
Here, QA ¢ is the unit vector directed along ;: c

2

b d A
Hence w, = > and w, is directed along ( - u ) or directed toward the centre of the
A= R A g A C

wheel.

(b) Let the centre of the wheel move toward right (positive x-axis) then for pure tolling

on the rigid horizontal surface, wheel will have to rotate in clockwise sense. If @ be the
12

angular velocity of the wheel then w = Fc = %

Let the point A touches the horizontal surface at ¢t = 0, further let us locate the point A

att= 1,

When it makes 8 = w ¢ at the centre of the wheel.

From Eqn. (1) Vo= Vot B X Tae
- - = iy
= vit+w(-k)x[RcosO(-j)+Rsin0(-i)]
or, v,=VvitwR[coswt(-i)+sinwtj ]

- —>
= (v-coswt)i+vsinwtj (asv= wR)

So, v, = \/(v - vcos wt)® + (v sin wf)%

=vV2(1-coswf) = 2vsin (wt/2)

Hence distance covered by the point A during T= 2 x/w
2x/w

s-vadt-f2vsin(mt/2)dt- Y.
0

Let us fix the co-ordinate axis xyz as shown in the fig. As the ball rolls without slipping
along the rigid surface so, on the basis of the solution of problem 1.52 :
- - - —»
Vo=V, t@xr, =0 _.}

i

Thus v,= oR and o1t (-k) as ‘7:”

@)
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P co + B'x r.=0
nd - BR and 11 ) as w11 A VctWR=Va
At the position corresponding to that of Fig., in
accordance with the problem, B

W= W, SO v, = Wt

i
L> Y
and = Ye mt and ﬁ- = (usmg 1) 'z * / NV

R R
(a) Let us fix the co-ordinate system with the frame [TT77777
attached with the rigid surface as shown in the Fig.

As point O is the instantancous centre of rotation of the ball at the moment shown in Fig.
so, o= 0,
Now, Vim Vot ®X T
™ e
= Vei+®(-k)xR(j)= (vo+wR)i
So, Vo= 2voim= 2wii (using 1)
Similalry vy = Vo +® X Fpe = vcam(—l?)xR(i_).
> =+ . Py
= Voi+OR(=j)= voit+ve(-j)
—_
So, vp=V2 v, =V2 wt and vy is at an angle 45° from both iand j (Fig.)
Oy e Wor 0 (7 + B
v2 A W +8g
2, —» C A .
= 0 (- Toc) =5 (ko) (using 1)
where ";oc is the unit vector along 7g¢

2

50, Wym -2 We
- -

> "0 R R

directed towards the centre of the ball

(using 2) and wy is

Now W, = W + @’ (= Tpe ) + B X The
= wit©’R (-j'_)’+ﬂ(-l?)er

2 —-

= (W"'ﬁR)”"E'(‘J) (using 1) = 2wt+—-R—(-))

/ 4.4 2\2
So, W= 4w2+‘—vR—;—-2w 1+(%)
—»

Similarly Wy= W, + 02 (= 7pc) +BX Tpe

- wit0R()+B(-F)xRE)

2 Pl
= |v-%|i+BR(-)) (using 1)
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- (w - !21{3) z—; w(-j_)’(using 2)

So, w3=\/(w—%)2+w2

1.54 Let us draw the kinematical diagram of the rolling cylinder on the basis of the solutioi
of problem 1.53.

A Va2V Wet+/Br

\

v We

Sr

0

As, an arbitrary point of the cylinder follows a curve, its normal acceleration and
radius of curvature are related by the well known equation

Wa= R
2
. Va
so, for point A, YA ™ R
A
4v: :
or, R, = —3 = 4r (because v = or, for pure rolling)
r
Similarly for point B,
v
Wam = R;
VZv, )
’r cos 45° = ( R :) )
B
%
or, RB-2\/7—-2—- 2V2r
or

1.55 The angular velocity is a vector as infinitesimal rotation commute. Then the relative angular
velocity of the body 1 with respect to the body 2 is clearly.

— — -
0)12-(1)1—(1)2

as for relative linear velocity. The relative acceleration of 1 w.r.t. 2 is

(%),
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where S’ is a frame corotating with the second body and S is a space fixed frame with
origin coinciding with the point of intersection of the two axes,

do | (day) .
but Z | =l + 0, X W,
t s t g
. - 3,
Since S’ rotates with angular velocity w, . However Z = 0 as the first body rotates
s

with constant angular velocity in space, thus
- -
BIz = W) X0,
Note that for any vector b, the relation in space forced frame (k) and a frame (k') rotating
with angular velocity @ is

db d -
dtl .df] . BxF
K K

Wehave @ = ati+ bt? 1_. )]
So, o=V (a)? + (b 2 , thus, ®|,_ 1o, = 7.811ad/s
Differentiating Eq. (1) with respect to time

- 22 ari2mj” @
So, B=Va+(2br)>
and Bl,- 10, = 1:31ad/s?

&P (aivb’]) - @i+2bt])
OB V@) + o Val+ (2br)

(b) cos a =

Putting the values of (a) and (b) ,and[taking t= 10s, we get
as 17°

(a) Let the axis of the cone (OC) rotates in anticlockwise sense with constant angular

velocity @ and the cone itself about it’s own axis (OC) in clockwise sense with angular
velocity (_o; (Fig.). Then the resultant angular velocity of the cone.

E)’-(T)'+6; (¢))]

As the rolling is pure the magnitudes of the
vectors @ and @, can be easily found from
Fig.

’

) wgy= v/R )

v
=
Rcota’

As @ L@, from Eq. (1) and (2)
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w=Vao?+w}

v 2 (v)? v
v(Rcotot) +(R) chosm“z'smd/s

(b) Vector of angular acceleration
do 4@ +3)
Toa dt

(as @ = constant.)

The vector ‘T’:) which rotates about the OO’ axis with the angular velocity @ ', retains i
magnitude. This increment in the time interval dt is equal to

|d @y | = wy o dt or in vector form d wy = (@ x @y ) dr.

Thus P= & x G
The magnitude of the vector Fs equal to
B= o w,(as (TJ"J.SO)

v
RcotaR R?

So, B= —tana = 2:3rad/s

1.58 The axis AB acquired the angular velocity
o = Byt ()

Using the facts of the solution of 1.57, the
angular velocity of the body

w=Vol+a?
= V0)§+Bgt2 = 0-6 rad/s

&
i

oY

o~

<
>
Wo

>

And the angular acceleration.

p 4T _ 4@ +3) gi 4

a " dt T Tdt * dr
dmo , do
But T- ® xay, and —— 7 Bot

So, B= (Botx @)+ Py

As, BoLl@y so, B=V (wyBy0)?+ P2 = By V 1+ (wyr)? = 02rad/s?
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THE FUNDAMENTAL EQUATION OF DYNAMICS

Let R be the constant upward thurst on the acrostat of mass m, coming down with a
constant acceleration w. Applying Newton’s second law of motion for the aerostat in
projection form

F,= mw,
mg-R = mw (6]
Now, if Am be the mass, to be dumped, then using the Eq. F, = mw,
R-(m-Am)g= (m-Am)w, )
2mw

From Egs. (1) and (2), we get, Am = g+ w

Let us write the fundamental equation of dynamics for all the three blocks in terms of
projections, having taken the positive direction of x and y axes as shown in Fig; and using
the fact that kinematical relation between the accelerations is such that the blocks move
with same value of acceleration (say w)

myg~T = myw @ x TN’ N2
I, -T,-lm g =m;w ) T T i % T
) 2. 1 »
and T,-kmyg=myw 3 7777 /l ﬂ/}.r////ln I'frz
The simultaneous solution of Egs. (1), (2) and T ! m
(3) yields, 1 ‘m,g 23
[mg—k(my+m)] l
4 T A+k)m,

an 2= m°+m1+m2ng ‘mog

As the block m; moves down with acceleration w, so in vector form

= ["‘o'k(ml"'mz)]?
mo+m1+m2

Let us indicate the positive direction of x-axis along the incline (Fig.). Figures show the
force diagram for the blocks.

Let, R be the force of interaction between the bars and they are obviously sliding down
with the same constant acceleration w.
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1.62

Newton’s second law of motion in projection form along x-axis for the blocks gives :
mygsina -k, m gcosa+R=mw 1)
mygsino-R-k,m,gcos a= myw 2

Solving Eqs. (1) and (2) simultaneously, we get

kym, +k, m, a

m, +m,

w= gsina-gcos o nd
m; m, (k, - k,) g cos o
my+m,
(b) when the blocks just slide down the plane, w= 0, so from Eqn. (3)
k, '"1‘”‘2'”2_
m; +m,
of, (m;+ my)sinoa= (k, m; +k,my)cosa

(ky m, + by my)
m +m
Case 1. When the body is launched up :

Let k be the coefficeint of friction, u the velocity of projection and [ the distance traversed
along the incline. Rétarding force on the block = mgsin o + kmg cos a. and hence the
retardation = gsin o + kg cos a.

Using the equation of particle kinematics along the incline,

R= €)

gsina - gcos a 0

Hence tana =

0=u’-2(gsina+kgcosa)l
2

o = 2(gsina:kgcosa) @
and O=u-~(gsina+kgcosa)t

or, u; (gsinafkgcosa)t ?2)
Using (2) in (1) I = %(gsincwkgcosm)t2 )

Case (2). When the block comes downward, the net force on the body
= mg sin o - km g cos a. and hence its acceleration = g sin o ~ k g cos o
Let, ¢ be the time required then,

=%(gsina—kgcosa)t'2 @)
From Egs. (3) and (4)

i _ sina-kcoso
¢? sina+kcosa
But;,t-- ;1]- (according to the question),
Hence on solving we get

2
k= %‘%mnow 016
n+



37

163 At the initial moment, obviously the tension in the thread connecting m, and m, equals

1.64

1.65

the weight of m.,

.(a) For the block m, to come down or the block m, to go up, the conditions is

myg-T20 and T-m,gsina-fr20
where T is tension and f, is friction which in the limiting case equals km,g cosa. Then
or m,g-m,sina>km, gcosa

or ﬂ>(l¢:¢:osov.-o-sinov.)
my

(b) Similarly in the case
m gsina-m,g>fr,

or, m, gsino -m,g>km, g cos a

or, ﬁ< (sin o - k cos o)
m

(c) F.or this case, neither kind of motion is possible, and fr need not be limiting.

Hence, (k cos a. + sin o) > m&> (sin o - k cos o)
1

From the conditions, obtained in the previous problem, first we will check whether the
mass m, goes up or down.

Here, my/m, = m > sin & + k cos o, (substituting the values). Hence the mass m, will come
down with an acceleration (say w). From the free body diagram of previous problem,

my-g-T=myw )
and T-m;gsina-km;gcosao=mw )
Adding (1) and (2), we get,

myg-m gsina—-km,gcosa= (m +my)w

_ (mz/ml—sina—kcosa)g- (n-sina-kcosa) g
B 1+ my/m,)) 1+7m
Substituting all the values, w= 0048 g~0-05g

As m, moves down with acceleration of magnitude w= 0.05 g > 0, thus in vector form
acceleration of m, :

—>

- (n-sina-kcosa)g —
w, T+m 0.05 g.

Let us write the Newton’s second law in projection form along positive x-axis for the
plank and the bar

fr=mw,, fr=mw, 1)
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1.66

1.67

At the initial moment, fr represents the static
friction, and as the force F grows so does the
friction force fr, but up to it’s limiting value

i€ fr= fTomay= kKN=km,g. Fr m, F—F
Unless this value is reached, both bodies moves = fp
as a single body with equal acceleration. But m,

as soon as the force fr reaches the limit, the  7////// /.

bar starts sliding over the plank i.c. wy 2 w,.
Substituting here the values of w; and w, taken from Eq. (1) and taking into account that

f,= km, g,we obtain, (at - km, g)/m, 2 —;nh—b— g, were the sign "=" corresponds to the moment
1

t= 1, (say)
kgm,(m, +
Hence, ty= _..g___il_"b)
am,
- km,g
If t<t, then w, = (constant). and

1
w, = (at - km, g)/m,
On this basis w, (f) and w;, (£), plots are as shown in the figure of answersheet.

Let us designate the x-axis (Fig.) and apply F,= m w, for body A :
mgsina-kmgcosa= mw
or, w= gsina-kgcosa
Now, from kinematical equation :
Iseca=0+(1/2) wt?

or, t=V2lseca/(sina-kcosa) g

=V2Il/(sin20/2-kcos’ ) g
(using Eg. (1))

d(smza—kcosza)

2
fore . , Ta =0
ie. ggis—z—g-q»Zkoosasina-O
1 o
or, tan2a-—;=>a=49

and putting the values of a, k and [ in Eq. (2) we get #,; = 1s.

Let us fix the x -y co-ordinate system to the wedge, taking the x — axis up, along the
incline and the y - axis perpendicular to it (Fig.).
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Now, we draw the free body diagram for the
bar.

Let us apply Newton’s second law in projection
form along x and y axis for the bar :

TcosB-mgsina—fr=0 1)

TsinB+N-mgcosa=0

o, N= mgcosa ~Tsinf )
But f, = kN and using (2) in (1), we get

T= mgsina+ kmg cos a/(cos § + ksin ) ?3)
For T, the value of (cos B + ksin B) should be maximum
d (cos B + ksin B)
dp
Putting this value of § in Eq. (3) we get,

So,

=0 or tanff= £k

m g (sin o + k cos o) m g (sin o + k cos a)

T = -
IV R K2V k2 V1+k2

First of all let us draw the free body diagram for the small body of mass m and indicate
x - axis along the horizontal plane and y - axis, perpendicular to it, as shown in the figure.

Let the block breaks off the plane at £ =z, i.e. N= 0

So, N=mg-atysina=0

'
or, fy= e 1) [i oL

asina x z
From F, = mw,, for the body under :
investigation : 7774777 /l/ 1777777
mdy/dt = atcos o ; Integrating within the
limits for v (f) mg

v

mfdv,- acosaftdt (using Eq. 1)
0 0

&

acoso 2
SO, V= '37 - bn t (2)
Integrating, Eqn. (2) for s ()
3
acosat

s= =3 ©)

Using the value of ¢ = ¢, from Eq. (1), into Egs. (2) and (3)
mg” cos o m? g cos a

- and s = 7 .3
2asin“a 6 a”sin” o
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1.69 Newton’s second law of motion in projection form, along horizontal or x - axis i.e.

F, = mw,_ gives.

F cos (as) = mviv- (as a = as)

ds ﬁ\N
or, F cos(as)ds = mvady F
Integrating, over the limits for v (s) TS L
® 2 z > x
F Vv
oy f cos (as) ds = Y 777777777777777
’ }
A\
2Fsina mg‘
or v= V —_—
ma
= V2gsina/3a (using F= %g-)
which is the sought relationship.
1.70 From the Newton’s second law in projection from :
For the bar,
T-2kmg= (2m)w )

For the motor,

T-kmg= mw' 2
Now, from the equation of kinematics in the frame of bar or motor :

1= -;-(w+w')t2 ©)

From (1), (2) and (3) we get on eliminating T and w/
t=V2l/(kg+3w)

\f\l

TI
2m =

_ m S
}I TTTIT7777 777777777777 77777777 777777 £
r r
171 Let us write Newton’s second law in vector from F = m w, for both the blocks (in the
frame of_ground).
T+mg=mw )
=g — —
T+myg=myw, @
These two equations contain three unknown
quantities w; , w, and T . The third equation

¥
N

7

is provided by the kinematic relationship T/
between the accelerations : Tw 0

—> —
Wy= Wo+W , Wy= wy—W (3) M2

where W is th acceleration of the mass m, &

with respect to the pulley or elevator car.
Summing up termwise the IRt hand and the m@.
right-hand sides of these kinematical equations, we get

mzfg'
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W= 29 @
The simultaneous solution of Egs-(1), (2) and (4) yiclds

— —
- (m-m)g+2myw,
W, =

my,m,
Using this result in Eq. (3), we get,
- Mmy-my = 2m;m,

w = (?—W:,) and T=
m;+m, m; +m,

(W - 8)

Using the results in Eq. (3) we get # = —1—2
£ ’ & m +m

&-W)
2
(b) obviously the force exerted by the pulley on the celing of the car

4dm, m
F=-2T- —2G-w,)
2

m1+m

Note : one could also solve this problem in the frame of elevator car.

Let us write Newton’s second law for both, bar 1 and body 2 in terms of projection having
taken the positive direction of x, and x, as shown in the figure and assuming that body 2

starts sliding, say, upward along the incline

T,~-mygsina=m;w (¢))]

myg~Tp=mw )]
For the pulley, moving in vertical direction
from the equation F, = m w,
2T,-T,= (m,)w;= 0

(as mass of the pulley m,= 0)
or I,=2T, 3)
As the length of the threads are constant, the

kinematical relationship of accelerations
becomes

w= 2w, ©)
Simultaneous solutions of all these equations yields :
m, .
2gl2 T —sina
! 2g(2m-sina)
w= m - dn+1)
( 424 1)
my

As m > 1, w is directed vertically downward, and hence in vector form

—_ 2 g(2n -sina)
4n+1
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1.73 Let us write Newton’s second law for masses m; and m, and moving pully in vertical

1.74

direction along positive x — axis (Fig.) :

mg=-T=mw, @ —Wo —> X1
myg-T= myw, @ m Ti
(o}
T,-2T=0(@sm=0) 7777777777777
or I,=2T 3) T
Again using Newton’s second law in projection
form for mass m, along positive x, direction r Wo
(Fig), we get T
T = myw, O]
The kinematical relationship between the X
accelerations of masses gives in terms of m;g mH0
projection on the x - axis ‘G
W Wy = 2w, o)

Simultaneous solution of the obtained five equations yields :
[4mymy+mg(m -m)]g
4m; my + my(m; +my)

W1=

In vector form

= [4m m,+my(m -m) 18
1 4m, my+my(m, +my)

As the thread is not tied with m, so if there were no friction between the thread and the
ball m, the tension in the thread would be zero and as a result both bodies will have free
fall motion. Obviously in the given problem it is the friction force exerted by the ball on
the thread, which becomes the tension in the thread. From the condition or language of
the problem w,, >w, and as both are directed downward so, relative acceleration of

M = w,,—w, and is directed downward. Kinematical equation for the ball in the frame
of rod in projection form along upward direction gives :

b= 2 (=) £ @

Newton’s second law in projection form along T= f
vertically down direction for both, rod and ball =Jr
gives,

Mg-fr=Mw, )]

mg - fr = mw, €)) ng
Multiplying Eq. (2) by m and Eq. (3) by M
and then subtracting Eq. (3) from (2) and after
using Eq. (1) we get \y
2IMm M 3

fr=
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Suppose, the ball goes up with accleration w; and the rod comes down with the acceleration w,.
As the length of the thread is constant, 2w, = w, @

From Newton’s second law in projection form along vertically upward for the ball and
vertically downward for the rod respectively gives,

T-mg=mw, 2
and Mg-T'=Mw, 3)
but T=2T  (because pulley is massless) @

From Egs. (1), (2), (3) and (4)
M-mg (2-mg

W= A n+4 (in upward direction)
and w,= 22;2] " 4; (downwards) T!

From kinematical equation in projection form, we get

l-%(wl+w2)t2 T

as, w, and w, are in the opposite direction.

"%

Putting the values of w; and w,, the sought mg_
time becomes
t=V2im+4)/32-nm)g=14s
Using Newton’s second law in projection form along x - axis for the body 1 and along
negative x - axis for the body 2 respectively, we get
m g=Ty=mw @

T-myg=m,w, 2

For the pulley lowering in downward direction
from Newton’s law along x axis,

T, -2T,= 0 (as pulley is mass less)

or, T,=2T, 3
As the length of the thread is constant so,

12

m:g

wy,= 2w, @ ¥
The simultaneous solution of above equations yields AT7TT77777777 $:m; ;233‘

2(m, - 2’"2)8 2m-2) m
W2 = 4m,+m, n+4 (as ,,n) ©)

Obviously during the time interval in which the body 1 comes to the horizontal floor
covering the distance A, the body 2 moves upward the distance 24. At the moment when
the body 2 is at the height 24 from the floor its velocity is given by the expression :

= 2w, )= 2| 20028y, BR0I-2)g
n+4 n+4
After the body m, touches the floor the thread becomes slack or the tension in the thread
zero, thus as a result body 2 is only under gravity for it’s subsequent motion.
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1.7

1.78

Owing to the velocity v, at that moment or at the height 24 from the floor, the body 2
further goes up under gravity by the distance,

po i 4@-2)
28 n+4

Thus the sought maximum height attained by the body 2 :
4h(m-2) 6nh

Mm+4 “m+4
Let us draw free body diagram of each body, i.e. of rod A and of wedge B and also draw
the kinemetical diagram for accelerations, after analysing the directions of motion of
A and B. Kinematical relationship of accelarations is :

Wa
tano= — (6]
Wp
Let us write Newton’s second law for both bodies in terms of projections having taken
positive directions of y and x axes as shown in the figure.

H=2h+h = 2h+

m,g-Ncoso=m, w, )

and Nsina= mgwy 3
Simultaneous solution of (1), (2) and (3) yields :

" m, gsin a - g and
4 mysino+mgootocosa  (1+mcot )
Wy = YA &
2~ tano  (tan o + 1) cot )
N ?
A Wap
- B
Wy o
NN “A
L
x
w
8

Note : We may also solve this problem using conservation of mechanical energy instead
of Newton’s second law.

Let us draw free body diagram of each body and fix the coordinate system, as shown in
the figure. After analysing the motion of M and m on the basis of force diagrams, let us
draw the kinematical diagram for accelerations (Fig.).

As the length of threads are constant so,
ds,\ = dsy, and as V;M and 5;, do not change their directions that why

IWM I - IWM I = w (say) and

Woas 11 vy and w,, 1oy,
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—>
wm .
T
T T fr
~->
N N h} Wm
fr AT -
Wmm
T
W
As W, =W, + Wy
so, from the triangle law of vector addition
W,= V2w @
From the Eq. F, = mw,, for the wedge and block :

T-N= Mw, @
and N=mw ®3)
Now, from the Eq. F,= mw,, for the block

mg-T-kN=mw )
Simultaneous solution of Egs. (2), (3) and (4) yields :

(km+2m+M) (k+2+M/m)

w

Hence using Eq. (1)
w = V2
" Q+k+M/m)

Bodies 1 and 2 will remain at rest with repect to bar A for w,;, <w s w_,, where w__is

the sought minimum acceleration of the bar. Beyond these limits there will be a relative
motion between bar and the bodies. For 0 s w < w,;, the tendency of body 1 in relation

to the bar A is to move towards right and is in the opposite sense for w2 W On the
basis of above argument the static friction on 2 by A is directed upward and on 1 by A
is directed towards left for the purpose of calculating w,; .

Let us write Newton’s second law for bodies 1 and 2 in terms of projection along positive

x - axis (Fig.).
T—frl-(}:ngw) of, fri=T-mw (1) AN — W
Ny= mw 0) T
As body 2 has no acceleration in vertical f Ti €
direction, so v 4
fro=mg-T (3) fmg T
From (1) and (3) !
(r+fr)= m@-w) &) P o g
But  fr,+fr,sk(N,+N,) 2 mg

o Itfpsklmgrmw) O I
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1.80

1.81

From (4) and (5)
m(g-w)smk(g+w), or wz gl-k

1+k)
1-k
Hence Wyin ™ gé+—lc)l
On the basis of the initial argument of the solution of 1.79, the tendency of bar 2 with
respect to 1 will be to move up along the plane.
Let us fix (x — y) coordirate system in the frame of ground as shown in the figure.
From second law of motion in projection form along y and x‘axes :

mgcosa—-N= mwsina

o, N=m(gcosa-wsina) (69)
mgsina+ fr= mwcos a
o, fr=m(wcosa-gsina) 2)

but fr < kN, so from (1) and (2)
(wcosa-gsina)sk(gcosa+wsina )
or, w(cosa-ksina)sg(kcosa+sina)

(cosa +sina)
or, wsg————+—,
cos o — ksin o

So, the sought maximum acceleration of the
wedge :

(kcosa+sina)g (kcota+1)g
coso-ksina  cota-k
Let us draw the force diagram of each body, ang on this basis we observe that the prism
moves towards right say with an acceleration w1 and the bar 2 of mass m, moves down

where cota > k

Wmax =

the plane with respect to 1, say with acceleration w,,1 , then, w2 = w21 +w; (Fig.)

Let us write Newton’s second law for both bodies in projection form along positive
y, and x; axes as shown in the Fig.

m;gcosa-N=myw,(, = mz[w21(y2)+wlky2)] = m2[0+w1 sina]

or, m,gcos a—N= m,w,sina 1)
and " Nsina = mw, @
Solving (1) and (2), we get

ngsixlotcoscnt.= _gsina cos a

W1=

my+mysin’a  (my/my)+sin’a

~>
W

\
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1.82 To analyse the kinematic relations between the bodies, sketch the force diagram of each

1.83

body as shown in the figure.

On the basis of force diagram, it is obvious that the wedge M will move towards right
and the block will move down along the wedge. As the length of the thread is constant,
the distance travelled by the block on the wedge must be equal to the distance travelled
by the wedge on the floor. Hence ds,, M = dsM. As 5:." and i’_;, do not change their
directions and acceleration that’s why w,,,, 11 Vo, and w), t1 Vo and W, =wy=w
(say) and accordingly the diagram of kinematical dependence is shown in figure.

N 7 T
T >
Wnm —>
AR, M T \
" .
N o

7777777777777777777777777777 P g

. M

As w = w mm wM, so from triangle law of vector addition.

wm=\/wM+w,3M-2me wycos o = wV2(1 - cos ) (¢))
From F,= mw,, (for the wedge),

T=Tcosa+Nsina= Mw )

For the bar m let us fix (x -y ) coordinate system in the frame of ground Newton’s law
in projection form along x and y axes (Fig.) gives

mgsina-T=mw, =m [wm ot Wi (x)]
=m [me+ w,, cos (7T - a)] =mw (1 - cosa) 3)

mgcosa-N=mw, = m[me(y)-i-wM(y)]s m[0+wsina ] )

Solving the above Egs. simultaneously, we get

m g sin a
M+2m(1-cosa)

Note : We can study the motion of the block m in the frame of wedge also, alternately
we may solve this problem using conservation of mechanical energy.

ws=

Let us sketch the diagram for the motion of the particle of mass m along the circle of
radius R and indicate x and y axis, as shown m the figure

(a) For the particle, change in momentum A p = my (- 1) mv(j )

50, |Ap | =V2mv
and time taken in describing quarter of the circle,
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xR
At= 2y
ol h
Hence, <F> = IAP|= ‘/5"“’_ W2 mv? s ﬂ 75(
At ntR/2v nR vf -
(b) In this case vy
;:-Oand;;- mwtt(_i-;’ R
so  |Ap|=mw,t

—
Hence, |<F>| = JAIEL= mw,

t

While moving in a loop, normal reaction exerted by the flyer on the loop at different
points and uncompensated weight if any contribute to the weight of flyer at those points.

(a) When the aircraft is at the lowermost point, Newton’s second law of motion in projection
form F, = mw, gives
2

my
N-mg= R
my?
or, N=mg+ =2:09 kN

R

(b) When it is at the upper most point, again
from F,= mw, we get

N'+mg= !%,2_
N"= mlzz-mg- 0-7kN
(c) When the aircraft is at the middle point of the loop, again from F,= mw,
UL LA

The uncompensated weight is mg. Thus effective weight = VN7Z + m? g2 =1-56 kN acts
obliquely.
Let us depict the forces acting on the small sphere m, (at an arbitrary position when the

thread makes an angle 0 from the vertical) and write equation F = mwvia projection on

A A
the unit vectors ¥, and u,. From F,= mw,, we have
mgsin O =m dv
-m
dt

vdy vdy

=M T de)

(as vertical is refrence line of angular position)



or vdv= -glsin0d0
Integrating both the sides :

v (]
dv=-gl| sin0do
.!;VV ngsm

2
\4
or, 2-glcosE)

2
Hence v—l- =2gcosO=w, 1)

%)

(Eq. (1) can be easily obtained by the
conservation of mechanical energy).

From F,=mw,

mv?

T

T-mgcosO=

-
r

Using (1) we have
T=3mgcos0 )
Again from the Eq. F,= mw,:

mgsin@=mw, or w,= gsin0 3)

Hence w = \/wf«rw"2 = \y[(gsin())2+(2gcos9)2 (using 1 and 3)

=gV1+3cos?0

(b) Vertical component of velocity, v, = v sin 6

So, v2= vZsin?0 = 2gIcos Bsin0 (using 1)
.2
For maximum v, or vy2 , d(c%;mﬁl_ 0
. . 1
which yields cos O = vy

Therefore from (2) T= 3mg%= V3 mg

(c) We have W= w, :4,+ w, 1:,, thus w, = Wy, + W,
But in accordance with the problem w, = 0

So, W) ¥ Wao) = 0
or, gsinBsinB+2gc0529(—cose)=0

1 o
or, cose-\/-§ or, 0= 547

49
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1.87

The ball has only normal acceleration at the lowest position and only tangential acceleration
at any of the extreme position. Let v be the speed of the ball at its lowest position and /
be the length of the thread, then according to the problem

2

VT = gsina @)
where o is the maximum deflection angle

From Newton’s law in projection form : F,= mw,

- mgsin 0 = mv -
g sin 1d0
or, -glsin0d0 = vadv
On integrating both the sides within their limits.
a 0
—glfsinedesfvdv
0 v
or, v’ = 2gl (1 -cos a) )

Note : Eq. (2) can easily be obtained by the conservation of mechanical energy of the
ball in the uniform field of gravity.
From Egs. (1) and (2) with 8 =

2gl(1-cosa)= Igcosa
or, cos a = %— so, o= 53°
Let us depict the forces acting on the body A (whlch are the force of gravity mg and the
normal reactlon N ) and write equation F- mw via projection on the unit vectors
u and un (Fig.)

From F, = mw,

mgsin O = mél
dt

- dev=. m vdv

ds RdO

or, gRsin0d0=vady

Integrating both side for obtaining v (0)
[} v

[ srsinoao= fvav

0 0 ~
or, vl = 2gR (1 - cos 8) c ({)
From F,=

We

@

At the moment the body loses contact with the surface, N = 0 and therefore the Eq. (2)
becomes

mgcos 0 —-N= m—

v’ = gR cos 0 3
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where vand 8 correspond to the moment when the body loses contact with the surface.
Solving Egs. (1) and (3) we obtain cos 0 = % or, 6= cos™! (2/3) and v= V2gR/3 .

At first draw the free body diagram of the device as, shown. The forces, acting on the
sleeve are it’s weight, acting vertically downward, spring force, along the length of the
spring and normal reaction by the rod, perpendicular to its length.

Let F be the spring force, and Al be the elongation.
From, F, = mw, :
Nsin0+Fcos0= ma?r 1)
where rcos 0= (I, + Al).
Similarly from F,= mw,
Ncos@-Fsin®=0 or, N=Fsin0/cos0 )
From (1) and (2)

F(sin0/cos 0) -sin @+ Fcos 0= mw’r

_ 2

= mw” (I, + Al)/cos 8 k‘)a)
On putting F = x A ], I
xAIsin29+|cAlc0329-mm2(10+AI) Y F
on solving, we get, N /

[} [}

Al= mw? 2 5 = 02

K-mw® (x/mo”-1) mg

and it is independent of the direction of rotation.

According to the question, the cyclist moves along the circular path and the centripetal
force is provided by the frictional force. Thus from the equation F, = mw,

2 2
my my
fr= - or kmg = "
2
or ko(l—i;)g=-‘;— or v2=ko(r-r2/R)g 1)
2
[ r )
dlr- R
For v .., we should have & - 0
or, 1—%- 0, sor=R/2
Hence v, = %V ko gR

As initial velocity is zero thus

V=2 w,s 1)
As w, >0 the speed of the car increases with time or distance. Till the moment, sliding
starts, the static friction provides the required centripetal acceleration to the car.

Thus fr=mw, but frs kmg
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1.92

So, w's g or wf+-lv;s g
or, V2$ (ﬁgz—W'?)R
Hence Vpar ™ V (I?g2-wf)R

Vo _1 TRV
so, from Eqn. (1), the sought distance s = 2w "2 (w ) -1 = 60m.

¢ 4

Since the car follows a curve, so the maximum velocity at which it can ride without sliding
at the point of minimum radius of curvature is the sought velocity and obviously in this
case the static friction between the car and the road is limiting.

Hence from the equation F, = mw

2
kmgz'—nL or vs YkRg

R
S0 Voaxr = VER ;1 8 - (6))
We know that, radius of curvature for a curve at any point (x, y) is given as,
. | [1+ @y 2 @
@dy)/ar
For the given curve, .
dy_a (x) g2z X
dc a o ¢ o> a
Substituting this value in (2) we get,
1+ (@*/0?) cos? (x/a) ]3/2
(a/ a2) sin (x/a)
For the minimum R, == =
a 2
and therefore, corresponding radius of curvature
2
a
Riin ™ a ©))
Hence from (1) and (2)
Vo = @ Vkg/a

The sought tensile stress acts on each element of the chain. Hence divide the chain into
small, similar elements so that each element may be assumed as a particle. We consider
one such element of mass dm, which subtends angle d o at the centre. The chain moves
along a circle of known radius R with a known angular speed ® and certain forces act on
it. We have to find one of these forces.

From Newton’s second law in projection form, F, = mw, we get
2 T'sin (do./2) - dN cos 8 = dm o’ R
and from F, = mw, we get
dNsin® = gdm
Then putting dm = mdo/2 x and sin (da/2) = do/2 and solving, we get,

m((an + g cot 0)

T- 2x
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d&

1.93 Let, us consider a small element of the thread and draw free body diagram for this element.
(a) Applying Newton’s second law of motion in projection form, F, = mw, for this element,

(T+dT)sin(d6/2) + Tsin (d0/2) -dN= dmno’R= 0
or, 2T sin (d ©/2) = d N, [negelecting the term(dT sind 6/2) ]

or, Tdo=dN, as sinL’- L2 )

Also, dfr= kdN= (T+dT)-T=dT T ?2)
From Egs. (1) and (2), Cl f P
kTd0=dT or 5”T—T- kd® dn

In this case Q =x so, dg T+dT

2.
or, or In T, kn 3

1 T, 1
SO, k-;ln 'T—1= ;ln‘r]o 7; 7—2

as = ——= "= ™ m
I, mg m o 2

m
(b) When ;3- 7, Which is greater than 7, the blocks will move with same value of
1

acceleration. (say w) and clearly m, moves downward. From Newton’s second law in
projection form (downward for m, and upward for m;) we get :

myg-T,=mw @)

and T,-mg=mw o)
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1.94

1.95

1.96

1.97

I
Also -TT= Ny 6)
Simultaneous solution of Eqs. (4), (5) and (6) yields :
we (mz'no”ﬁ)g_ (n‘no)g as m,
(my+memy)  (n+mg)

The force with which the cylinder wall acts
on the particle will provide centripetal force
necessary for the motion of the particle, and
since there is no acceleration acting in the
horizontal direction, horizontal component of
the velocity will remain constant througout
the motion.

So V, = V,COSs Q.

Using, F, = mw,, for the particle of mass m,

2 2 2
mv, mvycos a

N=®="%
which is the required normal force.
Obviously the radius vector describing the position of the particle relative to the origin of

coordinate is

(@

r=xi+yj=asinoti+bcosmt]j

Differentiating twice with respect the time :

2—>
W= %——;=—m2(asinmti_;bcoso)tf)’=—(o2r—’ ¢))]
t
Thus F=mw=-mao’r
(a) We have Ap= det
t
= fm gdt=mgt 1)
0 ——>
. . . . 2(vpg)
(b) Using the solution of problem 1.28 (b), the total time of motion, T= - ———
8
Hence using t=1tin(1)
|ap" =mg

—>— - —>.
= -2m(vyg)/g (V- g is -ve)
From the equation of the given time dependence force F = tTt( T-1) at t =1, the force
vanishes,

(a) Thus AF-F-fF’d:
0



T
—»3

or, E’-f;(t-t)dt%-

0

— - - a_’va
but p=mv so V= om
(b) Again from the equation F=mw

- dv”

at(t—t)-mz—
or, E'(m-tz)dt- mdv"

Integrating within the limits for i),

' v
fﬂtt—tz)dn- mfd?
0 0

o o vl £\ _ar’(x ¢t

’ m{ 2 3 m\l|2 3

Thus v--a—ti Tt for t< <
m\{2 3

Hence distance covered during the time interval ¢ = T,
T

s-fvdt

2 4
at” (v t ax
"f m (5'3)d"m12
0
198 We have F = Fsin wt
or m%-ﬁ,sinw or mdv= I_";sinmtdt

On integrating,

—
— - FO s e :
my = — = cos Wt + C, (where C is integration constant)
-
Fy
When t=0, v=0,s0 C= —
me
F, F,
Hence, v’= —2 cos of + ——
mo mo

F,
As |coswt = 1 so, v= —o(l—cosmt)
mw
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t

Thus s-fvdt
0
Fyt F,sin ot F, .
- - = 3 (ot - sin wt )
mow mo mo

(Figure in the answer sheet). N
1.99 According to the problem, the force acting on the particle of mass m is, F = o COS Wt
—>

So, m——= F,coswt or dv'= =2 cos wr dt
m

dt
Integrating, within the limits.

-
v 4

F, F,
—
fd\7'= —-fcosmtdt or v= —>sin ot
m mw

0 0

o

It is clear from equation (1), that after starting at ¢ = 0, the particle comes to rest fro

. 1
the first time at ¢ = ;

From Eq. (1 T= 2 gin oot for £ 2
rom Eq. (1), v= |v|= g Sinwr for £ — )

Thus during the time interval ¢ = x/w, the sought distance

F o
s-——o—fsinmtdt- 2F
mw
0

mw?
From Eq. (1)
0 .
- — t 1
Vinax 5 5 | sinot | <
1.100 (a) From the problem F=-rv so mor=
dv —- -
Thus mor= -rv[asdv?tlv]
or, ﬂ- -Lat
v m
On integrating Inv= —"—;-r+ c
But at t=0, v=y; 50, C=Iny,
v r o,
or, In -%= -—'h-t o, v=vy,€ m
Thus for t—oo v=10

dv -r
() Wehavcmdt- -rv sodv= mds
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Integrating within the given limits to obtain v (s ):

v s
r rs
I, dve - — -yy-—
o f v mfds or v=vo - 6))
vy 0
my,
Thus for Ve O,s-sW-T
(c) Let we have mdy v oo el
v v m
v ¢
- v
or, 4_3____r dt, or, In 2 ..L
v m nvy m
0 [}
So . -mln(l/n)_mlnn
r r
Now, average velocity over this time interval,
e

According to the problem

dv 2 dv
m -kv or,mv2 kdt

Integrating, withing the limits,
\4

t
dv k m(vo-v)
f\;z:_m{dt on =% VoV @
Yo
To fin. the value of k, rewrite
dv 2, W__k
mvds--kv or, =-—
On integrating
v h
IENp
v m
Yo 0
m._. Vo
So, k= ol 2
Putting the value of k from (2) in (1), we get
h ( vO -V )
t= —————

v, vlnz‘2
0 v



58

1.102

1.103

From Newton’s second law for the bar in projection from, F, = m w, along x direction

we get
mg sin o - kmg cos o = mw

dv .
or, v = gsina-argceosa, (as k= ax),
or, vdv = (gsina - axgcosa)dx
v x
or, fvdv- gf(sina-xcosa)dx
0 0
2 2
So, -v—-=g(sinax—x—acosa) 1
2 2 N fr

From (1) v= 0 at either
x=0, or x= Ztanoz
a

As the motion of the bar is unidirectional it
stops after going through a distance of

Y m
c Mé

2

= tan q.

a

From (1), for v _,,
d, . x? . : 1
dx(smou:- > acos a )= 0, which yields x = atana

Hence, the maximum velocity will be at the distance, x = tan a/a
Putting this value of x in (1) the maximum velocity,

g sin a tan o
V. =

max a

Since, the applied force is proportional to the time and the frictional force also exists, the
motion does not start just after applying the force. The body starts its motion when F
equals the limiting friction.

Let the motion start after time ¢, , then
km
F = aty=kmg or, ty= _;g

So, for t = = t;, the body remains at rest and for ¢ >, obviously

mdv
el (t-t)) or, mdv=a(t-tydt
Integrating, and noting v = Oat ¢ = £,, we have for¢> 1,
v 4
fmdv= af(t-to)dt or v= —a—(t-to)2
2m
0 [3

0
t

- I V= (it P
Thus s—fvdt— 2mf(t ty)"dt 6m(t ty)
t

0



1.104

1105

59

While going upward, from Newton’s second law in vertical direction :
vdy

Fg_:n_jj

At the maximum height A, the speed v = 0, so
0 A

{gd-(‘;cvd:/m)- -{ds

Integrating and solving, we get,
m kv,
h= % In ( 1+ _’;E) 1)
When the body falls downward, the net force acting on the body in downward direction
equals (mg - kv? ),
Hence net acceleration, in downward direction, according to second law of motion

my-gv-- -(mg+kv?) or = —ds

ds

vdv' _Q_z_ or. vdy - ds
a -8 m s o2
8-7
Thus f Vd; fds
g-kv/m

Integrating and putting the value of 4 from (1), we get,
vi= vo/ Vi +kv02/mg.

Let us fix x — y co-ordinate system to the given plane, taking x-axis in the direction along
which the force vector was oriented at the moment ¢ =0, then the fundamental equation
of dynamics expressed via the projection on x and y-axes gives,

F A 1
coswr=m=—y 1)
dv,
and Fsinot= m—2 (¥3)]
dt

. - . F_
(a) Using the condition W0) = 0, we obtain v, = g Sne? ©)
and
F
vy-mm(l-coso)t) @

oo (] (3)|

y 2
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1.106

1.107

(b) It is seen from this that the velocity v

turns into zero after the time interval A,
which can be found from the relation, ;Ly /
/

u)£= n. Consequentely, ]

2 / F
the sought distance, is y/

g At O=wt
‘/
s-fvdt- 2 e
A mo S
-
[ra obee=r 5>

Average velocity, <v> =
fa
2n/w

2F . (ot 4F
So, <v> =fmm sm( ) )dt/(ZJtu))=
0

Tmao

The acceleration of the disc along the plane is determined by the projection of the force
of gravity on this plane F, = mgsin a and the friction force fr = kmg cos a. In our case

k= tan o and therefore

fr=F =mgsino
Let us find the projection of the acceleration
on the derection of the tangent to the trajectory
and on the x-axis :

mw,= F, cos ¢ - fr= mgsina (cosp-1)

mw = F_ - frcosp= mgsino (1-cosg)
It is seen fromthis that w, = — w,, which means
that the velocity v and its projection v, differ

only by a constant value C which does not
change with time, i.e.

v= v +C,

where v, = v cos ¢. The constant C is found from the initial condition v= v,, whence
C =y, since ¢ = g initially. Finally we obtain

v= vo/(1+coscp).
In the cource of time ¢ =0 and v — vy/2. (Motion then is unaccelerated.)

Let us consider an element of length ds at an angle ¢ from the vertical diameter. As the
speed of this element is zero at initial instant of time, it’s centripetal acceleration is zero,
and hence, dN - Adscos = 0, where A is the linear mass density of the chain Let
T and T+dT be the tension at the upper and the lower ends of ds. we have from,
F,= mw,

(T+dT)+Adsgsing-T= Msw,

or, dT+ ARdpgsinp= Adsw,
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If we sum the above equation for all elements,
the term f dT = 0 because there is no tension

at the free ends, so
I/R

)»ngsinq)dq)- M, [ds=Alw,
0

Hence w,= g?(l—cosé—)

As w, = a at initial moment

So, w=|w,|=gl£(1—cos;li)

In the problem, we require the velocity of the body, realtive to the sphere, which itself
moves with an acceleration w, in horizontal direction (say towards left). Hence it is advisible

to solve the problem in the frame of sphere (non-incrtial frame).

At an arbitary moment, when the body is at an angle 0 with the vertical, we sketch the
force diagram for the body and write the second law of motion in projection form
F,=mw,

2
or, mgcosO—N—mwosinesmI:— (¢§)

At the break off point, N= 0, 0= 6, and let
v = v;so the Eq. (1) becomes,

2
V,

-I—g-- g cos 8 — w, sin 6 2
From, F,= mw,
. vdy vdy
mgsmG—mwocose=m-—ds—- mEIe
or, vdv= R(gsin@ +w,cos0)d0
% )

Integrating, f vdv = f R (g sin® + w, cosB) d 6
0 0

2
7
Z_OR_ = g(1 - cosB) + w, sin G, 3

Note that the Eq. (3) can also be obtained by the work-energy theorem A = AT (in the
frame of sphere)

therefore, mgR (1 -cos 6, ) + mwy R sin 6, = %"’Voz
[here mw, R sin 8, is the work done by the pseudoforce (- mw,))]

2
0 .
or, ﬁ=g(1—coseo)+wosme0
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1.109

1.110

Solving Eqgs. (2) and (3) we get,

2+kV 5 +9k2

w,
2 ,wln;tm.:lc--s-—0
3(1+k%) 4

Vo = V2gR/3 and Go-cos"l[
Hence 00 e g= 17°

This is not central force problem unless the path is a circle about the said point. Rather
here F, (tangential force) vanishes. Thus equation of motion becomes,

v, = v, = constant

mv; A
and, —= S forr=r,
r r
We can consider the latter equation as the equilibrium under two forces. When the motion

is perturbed, we write r = r, + x and the net force acting on the particle is,

2 2 2
A my, - myv, myv,
- B T i .4 R N P2 P W
(ro“'x) L RE T 4 Ty Ty

2
my,
This is opposite to the displacement x, if n < 1- (—-ri is an outward directed centrifugul

force while % is the inward directed external force).
r

There are two forces on the sleeve, the weight F, and the centrifugal force F,. We resolve
both forces into tangential and normal component then the net downward tangential force

on the sleeve is,

o’R

mg sin0 (1 - cos 6)
This vanishes for 6,= 0 and for 0

8= 8y = cos ' {—5—), which is real if
o°R

2

Mw2RSin§Cos 8
w2R>g. Ifm2R<g, then 1 - — R

[

cos O

>MWiRSinO=F2

is always positive for small values of 6 and
hence the net tangential force near 6= 0 ('
opposes any displacement away from it. '
0 = 0 is then stable.

2
Ifm2R>g, 1-2 R

O near 0= 0 and 6 = 0 is then unstable.
However 0 = @, is stable because the force tends to bring the sleeve near the equilibrium

g sing mg=F; mg Cos @+ mw? R Sin*

cos0 is negative for small

position 0 = 0,

If w*R = g, the two positions coincide and becomes a stable equilibrium point.
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Define the axes as shown with z along the local vertical, x due east and y due north. (We
assume we are in the northern hemisphere). Then the Coriolis force has the components.

F=-2m@xv)

rag > ™ Iid
= 2mu)[vycose—vzsinﬁ)z—vxcosej-fvxcosek = 2mo (v, cosO - v, sin0) i
since v, is small when the direction in which the gun is fired is due north. Thus the
equation of motion (neglecting centrifugal forces) are

X = 2mo (v, sing - v, cosg),y = 0 and 2’ = - g w > y../\/orrh
Integrating we get y = v (constant), z= - gt z-vertic
and x = 20 vsing t + mg ¢ cosp T.East

Finally,
2 1 3
x= vt sing + 3 wgt” cosp
Now v >> gt in the present case. so,

2
. (s s
x= v sing (—;) = osing -

~ 7 cm (to the east).

The disc exerts three forces which are mutually perpendicular. They are the reaction of
the weight, mg, vertically upward, the Coriolis force 2mv’ @ perpendicular to the plane of
the vertical and along the diameter, and mw’r outward along the diameter. The resultant
force is,

F= m\[g2+co4r2+(2v’ (n)2

The sleeve is free to slide along the rod AB. Thus only the centrifugal force acts on it.
The equation is,

. 2 dr
myvs= mw'r where v= —-

dt
U Y
Butv= vdr dr(ZV)

1 1
s, Zv?= =@’ r® + constant

2 2
or, V2 - V’(z) + (.l)2 7'2
v, being the initial velocity when r = 0. The Coriolis force is then,

2mo Vv + 0* P = 2mo® rV1 +vi/o* r#

= 2:83 N on putting the values.
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1.114

1.115

The disc OBAC is rotating with angular ol
velocity w about the axis OO’ passing through
the edge point O. The equation of motion in .\)w
rotating frame is,

mir"-l_"’+mm21—{+2m;7'x3- F-c-;"; 8

where F;, is the resultant inertial forc. (pseudo - v\
force) which is the vector sum of centrifugal 0 A
and Coriolis forces.

(a) AtA,F,, vanishes. Thus 0 = - 2mw’R n+2mv' on

c

A
where 7 is the inward drawn unit vector to the centre from the point in question, here A.
Thus, v'= oR

—_—= = 2

so, w R o”R.

— 2,2 2.2
(b) AtB F, = mo”OC +mw*BC
its magnitude is mw2V4R§ - r:, where r = OB.
The equation of motion in the rotating coordinate system is,

- 25 —
mw = F+mo’R+2m (v’ x ©)

Now, "~ ¥"= R@e;+Rsind¢e,

’ N

and W = wcosBe, —w sinbe

s = & 5
1z r y v .
-z—-m—F“,- 0 RO Rsinfg Cf

wcos B -wsin 0 0

= & (wR sin’0 §) + @R sin 6 cos O ¢ &, — WR O cos 6 e
Now on the sphere,

V= (-R6*-Rsin’0¢) e,
+(RO -RsinBcos6¢?) ey

+(Rsin9¢'+2Rcos96cb)E;

Thus the equation of motion are,
m(-R éz-Rsin29(i)2)- N - mg cos B+mw2Rsin29+2mesin29(b
m (RO - Rsin 0 cos 0 @)= mgsin 6 + mw> R sin 6 cos 6 + 2m R sin 6 cos 0 ¢
m(Rsin@¢ +2Rcos00 @)= ~2mo RO cos 6
From the third equation, we get, p= - ®
A result that is easy to understant by considering the motion in non-rotating frame. The
eliminating ¢ we get,

mR 6% = mgcos 0 - N

mRO = mgsin 0
Integrating the last equation,

%mRéz- mg (1 - cos 6)
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Hence N= (3-2cos 8) mg
So the body must fly off for 6 = 8, = cos” ! %, exactly as if the sphere were nonrotating.

Now, at this point F ;= centrifugal force = mw? R sin 6, = V % mw’ R

=V 0 R20% cos’ 8 + (w” R}’ sin” 0 x 2m
A 2 (2R a2 R2 3 28 22 2 8g
‘\/9(mR) +mR2x9x3R x2m 3mmR 5+3m2R

(a) When the train is moving along a meridian only the Coriolis force has a lateral
component and its magnitude (see the previous problem) is,

2mwvcos 0 = 2m wsin A

(Here we have put RO — v)

So, F,mﬂd-2x2000x103xr2;:)6-x5;6.%)-xg
= 377kN, (we write A for the latitude)

(b) The resultant of the inertial forces acting

on the train is,

—

F,= -2moR08cosBe,
+(mw’Rsin®cos 0 +2mmRsin0cos 0 ¢)eq

\

+(mo’Rsin’0+2m o Rsin’09)e,

This vanishes if 6= 0, p= - %m

P — Y

1 . 1
Thus v-v,pew,vw---Z—u)RsmG-—-ichosk

(We write X for the latitude here)

Thus the train must move from the east to west along the 60" parallel with a speed,
—(oRcos A= %x %x 107* x 6:37x 10° = 115-8 m/s ~ 417 km/hr

We go to the equation given in 1.111. Here v, = 0 so we can take y = 0, thus we get for

the motion in the x z plane.
x ==-2wv,cos 0

and 2.- -8
Integrating, Z= —-;-gt2
x= wgcos g
So x 1 wgcospt’= 1 g cos -2—}1-3/2
3®8 P 3 8 P 2
- 2 wh cos 2h
3 4 g

There is thus a displacement to the east of

2 2xn 1/40
3x864x500x1>< 98~26



66

1.3 Laws of Conservation of Energy, Momentum and Angular Momentum.

1118 As F is constant so the sought work done
A= FAF=F-(-7)

AP PP S AR
or, A= (3i+4j ) [(Qi-3j)-((+2j)]=@i+4j)-(i-5j)=17]

1.119 Differentating v (s) with respect to time

gza ———a é-- -—-——a a{s—- gj- w
dt 2Vsdt 2vVs 2
(As locomotive is in unidrectional motion)
2
Hence force acting on the locomotive F = m w = na

2

Let, ar v= 0at ¢t = O then the distance covered during the first ¢ seconds

_ 1 2_ 1a2 2 _ a2 2
S—Ewt = E—z—-t = Tt
m_a_z(aztz) ma't?
2 4 8

Hence the sought work, A = Fs=

1.120 We have

2 2 2 as2

1
T-timv-as2 or, V'=

Differentating Eq. (1) with respect to time

4as 2
2vw,= —v or, w,= —
m

Hence net acceleration of the particle

w= Vw,2+w,2, = '\/(2;?)24»(2”2)1‘ = 2asv 1 +(s/R)?

mR m

Hence the sought force, F = mw = 2asV1 + (s/R)z

()

@

—
1.121 Let F makes an angle 6 with the horizontal at any instant of time (Fig.). Newton’s second

law in projection form along the direction of the force, gives :

F = kmg cos 8 + mg sin 0 (because there is no
acceleration of the body.)

As I? 14 d rthe differential work done by the force F ,
dA=F-dr= Fds, (where ds = | d7"|) N
= kmg ds (cos 0) + mg ds sin 6 o

= kmg dx + mg dy.
1 h

)
mg

0

Hence, A= kmg | dx+mg | dy
0 gf
= kmgl+mgh= mg(kl+h).

Ry

< ;

¥

>
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1122 Let s be the distance covered by the disc along the incline, from the Eq. of increment of
M.E. of the disc in the field of gravity : AT+ AU = Ag,
0+ (-mgssina)= - kmgcosas-kmgl
kl
on, §= sina-kcosa @)
Hence the sought work

Ap = —kmg[scosa +1]

2L
. __kimg .
A= ~T"tourq [Using the Eqa. (1)] ]
On puting the values A, = -0.05J mg

L123 Let x be the compression in the spring when the bar m, is about to shift. Therefore at this
moment spring force on m, is equal to the limiting friction between the bar m, and horizontal
floor. Hence

kx=km,g [where x is the spring constant (say)] m
For the block m, from work-energy theorem : A = AT = 0 for minimum force. (A here
indudes the work done in stretching the spring.)
so, Fx—%—xxz—kmgx-o or K%-

From (1) and (2),

F-lm g @ .

F=k e
= kg|my+=7)
1.124 From the initial condition of the problem the limiting fricition between the chain lying on
the horizontal table equals the weight of the over hanging part of the chain, i.e.
Anlg= kA(1-n)lg(where A is the linear N
mass density of the chain)
So, k= —Tl-—l - (¢))
Let (at an arbitrary moment of time) the length f r
*of the chain on the table is x. So the net friction
force between the chain and the table, at this AX
moment : 3
f,= kN=kAxg )

The differential work done by the friction forces :

A(X) 3

dA=T. dr= - f,ds = —kAxg(-dr)= Ag i{lﬁ x dx (©)

(Note that here we have written ds = - dx., because ds is essentially a positive term and
as the length of the chain decreases with time, dx is negative)

Hence, the sought work done
0

A-f kgl—?;xdx- ~(1-7) nﬂzsl_ ~137J
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1125

1.126

1.127

The velocity of the body, ¢ seconds after the begining of the motion becomes
V= Vo' +g't. Tht power developed by the gravity (m g) at that moment, is

P=mg v=m(g vy+g1t)= mg(gt-v,sin ) )

As mg” is a constant force, so the average power

A mg-ArT

<P>=—=

T T
where A7 is the net displacement of the body during time of flight.
As, mgLAr so <P>=0

2

We have w, = YE- atz, or, v=vYaRt,

t is defined to start from the begining of motion from rest.

So, W, = %‘;., vaR

Instantaneous power, P=F - v'= m (w,i,+w, 1, )- (VaR ti, ),

(where ﬁ, and 1’2, are unit vectors along the direction of tangent (velocity) and normal

respectively)
So, P= mw,YaR t = maRt

Hence the sought average power
t t
f Pdt f ma Re dt
<P> = o' )
t
[a
0
_ maR t? _ maRe

2t 2
Let the body m acquire the horizontal velocity v, along positive x — axis at the point O.

Hence <P>

(a) Velocity of the body ¢ seconds after the begining of the motion,
- —» —» -
v= vo+wi= (vo-kgt): @)
Instantaneous power P = ? V= (—kmg?) “(vo-kgt) z-: - kmg (v, - kgt )
From Eq. (1), the time of motion T = v,/kg
Hence sought average power during the time of motion
T

f—kmg(vo-kgt)dt

0 kmg vy -
<P> = = = =" 2W (On substitution)
From F, = mw,
dv,
-kmg=mw, = m.

or, v,dv,= —kgdx = - agxdx
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To find v (x), let us integrate the above equation
\4 x

fvxdvx- - agfxdx o, V= vi-ag? @)
v 0
Now, P=F-v V= -maxgVvi-agx’ )]
For maximum power, %(V vzoxi—)»gx") = 0 which yields x= ‘/—;-9—
og

Putting this value of x, in Eq. (2) we get,
Pox= - %-m vg Vo g
Centrifugal force of inertia is directed outward along radial line, thus the sought work

n
A= f mw’ rdr = %ma)2 (r% -ri)= 020 T (On substitution)

ry
Since the springs are connected in series, the combination may be treated as a single spring
of spring constant.

K1 %
- K+ K,y
From the equation of increment of M.E., AT+AU=A_,
K
0+LxAI?= A, or, A= 1 X% g2
2 2| K +K,

First, let us find the total height of ascent. At the beginning and the end of the path of
velocity of the body is equal to zero, and therefore the increment of the Kinetic energy of
the body is also equal to zero. On the other hand, in according with work-energy theorem
AT is equal to the algebraic sum of the works A performed by all the forces, i.e. by the
force F and gravity, over this path. However, since AT= 0 then A = 0. Taking into
account that the upward direction is assumed to coincide with the positive direction of the
y - axis, we can write

h h
=f(?+m§f-d ﬂf(Fy—mg)dy
0 0

h

= mgf(l -2ay)dy= mgh(1-ah)= 0.
0
whence h= 1/a.
The work performed by the force F over the first half of the ascent is
w2 h2

AF-nydy- 2mgf(1-ay)dy- 3 mg/4a.
0 0

The corresponding increment of the potential energy is
AU= mgh/2= mg/2a.
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From the equation F, = - %(']— we get F, = [ - k; + —b.E]
r

~

a) we have at r = r,, the particle is in equilibrium position. i.e. F,= 0 so, ry= 2a
o r " b

To check, whether the position is steady (the position of stable equilibrium), we have to
satisfy

2
‘iirg] >0
d*U [6a 2b
We have = | —=—-—
dr? [ rto3 ]
Putting the value of r= r)= —Z;i, we get
2 4
ddrg = —81-)—3- , (as @ and b are positive constant)
a
2 2
SO, -Lg- = —l-)—s > 0,
dr 8a

which indicates that the potential energy of the system is minimum, hence this position
is steady. ’

dau 2a b
(b) We have Frsr-drus[—r3+r2
For F, to be maximum, ——= 0
dr
3a -b
So, r= —l-)—and then F,(m)- -2-;;5,
As F, is negative, the force is attractive.
(a) We have
au -dU
Fx--—d-;-- -2ax and F, = =-2f0y
So, F=2axi-2Byiand, F=2V 22 +py 1)
—_ >
For a central force, rx F= 0
— —» - —» —> -
Here, rxF=(xi+yj)x(-2axi-28yj)

= —2‘3xyl?—2axy(l?)- 0
Hence the force is not a central force.
®) AsU= ax’+By

U -oU
So, F,= = -2ax and F, = y -2By.

So, F-\rFZ+F3=\/4azx2+482y2
According to the problem

F=2V a?x?+p?y* = C(constant)
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C2
0]', a2x2+ ﬂzyz = ?
2y c?
B g e ®

Therefore the surfaces for which F is constant is an ellipse.
For an equipotential surface U is constant.
So, ax’+By’= C, (constant)
2 C
or, I SE AR K, (constant)

Vi Ve af

Hence the equipotential surface is also an ellipse.
Let us calculate the work performed by the forces of each field over the path from a
certain point 1 (x,, y,) to another certain point 2 (x,, y,)

*
@) dA=F-dr= aytr-’d?s ayde or, A= afydx‘

*

(ii) dA= F-dr= (axi+byi)-dr= axdx + bydy

% ¢!
Hence A= f a xdx +f bydy
xl yl

In the first case, the integral depends on the function of type y (x), i.e. on the shape of
the path. Consequently, the first field of force is not potential. In the second case, both
the integrals do not depend on the shape of the path. They are defined only by the coordinate
of the initial and final points of the path, therefore the second field of force is potential.

Let s be the sought distance, then from the equation of increment of M.E.
AT+AU= A,

(0-lmv§)+(+mgssina)- -kmgcosas

2
2
Yo /,.
or, 5= 2g/(smc¢+kcosa)
—kmvg
Hence Ap= —kmgcosas= m

Velocity of the body at height 4, v, = v 2g (H - h), horizontally (from the figure given in
the problem). Time taken in falling through the distance A.

t= V % (as initial vertical component of the velocity is zero.)

Now s=vyt=V2gH+h x'\/% - VA@h -1
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For s_.. -5:9— (Hh - k%) = 0, which yields h -g—

Putting this value of A in the expression obtained for s, we get,
Spax = H

To complete a smooth vertical track of radius R, the minimum height at which a particle
5 . . .
starts, must be equal to -2-R (one can proved it from energy conservation). Thus in our

problem body could not reach the upper most point of the vertical track of radius R/2.

Let the particle A leave the track at some point O with speed v (Fig.). Now from energy
conservation for the body A in the field of gravity :

mg

h . 1
h-2(1+s/m9)]- 2mv2

or, 2 = gh(1 - sin 6) 1
From Newton’s second law for the particle at

the point O; F, = mw,, 4 !
mv* M
ing= TV
N + mg sin /2) A
But, at the point O the normal reaction N= 0
So, V= ng’-sin 0 @ ¥

From (3) and (4), sin 6 = —i- and v= V —g:-f-

After leaving the track at O, the particle A comes in air and further goes up and at maximum
height of it’s trajectory in air, it’s velocity (say v') becomes horizontal (Fig.). Hence, the
sought velocity of A at this point.

V=vcos(90-0)= vsinB= %\/33&

Let, the point of suspension be shifted with velocity v, in the horizontal direction towards
left then in the rest frame of point of suspension the ball starts with same velocity horizontally
towards right. Let us work in this, frame. From Newton’s second law in projection form
towards the point of suspension at the upper most point (say B) :

mv2 mvz

mg+T-—l£ o, T= 7£-mg 6]
Condition required, to complete the vertical circle is that T2 0. But 2
L2 = mg @)+ 3m So, vi= v2-dgl @)
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From (1), (2) and (3)

2
m(vy-4gl
T= #—I—g—)—mgzo or, v, = V5gl vs B

I,” . \\~\
Thus VA (min) ™= V5 8! ’/' Y7 *\
! ! J Ve
From the equation F, = mw, at point C ! Vg c
)
\

m? ‘ T
T @ \\\ [ /
Again from energy conservation \\\. -7 4
—;-mvi = %mvf + mgl A Va
From (4) and (5)
T=3mg

73

®)

Since the tension is always perpendicular to the velocity vector, the work done by the
tension force will be zero. Hence, according to the work energy theorem, the kinetic energy
or velocity of the disc will remain constant during it’s motion. Hence, the sought time

N . . . . . .
t= o where s is the total distance traversed by the small disc during it’s motion.

0
Now, at an arbitary position (Fig.)
ds= (Il,-R06)d6,

I/R

50, s-f(IO—RB)dG
0

E RIZ I}
"R R

or,

) 12 Bl lo
2Ry,

Hence, the required time, ¢

It should be clearly understood that the only uncompensated force acting on the disc A
in this case is the tension T, of the thread. It is easy to see that there is no point here,
relative to which the moment of force T is invarible in the process of motion. Hence

conservation of angular momentum is not applicable here.

Suppose that Al is the elongation of the rubbler cord. Then from energy conservation,

AU, + AU, = 0 (as AT = 0)
or, -mg(l+AI)+—;-KA12-0

1

zxAlz-mgAl—mgl =0

or,
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mgx\/ (m )2+4x5ml
or, Al = g \/ & 28 x-'ss-'-"—g[1+v1:-2—'(—l}
2 x mg

2x-'-c-

2

Since the value of V 1+ %:Eg! is certainly greater than 1, hence negative sign is avoided.

So, Al = -"-'g(1+\/1+-2—'5!)
K mg

When the thread PA is burnt, obviously the speed of the bars will be equal at any instant
of time until it breaks off. Let v be the speed of each block and 0 be the angle, which
the elongated spring makes with the vertical at the moment, when the bar A breaks off
the plane. At this stage the elongation in the spring.

Al= lysec 0 -] =1,(sec0-1) )
Since the problem is concerned with position and there are no forces other than conservative
forces, the mechanical energy of the system (both bars + spring) in the field of gravity is
conserved, i.e. AT+ AU = 0

So, 2 -;-rhvz)+%Kloz(sec9-—1)2-—mglotan9- (4] )

From Newton’s second law in projection form
along vertical direction : 9
mg=N+xl,(secO-1)cos 0 Kilo (SQL@—O

But, at the moment of break off, N = 0.

Hence, k I, (sec 6 - 1) cos 0 = mg | T
Kiy—-m
or, cos 0= Ko~ 3) l
xly
m

Taking k = Smg simultaneous solution\of (2) and (3) yields :

Io ?
1 /19 [
V= 3g LI 1-7m/s.

2
Obviously the elongation in the cord, Al = [, (sec © ~ 1), at the moment the sliding first
starts and at the moment horizontal projection of spring force equals the limiting friction.
So, K; Alsin®= kN . ¢))]

(where K, is the elastic constant). KAl\gj‘N

From Newton’s law in projection form along
vertical direction :

x; Alcos 6 + N = mg. 1 L.fr

or, N=mg-x,Alcos 8 > {2)
From (1) and (2),

x; Al'sin 8 = k(mg -k, Al cos 6) \ mg
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Ky = kmg
1™ Alsin 6+ kAl cos 0

From the equation of the increment of
mechanical energy : AU + AT = A,,

or,

or, (%KlAlz)-Af,
kmg Al®
% T AIGnO+kcos0) - Ar

kng I, (sec 0 - 1)
Afr= 3 (sin 0 - kcos 0)
1.142 Let the deformation in the spring be Al, when the rod AB has attained the angular velocity .
From the second law of motion in projection form F,= mw, .

Thus = 0-09] (on substitution)

2

mw” I,

kAl= mw?(ly+Al) or, Al= 9
(o + Al) =

From the energy equation, A_, = %mv2 + ; x al?

= L ma? g+ A + S AL

2
2 2
1 ; mw210 1 m(n)zlo2
= —mo” |+ +>K
2 T x-me?) 2 |k-mo?
En(t+n 2
On solving A= Eﬂ—(—:—')-, where 1= T2
2 a-ny K

1.143 We know that acceleration of centre of mass of the system is given by the expression.
- m ‘-?1 +my ;*?2

w
c= m;+m,
’
Since ﬁ'fl = - ;72
-—
We = - @
my +m,

Now from Newton’s second law F = mw, for
the bodies m; and m, respectively.

- . T
T+myg=m w, @
— —_ —_ —_ T \ mz T‘VV
and T+my,g= myw,= —mw, 3)
m;
Solving (2) and (3) 'Wl m g

—> (ml - m2) E’

W 22 (4) Mg,

m+m,
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Thus from (1), (2) and (4),

~ (m-m)g

2
(m; +m,)

As the closed system consisting two particles
m; and of m, is initially at rest the CM. of

the system will remain at rest. Further as
m, = m,/2, the C.M. of the system divides the

line joining m; and m, at all the moments of

time in the ratio 1 : 2. In addition to it the
total linear momentum of the system at all the
times is zero. So, ;7;- - ;7; and therefore the

velocities of m; and m, are also directed in

opposite sense. Bearing in mind all these thing,

the sought trajectory is as shown in the figure.

First of all, it is clear that the chain does not
move in the vertical direction during the
uniform rotation. This means that the vertical
component of the tension T balances gravity.
As for the horizontal component of the tension
T, it is constant in magnitude and permanently
directed toward the rotation axis. It follows from
this that the C.M. of the chain, the point C,
travels along horizontal circle of radius p (say).
Therefore we have,

TcosO=mg and Tsin0O= mmzp

Thus p= gﬂzlﬂ_ 0-8 cm
®

and T=-28 .5N
cos 0

(a) Let us draw free body diagram and write Newton’s
second law in terms of projection along vertical and

horizontal direction respectively. dc
< L
Ncosa-mg+ frsina=0 1 D
o
frcosa - Nsino = mo? 1 )

fr "

From (1) and (2)

sin o .
d (- frsina +mg) = mo? 1

frcosa—cosa Vmg
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2
So, fr= mg(sina+m?lcosa)-6N 3

(b) For rolling, without sliding,
frs kN

but, N= mgcosa-mm?lsina
(021 2
mg sina+?cosa s k(mgcos o -mw*lsin o) [Using (3)]

Rearranging, we get,

mw?1(coso+ksino) <(kmgcoso—-mgsina)

Thus osVg(k-tana)/(1+ktana )l = 2 rad/s

(a) Total kinetic energy in frame K’ is

Te 2my (5-7 Pagmy (7-V

-
This is minimum with respect to variation in V, when

bai_‘_;- 0, ie. ml(;;—‘*”)2+m2(;2’—v)-0

vy +my ¥,

- m,v. +

or Ve 2™ 72 o
m1+m2

Hence, it is the frame of C.M. in which kinetic energy of a system is minimum.

(b) Linear momentum of the particle 1 in the K’ or C frame
m,m,

= = — —»
=m(v = V.-V
pr=my(v,~v))= o (vi-v3)
= - >
or, p1= u(vy-vy), where, p= e+ my = reduced mass
Similarly, Pr=n(vy-v7)
=p = ~ - —>
So, |pil=|p;|= P= v, where, v = |v;-v,]| (3

Now the total kinetic energy of the system in the C frame is

= 2m 2m Zu

_....2

F-Ll,,2_1
Hence sz,zl
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To find the relationship between the values of the mechanical energy of a system in the
K and C reference frames, let us begin with the kinetic energy T of the system. The
velocity of the i-th particle in the K frame may be represented as v, = v, + V.. Now we

can write
T= 3 2mvi= 3 Im(F+7)- (574 7)

1 v - = 1 2
= 2 2™V +vc2 m‘-vl+2 3 mive
Since in the C frame Z m; \? = 0, the previous expression takes the form

T= i‘+lm vg- 7‘+—1-m v? (since according to the problem v, = V') (6]

2 2
Since the internal potential energy U of a system depends only on its configuration,
the magnitude U is the same in all refrence frames. Adding U to the left and right
hand sides of Eq. (1), we obtain the sought relationship

E-E’+-;—mV2

~

As initially U= U= 0, so, E= T
From the solution of 1.147 (b)

~ 1
T= Epl‘_’;_;’;lx

As vilv,
= 1 mm
Thus T 2—-——ml+m2(v§+v§)

Velocity of masses m; and m,, after t seconds are respectively.
Yy =Vi+gtand v, = V,+81
Hence the final momentum of the system,
—» —»' — — - —>
P=mv, +myv, = mvi+mvy+(m +my)gt
—» - - - —>
= po+mgt, (where, py= myv; +m,v, and m=m; +m,)

. 1
And radius vector, o= \7;:+-2—u7ct2
—» —»

(mivitmw)t 1,
—_— gt

(my +my) 2

—> —>
my v, +my v,

-2 T
gt®, where vy =

N | =

-
= Vot +
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1.151 After releasing the bar 2 acquires the velocity v,, obtained by the energy, conservation :

1.152

1.153

-;-mzv%- %Kf or, vz-x‘v ’—:2— 1)
Thus the sought velocity of C.M.

/X
O0+myx Vm,  xymyx

mo+m,  (m +m,)

vcm

Let us consider both blocks and spring as the physical system. The centre of mass of the

. . F . .
system moves with acceleration @ = T towards right. Let us work in the frame of
1 2
centre of mass. As this frame is a non-inertial frame (accelerated with respect to the
ground) we have to apply a pseudo force m, a towards left on the block m, and m, a

towards left on the block m,

As the center of mass is at rest in this frame,
the blocks move in opposite directions and
come to instantaneous rest at some instant. The
elongation of the spring will be maximum or ma
minimum at this instant. Assume that the block <—m, m, —>F
my is displaced by the distance Xy and the block 7T 77

m, through a distance x, from the initial

7772 a
<

positions.
From the energy equation in the frame of C.M.
AT + U =4A_,,
(where A_, also includes the work done by the pseudo forces)

Here,

AT=0, U--s%)'c(x1 +x,)° and

W F-myF m, F m F(x +x,)
" m +m, x movm, LT mo+m,
h m, (x,+x,)F
L sy = LT
2 m; +m,
S 0 2m F
0, X, +x, =001 x; +x; = Ky + )
. . 2m F
Hence the maximum separation between the blocks equals : [ + -———
k(m, +m,)

Obviously the minimum sepation corresponds to zero elongation and is equal to [,

(a) The initial compression in the spring Al must be such that after burning of the thread,
the upper cube rises to a height that produces a tension in the spring that is atleast equal
to the weight of the lower cube. Actually, the spring will first go from its compressed
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state to its natural length and then get elongated beyond this natural length. Let / be the
maximum elongation produced under these circumstances.

Then
k!l = mg ()}
Now, from energy conservation,

TKA% = mg(Al+ D+ 2k 12 @)

(Because at maximum elongation of the spring, the speed of upper cube becomes zero)
From (1) and (2),

2
A12_2m'chl_3m2£_ 0 or, Al= Szg’ —fg
K

Therefore, acceptable solution of Al equals 2{3&

(b) Let v the velocity of upper cube at the position (say, at C ) when the lower block
breaks off the floor, then from energy conservation.

%mv2- %K(Alz—lz)-mg(l+Al)

(where /= mg/x and Al = 7%&)

2
o V= 25E @
.0 . mv+0 v
At the position C, the velocity of CM; vo = m =2 —Let, the CM. of the system
(spring+ two cubes) further rises up to Ay, T T
. : |C T‘J\

Now, from energy conservation, / feerel

1

5 @m) Vg = (2m) g Arc, |

V?: vV 4m

o, Ays,= E" @. _;_8_
But, uptil position C, the C.M. of the system
has already elevated by,
Al+hm+0  4mg

2m K
Hence, the net displacement of the C.M. of
the system, in uwpward direction

8 mg
K

R s |
Vs ]

—=

Ayc,=

Ayc= Ay +Ays=

~

TT7777;

Due to ejection of mass from a moving system (which moves due to inertia) in a direction
perpendicular to it, the velocity of moving system does not change. The momentum change
being adjusted by the forces on the rails. Hence in our problem velocities of buggies
change only due to the entrance of the man coming from the other buggy. From the
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Solving (1) and (2), we get

V= —=— and v, = My
1" M-m 2" M-m
As Vit viand v, 419"
So s mmy e MV
’ L M-m) 2 M-m)
From momentum conservation, for the system “rear buggy with man”
(M+m)vg=m(u+vg)+Mvg ¢))

From momentum conservation, for the system (front buggy + man coming from rear buggy)
Mvy+m@+vg)= (M+m)v,

B Mmoo
M+m M+m R
Putting the value of v from (1), we get
e e
M +m)

(i) Let 171' be the velocity of the buggy after both man jump off simultaneously. For the
closed system (two men + buggy), from the conservation of linear momentum,

My +2m{@+vy)= 0

So,

—
—> -2mu

or, V= M+2m (1)

(ii) Let 7" be the velocity of buggy with man, when one man jump off the buggy. For

the closed system (buggy with one man + other man) from the conservation of linear

momentum :

0= M+m)v” +m(@u+v") [P
Let 172' be the sought velocity of the buggy when the second man jump off the buggy; then
from conservation of linear momentum of the system (buggy + one man) :

M+m)v™ = MV +m{id +v,) )
Solving equations (2) and (3) we get

— m(2M+3m)1T
V2= (M +m) (M + 2m)

Q)

From (1) and (4)
V2 m

wo it rerem !

Hence v, > v,

The descending part of the chain is in free fall, it has speed v= V2 gh at the instant, all
its points have descended a distance y. The length of the chain which lands on the floor
during the differential time interval dt following this instant is vdr.
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For the incoming chain element on the floor :

From dp, = F,dt (where y - axis is directed down)
0-(Avd)v=F,dt

or F,= A= -2Agy

Hence, the force exerted on the falling chain

equals A v% and is directed upward. Therefore

from third law the force exerted by the falling

chain on the table at the same instant of dy — -
¥ =

time becomes A v* and is directed downward. '\f
Since a length of chain of weight (Ayg) already lies on the table the total force on the
floor is (2Ayg) + (Ayg) = (3Ayg) or the weight of a length 3y of chain.

Velocity of the ball, with which it hits the slab, v= V2 gh

}¥

After first impact, v' = ev (upward) but according to the problem V' = 11], S0 e= ;1]- (6]

and momentum, imparted to the slab,
=mv—-(-mv)=mv(l+e)
Similarly, velocity of the ball after second impact,
Vi= eV = v
And momentum imparted = m (V'.+v')= m(1 +e)ev
Again, momentum imparted during third impact,
=m(l+e) ezv, and so on,

Hence, net momentum, imparted = mv (1 +e) + mve (1 +¢) + mve? (l+e)+...

=mv(l+e)(l+e+e®+...)

‘v gt—:;, (from summation of G.P.)
(1 + %)
= V2gh ————= mV2gh /(m+1)/(n-1) (Using Eq. 1)

L
n
= 0-2kg m/s. (On substitution)
(a) Since the resistance of water is negligibly small, the resultant of all external forces

acting on the system “a man and a raft” is equal to zero. This means that the position of
the C.M. of the given system does not change in the process of motion.

ie. 7o = constant or, Aro= 0 ie. 2 m; Ar;= 0

or, m(AF;M +Ar—;,)+MAr_;, =0
Thus m(T"+I—5+MI_:.- 0, o, I=- ml”
’ > m+M

(b) As net external force on “man-raft” system is equal to zero, therefore the momentum
of this system does not change,

So, 0= m[¥ )+ )]+ MV ()
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1.159 (a) Since the resistance of water is negligibly small, the resultant of all external forces

1.160

1.161

1.162

acting on the system “a man and a raft” is equal to zero. This means that the position of
the C.M. of the given system does not change in the process of motion.

i.e. 7= constant or, Ari=0 ie. 2 m,Ar;= 0

or, m(AF;M +Ar_;,)+MAr7, =0
Thus m(r"+l—;+Ml_: 0, or I—:- ml”
’ o m+M

(b) As net external force on “man-raft” system is equal to zero, therefore the momentum
of this system does not change,

So, 0=m [V () +v, (1) ]+ MV, (1)
or, V() = -% 1)

As v () or E_,’(t) is along horizontal direction, thus the sought force on the raft
Mdv;)  Mm dv ()
dt m+M dt

Note : we may get the result of part (a), if we integrate Eq. (1) over the time of motion
of man or raft.

In the refrence frame fixed to the pulley axis
the location of C.M. of the given system is

described by the radius vector
AP MArg+(M-m)Arg, . +mAr,

¢ M
But  Ary= -AFg .
and AT = AT + AForom (ﬁﬂ (M-m)+m

ml”

-

Thus Arg= M

Note : one may also solve this problem using momentum conservation.

Velocity of cannon as well as that of shell equals V2 glsina down the inclined plane
taken as the positive x — axis. From the linear impulse momentum theorem in projection
form along x - axis for the system (connon + shell) i.e. Ap = F At:

pcosa~-MV2glsina = Mgsina At (as mass of the shell is neligible)
peosa-MV2glsina
Mgsina

From conservation of momentum, for the system (bullet + body) along the initial direction
of bullet

or, At=

m+M

mvy= (m+M)v, or, v=
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When the disc breaks off the body M, its velocity towards right (along x-axis) equals the
velocity of the body M, and let the disc’s velocity’in upward direction (along y-axis) at
that moment be v’

y
From conservation of momentum, along x-axis for the system (disc + body)
, , my
mv=(m+M)V_ or Vv = e M 1)
And from energy conservation, for the same system in the field of gravity :
l 2 _ l 2 l 2 ’
o mvt= 2(m+M)vx+2mvy-|~mgh ,
where h' is the height of break off point from initial level. So,
L2 L MV L2 el .
Smv= 2(m+1l'[)(M"_m)+2mvy+mgh, using (1)
2 2 mv2
or, vy=v-(m+M)—2gh
Also, if A" is the height of the disc, from the break-off point,
then, v’i = 2gh"
2 mv?
So, 2g(h +h)=v—(—A—[+—'-n—)-
Hence, the total height, raised from the initial level
! n Mv2
= Weh= 2 M +m)

(a) When the disc slides and comes to a plank, it has a velocity equal to v = \/m . Due
to friction between the disc and the plank the disc slows down and after some time the
disc moves in one piece with the plank with velocity V' (say).
From the momentum conservation for the system (disc + plank) along horizontal towards
right :

my
m+M
Now from the equation of the increment of total mechanical energy of a system :

mv= (m+M)Vv or V=

%(M+ m) v’2—lmv2== Ap,

2
or, —;—(M+m)—(;n%—2—%—mv2=Aﬂ
50 %vz [ M”fm - m] =4
Hence, Ap= - (m”:{MM ) gh= -ugh

mM
where p = M

= reduced mass)
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(b) We look at the problem from a frame in which the hill is moving (together with the
disc on it) to the right with speed . Then in this frame the speed of the disc when it just
gets onto the plank is, by the law of addition of velocities, v = u + V2gh. Similarly the
common speed of the plank and the disc when they move together is

Vo=u+ Vg

m+
o 1

Then as above Zﬁ = l(m-fM)V'2 - lmv - =Mu?
2 2
"

2

.]; 2 1 2 _];
2(m~|~M){u m+MuV Tz+( M)22gh}—-2‘(m+M)u -2m2u\/2gh-mgh

We see that Zﬁ is independent of u and is in fact just - u g & as in (a). Thus the result
obtained does not depend on the choice of reference frame.
Do note however that it will be in correct to apply “conservation of enegy’” formula in

the frame in which the hill is moving. The energy carried by the hill is not negligible
in this frame. See als6 the next problem.

In a frame moving relative to the earth, one has to include the kinetic energy of the earth
as well as earth’s acceleration to be able to apply conservation of energy to the problem.

In a reference frame falling to the earth with velocity v, the stone is initially going up
with velocity v, and so is the earth. The final velocity of the stone is 0 = v, —gt and

that of the earth is v, + — gt (M is the mass of the earth), from Newton’s third law,

where ¢t = time of fall. From conservation of energy
2

lmvg + leg + mgh = %M(V0 + '—n-vo)

2 2 M
1 m?
Hence Ev(z, (m + H) = mgh

Negecting % in comparison with 1, we get
vg = 2ghor v, = V2gh

The point is this in earth’s rest frame the effect of earth’s accleration is of order % and

can be neglected but in a frame moving with respect to the earth the effect of earth’s
acceleration must be kept because it is of order one (i.c. large).

From conservation of momentum, for the closed system “both colliding particles”
mvs + myvs = (my +my) v

s My tmy, -
or, g T TV, 1(31 21)+2(4_] 6k)=l+2] 4k
my +m, 3

Hence [v]=V1+4+16 m/s= 46m/s
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For perfectly inelastic collision, in the C.M. frame, final kinetic energy of the colliding
system (both spheres) becomes zero. Hence initial kinetic energy of the system in C.M.
frame completely turns into the internal energy (Q) of the formed body. Hence

~ 1 — -2
Q=1TI;= 5!‘]"1“’2'
2
Now from energy conservation AT = - Q = -—;-u IV;— V;I ,

In lab frame the same result is obtained as

1 memiy

=12 =2

AT m,+m, 5 ™ [vil® + my |y,
1 2
= - -Z-l»l I‘T;‘ ‘-’-2.|

(a) Let the initial and final velocities of m; and m, are a_i; , 5; and V), 172’ respectively.

Then from conservation of momentum along horizontal and vertical directions, we get :

m, u; = myv,cos 0 1)
and my; = myy,sin0 2 r Vi
Squaring (1) and (2) and then adding them, U
mi= 6 +}) e W e W
Now, from kinetic energy conservation, \0
N\,
Y
1 2 1 2.1 2 A
F MU= My Vyt S my vy 3
2 vz
m
o, m (u:; - vf) = mzvg =-m, -;i,- ("21’ + vf) [Using (3)]
2
m m
or, uf 1——-—-1--v§ 1L+—
my my
v\ m
or, (_l.) = my-m @)
) m+m
So, fraction of kinetic energy lost by the particle 1,
1 2 1
M- ym V% vf
= —-——-i—--—-—-——-—— = l - —5
5m ul “
my-my  2m .
-1- - [Using (4)] ®)

my + mz my + "12
(b) When the collision occurs head on,
mly = myvy +moy, 1)
and from conservation of kinetic energy,
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1 2 1 2
S Mmyu= 5””1"1*"2'"‘2"2

my
or, 2] (1 + —:—l) =-u; (%- 1)
2

v gml/m2—1! (6)

Zg <1 +m1/m2)

2
“’1)2 .
m, ————] [Using (5)]

or,

Fraction of kinetic energy, lost

2 2
Vi m;-m, 4mym,
= 1 -—— 1 d = i 6
(m1 + mz) (m; + »12)2 [Using (6)]

1.169 (a) When the particles fly apart in opposite direction with equal velocities (say v), then
from conservatin of momentum,
mu+0= (m,-m)v 1)

and from conservation of kinetic energy,

—;—ml u2- —;-ml v2+%m2v2

or, m u?= (m, +m)V )
From Eq. (1) and (2),

, -
mu=(mm) ———8n  ~Uy
(my-m,))
2.3 =0
or, m; -3 m, m,
m 1
Hence —= — asm, = 0

3
(b) When they fly apart symmetrically relative to the initial motion direction with the
angle of divergence 8= 60°,
From conservation of momentum, along horizontal and vertical direction,

my uy = my v, cos (6/2) + m, v, cos (6/2) (1)
and m, v, sin (8/2) = m, v,sin (8/2)
or, my v, = m,v, )
Now, from conservation of kinetic energy,
1 1 1
-2—m1uf+0-§m1vf+5m2v§ 3)

From (1) and (2),

myu, = cos (6/2) (m1 vl+m e m)- 2m; v, cos (8/2)
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So, u; = 2v, cos (6/2) 4)

From (2), (3), and (4)
2.2
4m; cos? (8/2) V2= m, V4 w
m;

m
or, 4cos’(6/2)= 1+ e
m,

v

m
or, —Lo4c0s? -1
my

m
and putting the value of 8, we get, El =2

If (Vn"ﬁy) are the instantaneous velocity components of the incident ball and
(vye» sz) are the velocity components of the struck ball at the same moment, then since
there are no external impulsive forces (i.e. other than the mutual interaction of the balls)

We have usina=v,, , vzy-O
Mmucosa=mvy +mv,,

The impulsive force of mutual interaction satisfies
d F d
dt(le)= m == dt(VZg)
( F is along the x axis as the balls are smooth. Thus Y component of momentum is not

transferred.) Since loss of K.E. is stored as deformation energy D, we have

1 -, 1 2 1
D'j"”“'z"m"li"”"z

1 2 2 1. 2 1
- — MU COS A - —mvh - -—szx

2 2 2

1
- E[ ulcoso. - mzvh‘2 ~ (mucosa~ mv, ) 2 ]

= -2%'— [ bnzumsav,;x- 2mv, 2 ] = m (v ucosa - v, %)
2
m u’cos’a _ [ weosa
4 2 L

We see that D is maximum when
u cosaL

-le

2. .2
and D, - Mo |4

D, .. 1
Le 27074
2
> XC

On substiuting o = 45° >

Then m=




1.171 From the conservation of linear momentum of the shell just before and after its fragmentation

1.172

W] @

where V7, v, and v, are the velocities of its fragments.

From the energy conmservation  3nv® =12 +12 + v 2
=p - - - - —»
Now V,OIVie= V= Vo=V, =V 3)

where 5; =v’= velocity of the C.M. of the fragments the velocity of the shell. Obviously
in the CM. frame the linear momentum of a system is equal to zero, so

= = o

i+, +v;=0 ©)
Using (3) and (4) in (2), we get

= (V) 4+ TV )+ (T v - 1) =3P+ 202420242000

or, 252427, %, cos0 + 272+ 3 (1 -2 =0 ®)
If we have had used \gr;- - 71' - 53', then Eq. 5 were contain ¥, instead of ¥, and so on.

The problem being symmetrical we can look for the maximum of any one. Obviously it
will be the same for each.
For V;to be real in Eq. (5)

472 cos?0 2 8(272 + 3 (1 - 1) ) or 6(n - 1)V’ = (4 - cos°0)7 2

So, Vs v -j—ﬂcL;%; of Vymey=V2(M-1) v

Hence v, ;.0 = I‘—':"?z’lm =v+V2(n-1) v-v(1+V2(n—1)’-1km/s

Thus owing to the symmetry

Viman) = V2 (man) = Vigmary = ¥ (1 + V20 = 1)) = Lk /s
Since, the collision is head on, the particle 1 will continue moving along the same line
as before the collision, but there will be a change in the magnitude of it’s velocity vector.
Let it starts moving with velocity v, and particle 2 with v, after collision, then from the
conservation of momentum
mu= mv,+mv, Of, u= Vv, +v, (1)
And from the condition, given,
lmu2 (lmv§+lmv%) 9
i 2™ -\2 2 -1- nt "%
n 1 - u?

Emu

or, vf + vg = (1-n)u? )
From (1) and (2),

vf+(u-v1)2- 1-m)i

or, v§+u2—2uv1+v§-(1-n)u7
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or, 2vi-2v1u+nu2-0
2 2
So, e e VOB

= %[u:Vuz-Znu2]= %u(lt\/l—Z'ﬂ)

Positive sign gives the velocity of the 2nd particle which lies ahead. The negative sign is
correct for v, .

So, v; = %u (1-v1-2n) = 5m/s will continue moving in the same direction.

Note that v; = 0 if = 0 as it must.

Since, no external impulsive force is effective on the system “M + m”, its total momentum
along any direction will remain conserved.
So from p, = const.

m u
M cos 0 @)

mu= Mv,cos@ or, v;=
and from p, = const
mvy,= Mv,;sin@ or, v,= %nl— v;sin@= utan B, [using (1)]
Final kinetic energy of the system
T;= %mv% + %va

And initial kinetic energy of the system= lmu2

2
T.-T;
So, % change = —-LT—ixIOO
i
2 2
Lo lanes i L 1,2
2 27 M cos’e 2
- 1 x 100
2
—mu
12 u
5u2tan29+%17—luzsecze——u2 -@_,;
= xlOO

! .
- Ltan20+inl—sec29—1)x 100

and putting the values of 0 and Z , we get % of change in kinetic energy= - 40 %

(a) Let the particles m; and m, move with velocities ;1, and ‘72’ respectively. On the basis
of solution of problem 1.147 (b)
F=pva=u | V-7
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As DR
m, m
So, P=uVi24+12 where p= ——2

my +m,
(b) Again from 1.147 (b)

Te Jwl= 20 Iﬁ-f’;r

~ 1
So, T= Eu(v§+v§)
From conservation of momentum

— - — !
pPr=p tPy

2
s0 (Pi-P1) = pi-2pi picosd; + py' 7 = py'*
From conservation of energy
i Pl' 2 le 2

Im, " Zm,  2m,

Eliminating p,’ we get

, m, , m,
0=p, 2(1 + ',;,'1') - 2p,’ pycosB, +P12(1 - -'"—1)

This quadratic equation for p,’ has a real solution in terms of p, and cos 0, only if

m2
4cos’0, z4[1-—2 >!
m
! B
2
or sin’ 0,= —;’- .
my (=S 0
e 7
. my . m '
or sin@,<+—~ or sin@,z-—
my m, B’
This clearly implies (since only + sign makes sense) that 1
sin 0, .= m,

From the symmetry of the problem, the velocity of the disc A will be directed either in
the initial direction or opposite to it just after the impact. Let the velocity of the disc A
after the collision be V' and be directed towards right after the collision. It is also clear
from the symmetry of problem that the discs B and C have equal speed (say V") in the

directions, shown. From the condition of the problem,
d

n Py .

cosG-—Ez—-gso, sin 0= V4-7? /2 1)
For the three discs, system, from the conservation of linear momentum in the symmetry
direction (towards right)

mv=2mv'sin@+mv or, v=2v"sin0+V ?)
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From the definition of the coefficeint of restitution, we have for the discs A and B (or C)

_Vv'-V'sin@
vsin6-0

But e= 1, for perfectly elastic collision,
So, vsin@= v’ -v'sin O A3)

From (2) and (3), A
. v!1—2si1129) P

"~ (1 +2sin26)

_v-2) :
————-—-—-6 — T|2 {using (1)}

Hence we have,
2
Vo= v (7] - 2)
6 - n2

Therefore, the disc A will recoil if 1} <V2 and stop if 1= V2.
Note : One can write the equations of momentum conservation along the direction per-
pendicular to the initial direction of disc A and the consevation of kinetic energy instead
of the equation of restitution.
(a) Let a molecule comes with velocity 17: to strike another stationary molecule and just

it . o —' - :
after collision their velocities become v™; and v, respectively. As the mass of the each

molecule is same, conservation of linear momentum and conservation of kinetic energy
for the system (both molecules) respectively gives :
s S N
Vi= V4V,
2 2
and vi=V + v’y

From the property of vector addition it is obvious from the obtained Eqs. that
LT, o 7= 0
(b) Due to the loss of kinetic energy in inelastic collision vf > v’% + v’%

s0, v 1 v 2 > 0 and therefore angle of divergence < 90°.

Suppose that at time 4 the rocket has the mass m and the velocity v”, relative to the
reference frame, employed. Now consider the inertial frame moving with the velocity that
the rocket has at the given moment. In this reference frame, the momentum increament
that the rocket & ejected gas system acquires durmg time dt is,

dp= mdv+udtu- F dt

d —
or, F nu
’ d
—>
-
or, mw=F - pu
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1.180

1.181

AV dm—
dt dt
As dv?Ylua so, mdv= —udm.
Integrating within the limits :

v m
m
lfdv=— -di"—or1=]n—-9-
u m u
0 mo

m

my
Thus, v= uln —
m

m
— . —

As dv?| i, so in vector form v= — i In —

m

According to the question, F (external force) = 0
So mlY . dm e
’ d dt
As vt |
so, in scalar form, mdv= -udm
wdt dm
or, wa__am
u m

Integrating within the limits for m (1)

Hence, m=mye

As I_'" = 0, from the equation of dynamics of a body with variable mass;

—
dv —sdm — —dm
m——=u — or, dv-u——m

ds dt
Now dv™} |i’and since i'L v, we must have |dv’| = vod a (because v, is constant)
where d a is the angle by which the spaceship turns in time dt.

dm u dm
So, -u —=vyda or, da= -——
m Vo M
m
u dm u my
or, o= —— | —= — In| —
Vo m v, m

@
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We have %= -n or, dn= - pdt

m t
Integrating fdm- - ufdt or, m= my- \ut
m, 0

As u'’= 0 so, from the equation of variable mass system :

(mo—ut)~dT=F or, ‘dT=W=F/(m0—W)
5 [;
or, fd?=F -
(mo'l“)
0
Hence V= F ln( o )
u my -

Let the car be moving in a reference frame to which the hopper is fixed and at any instant
of time, let its mass be m and velocity ing

Then from the general equation, for variable mass system.

5% -
md—v-F+l?d—m

dt dt

We write the equation, for our system as,

—_
dv = _dm —_ -

m?=F—v7t- as, u=-v (1)
So gz_ () = F
Fr
and Vo= ;t on integration.
But m=my + pt
—
— Ft
so, Ve ————
my (1 + E)
my
— —>
Thus the sought acceleration, w = %!- ———-F————i
mg (1 + —M-i)
my

Let the length of the chain inside the smooth horizontal tube at an arbitrary instant is x.
From the equation,
= _dm

-
mw=F +u —

dt
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—
asu=0, Ft1 w, for the chain inside the tube

Axw= T where A= -';l (¢))
Similarly for the overhanging part, A V/A T
u=0 A
- XC >
Thus mw=F v T
oo ANhw=2MAhg-T 2) h
From (1) and (2), )\h?
dv
AMx+h)w= Ahg or (x+h)vds=hg B
dv
or, x+h)v ——== gh,
x+h)v To5= 8
[As the length of the chain inside the tube decreases with time, ds = -dx.]
or, vdv:—ghx+h
v 0
. dx
Integrating, f vdv=-gh f T h
0 (-k)

2
or, %= gh In (—Il;) or v= V 2gh In (—,I;)

Force moment relative to point O ;

—>

N= it = 2bt

Let the angle between 17 and 17 , "cC
a=45%att =t » pommmmmmm e / >
Y

Then M N (a+bto) @2 bry) £ i

VIS TMIINI VE i 200 Mo

-> 1

]

2b% 13 bt? |

>

Ve+rit o, Va+b5 bt2

A /a .
So, 2b t; = @+ b t; o, h=V73 (as &, cannot be negative)

It is also obvious from the figure that the angle o is equal to 45° at the moment £,

when a = bl ie. ty=Va/b and N= 2 V% b,

95
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= %mvogtzcosa(—l?):

mv, gt cos o
2
Thus angular momentum at maximum height

Thus M (f) =

. T Vpsina
ie.at t= == A
2 4

T\ (MWl .2 2 )
M(Z) (—zg)sm acoso= 37kg-m/s 0

Alternate :
t t
M©=0s0, M@= [Na= [ (Fmp)
0 [}
t
-f V’t‘+l_.t2 xmg|dt= (Voxm ﬁ
4 0 2 4 g ( 0 §) 2
(a) The disc experiences gravity, the force of
reaction of the horizontal surface, and the force

—
R of reaction of the wall at the moment of the
impact against it. The first two forces

counter-balance each other, leaving only the Ag

force I—(’ It’s moment relative to any point of A E

the line along which the vector R acts or along $

normal to the wall is equal to zero and therefore 8 S >
the angular momentum of the disc relative to <€ hre \TO O n
any of these points does not change in the given R

process. l

(b) During the course of collision with wall A

the position of disc is same and is equal to o}

7., Obviously the increment in linear

momentum of the ball A;_)’ = 2mv cos o n

Here, AX'!’ = r_':o X AE’ = 2mv I cos o n and directed normally emerging from the plane of
figure

Thus|A1-|-rI’|=2mvlcosa N

(a) The ball is under the influence of forces T and m g at all the moments of time, while

moving along a horizontal circle. Obviously the vertical component of ?balanoe m E’ and
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so the net moment of these two about any point becoems zero. The horizontal component
of f which provides the centripetal acceleration to ball is already directed toward the
centre (C) of the horizontal circle, thus its moment about the point C equals zero at all
the moments of time. Hence the net moment of the force acting on the ball about point
C equals zero and that’s why the angular mommetum of the ball is conserved about the

horizontal circle.

(b) Let o be the angle which the thread forms
with the vertical.

Now from equation of particle dynamics :

Tcosa= mg and Tsina = me? Isin o

Hence on solving cos o = ﬁ; 1)

As IIT'[. | is constant in magnitude so from figure.
—
|AM|= 2 M cos o where

— —>
M= |M;|= | M|
= |rpxmv’|= mvl(as F;.L?)

ThuslA}-l-l’|= 2mvlcosa=2mwl*sin o cos

= 2%_1 1- (%)2 (using 1).

During the free fall time ¢t = t© = V , the reference point O moves in hoizontal direction
(say towards right) by the distance V'z In the translating frame as M ©0)=0, so

AM=M;=7 ‘ i(V)

-(—Vti_:h.r)xm[gtj_:Vi_’] >

>
-—ngt217+th(+I7) J( )
= -ng(%)l::thGI?) - -mVhk

Hence |A1Ti|- mVh

The Coriolis force is.(2m v” x @).

Here @ is along the z-axis (vertical). The moving disc is moving with velocity v, which
is constant. The motion is along the x-axis say. Then the Coriolis force is along y-axis
and has the magnitude 2m v, w. At time ¢, the distance of the centre of moving disc from
O is vyt (along x-axis). Thus the torque N due to the coriolis force is

N=2mvyovy along the z-axis.
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Hence equating this to %
% = 2m vﬁ Wt or M= mvg 2 + constant.

The constant is irrelevant and may be put equal to zero if the disc is originally set in
motion from the point O.

This discussion is approximate. The Coriolis force will cause the disc to swerve from
straight line motion and thus cause deviation from the above formula which will be substantial
for large t.

If r = radial velocity of the particle then the total energy of the particle at any instant is

1 .2 M 2
—mr°+——+hkr‘=E 1
2 2mr? M

where the second term is the kinetic energy of angular motion about the centre O. Then
the extreme values of r are determined by 7 = 0 and solving the resulting quadratic equation

2
k(rz)2 -Er*+ M =0

2m
we get
L Vi 2%
2k
From this we see that
E=Kr;+13) @)
where r; is the minimum distance from O and r, is the maximum distance. Then
1
-2-mv§+2kr§-k(r%+rg)
2
Hence, m="
V2

‘Note : Eq. (1) can be derived from the standard expression for kinetic energy and angular

momentum in plane poler coordinates :

T-%mi‘zi-%mrzéQ
M = angular momentum = mr® §
The swinging sphere experiences two forces : The gravitational force and the tension of
the thread. Now, it is: clear from the condition, given in the problem, that the moment of
these forces about the vertical axis, passing through the point of suspension N, = 0. Con-
sequently, the angular momentum M, of the sphere relative to the given axis () is constant.

Thus myy (Isin @) = mv ] (6))

where m is the mass of the sphere and v is it s velocity in the position, when the thread
n

2 with the vertical. Mechanical energy is also conserved, as the sphere is

forms an angle
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under the influence if only one other force, i.e. tension, which does not perform any work,
as it is always perpendicular to the velocity.

1,
So, 5 mvp+mg lcos 0= 5 mv

From (1) and (2), we get,

@

Vo= V2gl/cos O

Forces, acting on the mass m are shown in the figure. As N= mg, the net torque of these
two forces about any fixed point must be equal to zero. Tension T, acting on the mass m
is a central force, which is always directed towards the centre O. Hence the moment of
force T is also zero about the point O and therefore the angular momentum of the particle
m is conserved about O.
Let, the angular velocity of the particle be ®, when the separation between hole and
particle m is r, then from the conservation of momentum about the point O, :
m(wyrg)rg= m(wr)r,

“’0'20

or w= /
’,2

!

Now, from the second law of motion for m, \
\

T=F=ma*r

Hence the sought tension;

-

2 4 2.4
i mm0r0r= mwqr,
r4 7'3

On the given system the weight of the body m is the only force whose moment is effective
about the axis of pulley. Let us take the sense of @ of the pulley at an arbitrary instant
as the positive sense of axis of rotation (z-axis)

As M,(0)= 0, so, AM,= Mz(t)-szdt

t

So, M, (t) = f mgRdt= mgRt
0

Let the point of contact of sphere at initial
moment (t= 0) be at O. At an arbitrary
moment, the forces acting on the sphere are
shown in the figure. We have normal reaction
N, = mgsin o and both pass through same line
and the force of static friction passes through
the point O, thus the moment about point O
becomes zero. Hence mg sin o is the only force
which has effective torque about point O, and
is given by |N |= mgRsino normally
emerging from the plane of figure.

As M(t= 0)= 0, so, AM = Xi(z)=f17dt

Hence, M () = Nt = mg R sin ot
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1.196

1.197

1.198

Let position vectors of the particles of the system be r_: and 7: " with respect to the points
O and O’ respectively. Then we have,

—_! -

=71 471 0]

where 7, is the radius vector of O’ with respect to O.

Now, the angular momentum of the system relative to the point O can be written as follows;
Yy 4 .
M= 3 (Fx5)= 3 (7 <)+ X (foxFi) [using (1))

or, M=-M +(Fo'x17), where, p’= 2 e )

From (2), if the total linear momentum of the system, p’= 0, then its angular momen-
tum does not depend on the choice of the point O.

Note that in the C.M. frame, the system of particles, as a whole is at rest.

On the basis of solution of problem 1.196, we have concluded that; “in the C.M. frame,
the angular momentum of system of particles is independent of the choice of the point,
relative to which it is determined” and in accordance with the problem, this is denoted

by M.

We denote the angular momentum of the system of particles, relative to the point O, by
A_';. Since the internal and proper angular momentum ﬁ, in the C.M. frame, does not depend
on the choice of the point O’, this point may be taken coincident with the point O of the

K-frame, at a given moment of time. Then at that moment, the radius vectors of all the
particles, in both reference frames, are equal ( 7: ‘= F;') and the velocities are related by

the equation,

— S —»

V'-= Vi+Vc, (1)
where 17: is the velocity of C.M. frame, relative to the K-frame. Consequently, we may
write,

—> P
He S m (7= 3 (7 )0 S m (7T
- ﬁ — — —> —
or, M= +m(rcxvc>, aszmir,.= mr_, where m=2mi.
—>
or, M=MR+(Fxmv))= R+ (7xp)

From conservation of linear momentum along the direction of incident ball for the system
consists with colliding ball and phhere

mvy= mv' + n vy 1)

2
where V' and v, are the velocities of ball and sphere 1 respectively after collision. (Remember

that the collision is head on).
As the collision is perfectly elastic, from the definition of co-efficeint of restitution,
vV-v

1=

=, o, V= v;= -y, )
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Solving (1) and (2), we get,

4v, . 'Vb
=3 directed towards right. @_,_—--E) m/z
1 .

In the C.M. frame of spheres 1 and 2 (Fig.)

= ~5 28 = — —
Py = -p; and |py|=|p,| = u|v;-v;|

Also, 71 = —Ta, thus M = 2[F.xp] C
- | = 1 m2 4% T
Asric 1 p,, so,ﬁ-z[2 > 3 " 1/2
(where 7 is the unit vector in the sense of 7y x Py ) 777/20
~ mvyl
Hence M = 3

In the C.M. frame of the system (both the discs + spring), the linear momentum of the
discs are related by the relation, 5: = - ;J'; at all the moments of time.
where, Pi=Dy=D= vy
And the total kinetic energy of the system,
T= %— uv2, [See solution of 1.147 (b)]
Bearing in mind that at the moment of maximum deformation of the spring, the projection
of v, along the length of the spring becomes zero, i.e. v, =0
The conservation of mechanical energy of the considered system in the C.M. frame gives.

1fm\ » 1 1/m
7 E)VO- Exxz.’.i(f)vfd(’)_ 1)
Now from the conservation of angular momentum of the system about the C.M.,

1(o)(m \_,(o*tX)\m
2(2)(2° 2 )2 €O
-1
Volo X x
or, Vel (y) = m = v, (1 + Io) ~ v, (1 - A ), as x <<l ?2)

1 x

Using (2) in (1), Sm vg[l_(l_gr ]= '3

2
1,2 2 2\ |
or, Fmvo 1-(1-Io+102) = kX
mvix
or, Io ~ K X*, [neglecting ¥* / I7]
0
mvg
As x» 0, thus x= ——

Xl
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1.4 UNIVERSAL GRAVITATION

1.200 We have
M# YMm, ym,
—_— or r = —5—
r r Vv
3
Thlls W= K = v v

roym/v? T ym,
(Here m is the mass of the Sun.)

2nym;  2xx667x10 1% 197 x 10
So T= 3 = 3
v (349 x 10°)

(The answer is incorrectly written in terms of the planetary mass M)

= 194 x 10 sec = 225 days.

1.201 For any planet

M
MRmz-Y m’orm- Ym,
R3
So, T= -2(0—1‘ = 21[[\’3/2/\/7}”4.
31
I, (R
a) Thus —_— ==
@ 7 (R)
S & T,/ T, )= (12) = 5-24
Y RE‘(] z) = (12)7" = d
23
2 Ym; _ va
() V; K , and R, = (T—LZn )
23 2/3 3
s (m)?" (2m) 2xym
So V]---—";-m——— or, V; = |——

where T= 12 years. m = mass of ths Sun.

Putting the values we get V, = 12:97 km/s

23

2
v 2xym 2n
Acceleration = L= | —— x
RJ( T ) (T\/Ym,)
473
=(3T£) (ym)"?

= 215x10™* km/s®
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Semi-major axis= (r + R)/2
It is sufficient to consider the motion be along a circle of semi-major axis A ;R for T
does not depend on eccentricity.
3/2
r+R
N
- 3

Hence T ‘/_YT, "V(r+Ry/2ym,

(again m_ is the mass of the Sun)

We can think of the body as moving in a very elongated orbit of maximum distance R
and minimum distance 0 so semi major axis = R/2. Hence if t is the time of fall then

2 3
2T R/2 2 _ 72
(—-—T ) (-————R ) or t'=T°/32

or v=T/4V2 = 365/ 4/2 = 64'5 days.

T= 2JtR3/2/\/'yms

If the distances are scaled down, R*? decreases by a factor ns/zand so does m, . Hence
T does not change.

m
1.205 The double star can be replaced by a single star of mass — moving about the centre
1
of mass subjected to the force y m, m,/ r*. Then
2nr°"? _2nr 32
N
vmm m +m,
So ra ——\/ M
T -V 2
or, r=\3x (yM) YM(T/2 n)
1.206 (a) The gravitational potential due to m1 at the point of location of m, :
m m
V,= fc; dr=f-1—‘dx= -Y—r—‘
m, m.
So, U21==m.‘,V2-—Y ; 2
Similarly Upy= -1

r
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1.207

Hence mr My

ymom, o . -—---—l ——>
Up=Uy=U= ‘-—,1-—— -1l F- x
dx

(b) Choose the location of the point mass as the origin. Then the potential effergy dU of

an element of mass dM = L{dx of the rod in the field of the point mass is

M, 1
dU = - ym —l"dxx

where x is the distance between the element and the point. (Note that the rod and the
point mass are on a straight line.) If then a is the distance of the nearer end of the rod
from the point mass.

< { >
L 171 | —,—>
-+ le - x >mM x
dx
a+l

U-—Y—l—- ?-—YmTln

mM | dx M ( ) )
The force of interaction is

1
F--aa

- me _4 _
7 1 2 a(a+1)

1 l)- ymM
1+ a

a
Minus sign means attraction.

As the planet is under central force (gravitational interaction), its angular momentum is
conserved about the Sun (which is situated at one of the focii of the ellipse)

4

So, mv,ri=mv,r, or, vf = -7 1)
1

From the conservation of mechanical energy of the system (Sun + planet),

Yymm 1, ymom 1 ,

- "l +2mV1--T+EmV2
ym, 1,75 (tm) 1 ,
or, - +2v§,%-- . +5v5 [Using (1)]
Thus, v,=V2ym r [ ry(r +r) ¥))

Hence M=mv,r,= m\/iym,rlrzl(r1+r7)
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From the previous problem, if r, , r, are the maximum and minimum distances from the
sun to the planet and v, , v, are the corresponding velocities, then, say,

mm
1'3--1-mv2—Y 2

2 r,
ymm, n ymm, ymm, ymm, )
rl + "2 r2 r2 - r + r2 2a [Usmg Eq- (2) of 1.207]

where 24 = major axis = r; +r,. The same result can also be obtained directly by writing
an equation analogous to Eq (1) of problem 1.191.
2 ymm
Ealppr, M1
2 2mr r

(Here M is angular momentum of the planet and m is its mass). For extreme position

r=0 and we get the quadratic
2

M
EP+ ymmg — > = 0
The sum of the two roots of this equation are

ymm, -2

r+r,=-

mm
Thus E-—Y g

= constant

From the conservtion of angular momentum about the Sun.
MmvyrosinC = mvri=mv,r, of, v;r;= v,I,= y,r,sina (6))
From conservation of mechanical energy,
1 Yymm 1 Ym,m
m v(z) _ s e lm ';» _ s
2 ro 2 ry
v% ym, v%rznsinza ym,

or, P i 1 - (Using 1
r 2 e T 2R ,I(Ung)

2ym
or, (vg— 1 :)r§+2ymsr1—v§r§sina-0
[}
2ym
2 2 2 . 2 _ S
—2ymx V4y ms+4(v0rﬁsm a)("% o )
So r=
’ 2ym,
To
) 2
.\/1_v§rf,sm @12 % ro[lt\/l—(Z-‘n)nsin2a]
1=z Y mg rg rmg
) 2 % } @-w
To h Y m

where 1= V37,/ym, (m, is the mass of the Sun).
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1.210 At the minimum separation with the Sun, the cosmic body’s velocity is perpendicular to

1.211

its position vector relative to the Sun. If r_; be the sought minimum distance, from con-
servation of angular momentum about the Sun (C).
vl
mvyl= mvr,, or, ve — (6]
‘min
From conservation of mechanical energy of the system (sun + cosmic body),
1 2 Yymsm 1 2

=myy = = ————+ —my
270 [)
2 --- 2
Yo Ym, Vo .
So, —_—= - (using 1)
2 Tmin n2nn
or, V02 jm+2y —v0212- 0
-2ym, :\/47 m +4v0 Vo 22 _-rm =V y? mz-o-v0 1?
So, Toin ™ 5
2v0 Yo

Hence, taking positive root

T ™ (yms/voz)[\/1+(lv02/'ym_,)2 —1]

Suppose that the sphere has a radius equal to a. We may imagine that the sphere is made
up of concentric thin spherical shells (layers) with radii ranging from O to a, and each
spherical layer is made up of elementry bands (rings). Let us first calculate potential due
to an elementry band of a spherjcal layer at the point of location of the point mass m (say
point P) (Fig.). As all the points of the band are located at the distance ! from the point
P, so,

dp= - YaI—M (Where mass of the band) )
aM=(4dM2)(2nasin9)(adB)
xa
(~2M)snn9d9 @)

And %= a’+r?-2arcosd 3)
Differentiating Eq. (3), we get
ldl = arsin0 dO “)

Hence using above equations

aw-—(y—Z%M;—)dl (S)




1212

1.213

107

Now integrating this Eq. over the whole spherical layer

r+a

dy=fag= 1]

So dg- - 1M ©)

Equation (6) demonstrates that the potential produced by a thin uniform spherical layer
outside the layer is such as if the whole mass of the layer were concentrated at it’s centre;

Hence the potential due to the sphere at point P;
- -1 -
o= fdo=-"fdM ™

r
This expression is similar to that of Eq. (6)

Hence thte sought potential energy of gravitational interaction of the particle m and the
sphere,

U= mp= _I_”_:ﬁ
(b) Using the Egq., G, = —%?

M .
G=-Lr  (wingEq.7)

So G= -IAT{F'and F’-m&’--Y—”‘f—'?’ ®)

r r
(The problem has already a clear hint in the answer sheet of the problem book). Here we
adopt a different method.

Let m be the mass of the spherical layer, wich
is imagined to be made up of rings. At a point
inside the spherical layer at distance » from
the centre, the gravitational potential due to a
ring element of radius a equals,

dp= - _;La”; dl (see Eq. (5) of solution of 1.211)

Hence G --ﬂ-o.
or

Hence gravitational field strength as well as field force becomes zero, inside a thin sphereical
layer.

One can imagine that the uniform hemisphere is made up of thin hemispherical layers of
radii ranging from O to R. Let us consider such a layer (Fig.). Potential at point O, due
to this layer is,



108

1.214

2
do= _ydm _ —iw:—{rdr, where dm = M 3 dqr dr
r R (2/3)=nR 2

(This is because all points of each hemispherical shell are equidistant from O.)

R

3yM WM

Hence, (p-fd(p- -—}(—s—frdr- ——ZYR—
0

M

Hence, the work done by the gravitational field ar

force on the particle of mass m, to remove it

to infinity is given by the formula m 0 / r .
A = mo, since ¢ = 0 at infinity. )

Hence the sought work,

v

3ymM
2R
(The work done by the external agent is — A.)
In the solution of problem 1.211, we have obtained @ and G due to a uniform shpere, at
a distance r from it’s centre outside it. We have from Egs. (7) and (8) of 1.211,
(p--x—i!and (—;'S_I_I;_l;-» (A)
r

Aya= -

Accordance with the Eq. (1) of the solution of 1.212, potential due to a spherical shell of
radius a, at any point, inside it becomes

o= 2. const. and G,= -22- 0 (B)
a or
For a point (say P) which lies inside the uniform solid sphere, the potential @ at that point
may be represented as a sum.
q)im'ide =Pt
where @, is the potential of a solid sphere having radius r and @, is the potential of the
layer of radii r and R. In accordance with equation (A)
o= (M 43\ 1M
r{@4/3)xR°3 R
The potential @, produced by the layer (thick shell) is the same at all points inside it. The

potential ¢, is easiest to calculate, for the point positioned at the layer’s centre. Using

Eq. (B)

R
- aMm _ 3 M 2 2
‘p2- _Yf r = 2 R3 (R| r)
where dM = ———M——3-4n:r2dr= -% rdr
(4/3) =R R

is the mass of a thin layer betveen the radii »» and r +dr.

M r?
Thus mmw=¢1+wz=(%;)(3-;) ©
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From the Eq. G, = ;;'7‘2
YMr
G, = e

Ce M 4 =

or G IE r Y3

M. .
(where p = 7 , is the density of the sphere) D)
-3-1IR3

The plots ¢ (r) and G (r) for a uniform sphere of radius R are shown in figure of answersheet.
Alternate : Like Gauss’s theorem of electrostatics, one can derive Gauss’s theorem for

gravitation in the formf G-dS= -4nxym,,,,. ., - For calculation of Gata point

inside the sphere at a distance r from its centre, let us consider a Gaussian surface of
radius 7, Then,

G,4nr2- -4ny(}%—)r3 o, G = —%r

g M —» 4 M
Hence, G= —L-r- -yY=-®prl|as p= ——
ene R? Y3 pT P (4/3)nR3)

© R
So, (p=fG,dr=f-y—A3£ rdr+f—%£dr
R r
r r R

Integrating and summing up, we get,
2
- IM(y -
And from Gauss’s theorem for outside it :
M

G, 4nr’= -4nyM or G,= -Y—rT

Thus q)(r)-fG,dr- -%—M
r

Treating the cavity as negative mass of density — p in a uniform sphere density + p and
using the superposition principle, the sought field strength is :

- - —
G=G,+G,
or G= —gnwi’ + -§M(-p) r

(Where 7, and 7. are the position vectors of

an orbitrary point P inside the cavity with
respect to centre of sphere and cavity
respectively.)

+

Thus G= -2myp (7 =7"\= -2nypl
3 VP (T -r)= -3 mye
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1.216

1.217

We partition the solid sphere into thin spherical layers and consider a layer of thickness
dr lying at a distance r from the centre of the ball. Each spherical layer presses on the
layers within it. The considered layer is attracted to the part of the sphere lying within it
(the outer part does not act on the layer). Hence for the considered layer

dpanrl=dF

4 3
, 13" Pj@xridrp)
o, dP4nr*= 2

(where p is the mean density of sphere)

or, dp= %u-{pzrdr
R

Thus p-fdp- %ﬁvpz(Rz-rz)
r

(The pressure.must vanish at r = R.)
o, p= %(1 - (*/R?) Y M*/ xR, Putting p = M/(4/3)xR?
Putting r = 0, we have the pressure at sphere’s centre, and treating it as the Earth where

mean density is equal to p = 5:5 x 10 l:g/m3 and R = 64x10%km
we have, p=173x10"Pa or 1-72 x 10° atms.

(a) Since the potential at each point of a spherical surface (shell) is constant and is equal

togp= - IE”—" [as we have in Eq. (1) of solution of problem 1.212]

We obtain in accordance with the equation
1 1
U- —2-fqu>- i—tpfdm
2
- l(_ym m= -1
2 R 2R
(The factor %is needed otherwise contribution of different mass elements is counted twice.)
(b) In this case the potential inside the sphere depends only on r (see Eq. (C) of the
solution of problem 1.214)
J_3ymf(
¢ 2R 3R?
Here dm is the mass of an elementry spherical layer confined between the radii
r and r+dr:

dm= (4xridrp)= (-;—':)rzdr
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1
U= Zfqu)
R
L (3m\ o, [ 3ym( r?
J () {3l -5e))
0
After integrating, we get
3ym*
U=-5%

1218 Letw="Y Y—s’i = circular frequency of the satellite in the outer orbit,
3.

Wy = v e . circular frequency of the satellite in the inner orbit.

r-ar?

So, relative angular velocity = w,+ ® where - sign is to be taken when the satellites are
moving in the same sense and + sign if they are moving in opposite sense.
Hence, time between closest approaches

2n 2n 1 { 4:S days (? - 0))
= = =1 0-80 hour (6 = 2
Wyt \/Y_M;/rm 32Arr+6

where 8 is 0 in the first case and 2 in the second case.

YM _ 6:67x 10" x 596 x 10

o = 9-8 m/s’
1.219 9 ru (637 x 10°)

2

2
2 2x 2x22 . 6 o O 2
w,= 0°R (—T)R (_—24X3600X7)637XI0 0:034 m/s

_YMs  667x107 " x1.97 x 10%
RZ. (14950 x 10° x 10°)?

and o, = 59x10" m/s?

Then mlzmz:m3-1:0-0034:0-0006

1.220 Let 4 be the sought height in the first case. so

26,,_7_1”
100° (R +h)?
-_YM g

2 2
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1.221

1.222

1.223

2

or 9 _(1.B .
100 - R
From the statement of the problem, it is obvious that in this case h <<R
9 2h R 6400
Thus 100 (I—R) or h-200 (mo)km- 32km

In the other case if 4’ be the sought height, than
2

g. KY 1_ (1.2

> g(1+R) or 3 (1+R)
From the language of the problem, in this case 4’ is not very small in comparision with R.
Therefore in this case we cannot use the approximation adopted in the previous case.

wY A
Here, (1+-R—) =2 So,i-z\/f-l
As - ve sign is not acceptable
B = (V2 -1)R= (V2 -1) 6400 km = 2650 km

Let the mass of the body be m and let it go upto a height A.
From conservation of mechanical energy of the system

_YMm 1 —yYMm
R tzmv%s ®+h) +O

Using YR—A21= g, in above equation and on solving we get,

RY
2gR- vo2
Gravitational pull provides the required centripetal acceleration to the satelite. Thus if A

be the sought distance, we have
2

my ymM 2
so, o, R+h)vi=yM
R+m ™ ®Renp o EHRV=Y
or, RV+hv*= gR?, as ga%
2 2
Hence h-g—R;‘;—R!—-R[gVTR-I]

A satellite that hovers above the earth’s equator and corotates with it moving from the
west to east with the diurnal angular velocity of the earth appears stationary to an observer
on the earth. It is called geostationary. For this calculation we may neglect the annual
motion of the earth as well as all other influences. Then, by Newton’s law,
YMm _ ,,,( 2 )2,
r T
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where M = mass of the earth, T = 86400 seconds = period of daily rotation of the earth
and r = distance of the satellite from the centre of the earth. Then

2
r=-43 T
w2 )
Substitution of M = 596 x 10%* kg gives

r= 4220 x10* km
The instantaneous velocity with respect to an inertial frame fixed to the centre of the earth
at that moment will be

% r= 307 km/s
and the acceleration will be the centripetal acceleration.
2

( - ) r= 0223 m/s
T
We know from the previous problem that a satellite moving west to east at a distance

R = 2:00 x 10* km from the centre of the earth will be revolving round the earth with an
angular velocity faster than the earth’s diurnal angualr velocity. Let

o = angular velocity of the satellite
W, = % = anuglar velocity of the earth. Then

2%
w - (00- -
T

as the relative angular velocity with respect to earth. Now by Newton’s law

2n

So, M-—(t T)
+I

3

Substitution gives

J

The velocity of the satellite in the inertial space fixed frame is v 1M cast to west. With

M= 627x10% kg

R
respect to the Earth fixed frame, from the 71' - (W x ¥ the velocity is
. 22R AM
v T R 703 km/s

Here M is the mass of the earth and T is its period of rotation about its own axis.
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1226

It would be - 2—”5 ‘\/ , if the satellite were moving from west to east.

To find the acccleratlon we note the formula
- F - —» 25>
mw =F+2m(v xo)+mon°R
Here F = — %F and v~ L@and v x @ is directed towards the centre of the Earth.

2
' IM | 27R ‘/M 2x_(2x
Thus w R? +2( T + R T T R
toward the earth’s rotation axis

yM 2 |2nR

=+ = 494 m/s? on substitution.
R T

From the well known relationship between the velocities of a particle w.r.t a space fixed
frame (K) rotating frame (K') v'=v" +(Wx )

Vi=v- ( 271‘) R
Thus Kkinetic energy of the satellite in the earth’s frame
2
o1 21 2R
T, FmVii=5m ( T

Obviously when the satellite moves in opposite sense comared to the rotation of the Earth
its velocity reldtive to the same frame would be

v = v+(ng)R

And Kkinetic energy

2
Tz’-lmv'gslm(v+2uR) ?)

From (1) and (2)

— (©)

Now from Newton’s second law

U B o e VI - e @

Using (4) and (3) -
ks )

7= ——————= 127 nearly (Using Appendices)
(-2)
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1227 For a satellite in a circular orbit about any massive body, the following relation holds

1.228

between kinetic, potential & total energy :
T=-E U=2E @

Thus since total mechanical energy must decrease due to resistance of the cosmic dust,

the kintetic energy will increase and the satellite will ‘fall’, We see then, by work energy
theorm

dT-—dE-—dAf,
So, mvdy = av?vdt or, gd_t_d_v
m 2

Now from Netow’s law at an arbitray radius r from the moon’s centre.

(M is the mass of the moon.) Then

V.= M’VI- Xﬂ_l
VnR V&

where R= moon’s radius. So

dv a at
vz-mfdt-m
vy 0
or, t,mi__l_ -L(J‘VT—I)-
’ alv, v a\/yg aVeR

where g is moon’s gravity. The averaging implied by Eq. (1) (for noncircular orbits) makes
the result approximate.

From Newton’s second law

Y%Z’,ﬂ- =2 o vo= \/ B = 167kmss (1)

From conservation of mechanical energy

.;.mvf-ﬂ;’i-om v, = \/% = 237 km/s? @)
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1.230

1.231

1232

In Eq. (1) and (2), M and R are the mass of the moon and its radius. In Eq. (1) if M and
R represent the mass of the earth and its radius, then, using appendices, we can easily get

vo= 799 km/s and v_= 112 km/s.

In a parabolic orbit, E = 0
1,2 Mm_ -V
So Zmvi =g =00 V2 R

where M = mass of the Moon, R = its radius. (This is just the escape velocity.)
On the other hand in orbit

mvf2R= IA% or v, = V W
R

R

Thus Av= (1-V2) VXRM = —0-70 km/s.

From 1.228 for the Earth surface

Vo= ‘\/? and v, = '\/_Z__—YR—M—

Thus the sought additional velocity

Av= v, -y = V XITM (V2-1)=gR(V2-1)

This ‘kick’ in velocity must be given along the direction of motion of the satellite in its
orbit.

Let r be the sought distance, then

. M

nR

. 4
Vi +1 3-8 x 10" km.

or Viir=(nR-r) orr=

Between the earth and the moon, the potential energy of the spaceship will have a maximum
at the point where the attractions of the earth and the moon balance each other. This
maximum PE. is approximately zero. We can also neglect the contribution of either body
to the p.E. of the spaceship sufficiently near the other body. Then the minimum energy
that must be imparted to the spaceship to cross the maximum of the P.E. is clearly (using
E to denote the earth)
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YMgm
RE

With this energy the spaceship will cross over the hump in the P.E. and coast down the
hill of p.E. towards the moon and crashland on it. What the problem seeks is the minimum
energy reguired for softlanding. That reguies the use of rockets to loving about the braking
of the spaceship and since the kinetic energy of the gases ejected from the rocket will
always be positive, the total energy required for softlanding is greater than that required
for crashlanding. To calculate this energy we assume that the rockets are used fairly close

to the moon when the spaceship has nealy attained its terminal velocity on the moon

1\ / 2YM,
; 2 where M, is the mass of the moon and R, is its radius. In general
0

dE = vdp and since the speed of the ejected gases is not less than the speed of the rocket,
and momentum transfered to the ejected gases must equal the momentum of the spaceship

the energy E of the gass ejected is not less than the kinetic energy of spaceship

YMyn
RO

Addding the two we get the minimum work done on the ejected gases to bring about
the softlanding.

A ME MO
w = (R, * Ry

On substitution we get 1-3 x 10® kJ.

Assume first that the attraction of the earth can be neglected. Then the minimum velocity,
that must be imparted to the body to escape from the Sun’s pull, is, as in 1230, equal to

(V2 -1)v,

where "12 = yM_ /r, r = radius of the earth’s orbit, M, = mass of the Sun.

In the actual case near the earth, the pull of the Sun is small and does not change much
over distances, which are several times the radius of the Earth. The velocity v, in question
is that which overcomes the earth’s pull with sufficient velocity to escape the Sun’s pull.
Thus

1 Mg 1
—2—mV32—T- —2-m(\/f—1)2v12

where R = radius of the earth, M = mass of the earth.

Writing v2 = M, /R, we get

va= V2024 (VZ-1)2v2 = 166 km/s
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1.5 DYNAMICS OF A SOLID BODY

1.234

1.235

1.236

1.237

Since, motion of the rod is purely translational, net torque about the C.M. of the rod
should be equal to zero.

Th ! l Fy a
us FIE’ F, or, F—,2= 1-,—/—2' 1

For the translational motion of rod.

@

From (1) and (2)
a mw,
127 F,
Sought moment IV- F&F— (ai_-: bf;x (Ai—:Bf;
= aBE+Ab(-K)= (aB-Ab)E"

and arm of the force = = ——=
F VAT+ B
Relative to point O, the net moment of force :
A - P O T e Ty
N=r xF +r,xF,= (aixAj)+(BjxBi)
— — —»
=abk+AB(-k)= (ab-AB)k )}
Resultant of the external force
— = - - -
F=F +F,= Aj+Bi )

-

AsN-F=0 (as N.LF)sothcsoughtannloftbc forceF
ab-AB
VA® + B?

- - - —
For coplanar forces, about any point in the same plane, 2 r;xF,=rxF,,

l= N/F =

— —>
(where I_v‘:‘ = z ;': = resultant force) or, N, = rx F,,

NM
Thus length of the arm, / = T

net

Here obviously |, | = 2F and it is directed toward right along AC. Take the origin at C. Then
about C,

VZ aF + —F -VZ aF | directed normally into the plane of figure.
V2

(Here a = side of the square.)
Thus N = F 2= directed into the plane of the figure.

F(anV2Z) _a @ . e
Hence I= 2F =575 = sin 45

Thus the point of application of force is at the mid point of the side BC.
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(a) Consider a strip of length dx at a perpendicular distance x from the axis about which
we have to find the moment of inertia of the rod. The elemental mass of the rod equals

dm = L?-dx
Moment of inertia of this element about the axis
dl = dmx* = —T-dx-xz

Thus, moment of inertia of the rod, as a whole
about the givcn axis

1-f"‘ 2dx-————

(b) Let us imagine the plane of plate as xy
plane taking the origin at the intersection point

of the sides of the plate (Fig.). 0 Vi |
Obviously I= f dmy? x dx

m 2

- f ( ab bdy )y
0
_ma 2
3
2

Similarly I, = 1n_3b__

Hence from perpendicular axis theorem
m, 2 2
L=1I+1,=3 (a +b )
which is the sought moment of inertia.

(a) Consider an elementry disc of thickness dx. Moment of inertia of this element about
the z -axis, passing through its C.M.

2

where p = dcnsny of the matenal of the plate
and S = area of cross section of the plate.

Thus the sought moment of inertia
b

B—————fdx- Z_psSb

o

2pr (asS-nRz) xv
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1.240

putting all the vallues we get, I, = 2 gm-m2 5

(b) Consider an element disc of radius 7 and
thickness dx at a distance x from the point
O. Then r = x tana and volume of the disc

= nx’tan? adx R
Hence, its mass dm = 7 x> tana de-p (where A
. 1 .2 l
p = density of the cone m/3 nR“h) )/ ax
Moment of inertia of this element, about the p
axis OA, ’
2
r
dl = dm >

2,2
= (nxztanZ(xdx)x—ta;—oi
= %Ex"tan‘adx

h

Thus the sought moment of inertia / = 122 tan* a f x*dx
0

4,5
= E—EB—:‘— as tana = R
10h h

3mR? . 3m
Hence I= 10 (puttmg p= R2 h)

(a) Let us consider a lamina of an arbitrary shape and indicate by 1,2 and 3, three axes
coinciding with x, y and z - axes and the plane of lamina as x - y plane.

Now, moment of inertia of a point mass about
x - axis, dl = dmy2 g A3 €)
Thus moment of inertia of the lamina about
this axis, [, = f dmy*

. @)
Similarly, I, = f dmx? ;/
and Iz=fdmr2 x
=fdm(x2+y2) as r=\'x2+y2 x ()
Thus, L=1I+I o, L=1+I,

(b) Let us take the plane of the disc as x -y plane and origin to the centre of the disc
(Fig.) From the symmetry I, = I.. Let us consider a ring element of radius r and thickness

dr, then the moment of inertia of the ring element about the y - axis.
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2 m 2
dr,= dmr JI:Rz(z:rtrdr)r b 1} ;
Thus the moment of inertia of the disc about
Z - axis
R
2
P
0 0 >
But we have L=L+I=2I
I R dx
z_mR
Thus I= 2 ]

For simplicity let us use a mathematical trick. We consider the portion of the given disc
as the superposition of two. complete discs (without holes), one of positive density and
radius R and other of negative density but of same magnitude and radius R/2.

As (area) o (mass), the respective masses of the considered discs are
(4m/3) and (- m/3) respectively, and these masses can be imagined to be situated at
their respective centers (C.M). Let us take point O as origin and point x — axis towards
right. Obviously the C.M. of the shaded position of given shape lies on the x — axis. Hence
the C.M. (C) of the shaded portion is given by

(-m/3)(-R/2)+(4m/3)0 p

e = (-m/3)+4m/3 3

Thus C.M. of the shape is at a distance R/6
from point O toward x — axis

Using parallel axis theorem and bearing in mind
that the moment of inertia of a complete
homogeneous disc of radius m, and radius r,

equals %—mo "02 . The moment of inetia of the

small disc of mass (-m/3) and radius R/2
about the axis passing through point C and
perpendicular to the plane of the disc

i385

mR?> 4 2
= -5 ™R

Similarly Io= %(%’")Rh(%’?-)(%)

Thus the sought moment of inertia,

Ie= I+ b= pymR* -~
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1.242 Moment of inertia of the shaded portion, about the axis passing through it’s certre,

2(4 .3 2 2(4 3 3
I=§(3an)R —5(3:0' p)r

L

Now, if R = r + dr, the shaded portion becomes
a shell, which is the required shape to calculate
the moment of inertia.

Now, I= %—;lnp{(r+dr)5—r5}
=§-§np(r5+5r4dr+ ...... -rs)

Neglecting higher terms.

= %(4nr2drp>r2- %mr2

1.243 (a) Net force which is effective on the system (cylinder M + body m ) is the weight of
the body m in a uniform gravitational field, which is a constant. Thus the initial acceleration

of the body m is also constant.

From the conservation of mechanical energy of the said system in the uniform field of

gravity at time t= At : AT+ AU= 0

1 5 1MR?

— — —— 2-— =
or Smi+s =0 mgAh=0
or, %(2”‘+M)v2_mgAh-0[as V-(DR ata“ times]
But vie 2wAh

Hence using it in Eq. (1), we get
1 . 2mg
4(2m+M)2wAh—mgAh 0orw= (2m + M)

2m

From the kinematical relationship, p = %- (2m + M) R

Thus the sought angular velocity of the cylinder

2mg = gt
(2m+M)R (1+M/2m)R

w(t)=Pt=

(b) Sought kinetic energy.

2
T(t)= %mv2+-;—b%w2- -‘11—(2m+M)R2w2
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1.244 For equilibrium of the disc and axle

1.245

1.246

2T = mg or T= mg/2
As the disc unwinds, it has an angular acceleration B given by

IB= 2Tr or B = %T—'-- g

The corresponding linear acceleration is

2 | o ]
rﬁ = W= Ln—gIL— /\T J' T
Since the disc remains stationary under the a _D
combined action of this acceleration and the
acceleration (-w) of the bar which is
transmitted to the axle, we must have mg
2

W mgIr

Let the rod be deviated through an angle ¢’from its initial position at an arbitrary instant
of time, measured relative to the initial position in the positive direction. From the equation
of the increment of the mechanical energy of the system.

AT= A,
1.2
or, Elm =szd(p
®
2
or, %Lgl—m2=fl"lcos¢d(p = Flsingp
Thus, o= 6F sing

Mi

First of all, let us sketch free body diagram of each body. Since the cylinder is rotating
and massive, the tension will be different in both the sections of threads. From Newton’s
law in projection form for the bodies m, and m, and noting that w,; = w, = w= R, (as

no thread slipping), we have (m, > m,)

m g-T = mw=mfR 4
and T-m,g= myw M O
Now from the equation of rotational dynamics \ T,
of a solid about stationary axis of rotation. i.e. T Y
N,= I, for the cylinder.
or, (T,-T,)R=IB = mR*B/2 V) .

7 2
Similtaneous solution of the above equations yields :

quations ol wf

m,-m T, m,(m+4m
(my-my)g and —L= 1 ( 2)

ﬁ=R(m1+m2+Ln—) T, my(m+4m) mg. Ymag

2
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1.247

1.248

As the systemr (m +m, + m,) is under constant forces, the acceleration of body m, an
m, is constant. In addition to it the velocities and accelerations of bodies m, and m, a1
equal in magnitude (say v and w) because the length of the thread is constant.

From the equation of increament of mechanical energy i.e. AT + AU = Ay, at time ¢ whe
block m, is distance h below from initial position corresponding to ¢ = 0,

1 1(mR?)v?
-2-(m1+m2)v2+5(T)F—m2gh-—kmlgh (

(as angular velocity w = v/R for no slipping of thread.)
But vZ=2wh
So using it in (1), we get

2(my-km,)g

=m+2(m1+m2)‘ @

Thus the work done by the friction force on m,
1 5
A= —kmgh= —lkmg P

Irml(ml—lanl)gzt2
m+2(m;+m,)

(using 2).

In the problem, the rigid body is in translation equlibrium but there is an anguiar retardation.
We first sketch the free body diagram of the cylinder. Obviously the friction forces, acting
on the cylinder, are kinetic. From the condition of translational equlibrium for the cylinder,

m m
Hence, N = I:%; N,=k 1 +i2

For pure rotation "of the cylinder about its

rotation axis, N, = If, y

A

mR? %

o, -kN,R-kN,R= —-8@, KN2
2 2 ®

2 /

or _kmgR(1+k) _mR 8 2

1+k2 2 %

or b, - _2k(1+2k) 4

(t+k%)R /K/v, %

Now, from the kinematical equation,
2

w?= of +2B,A ¢ we have,
woZ(1+k*)R

*(1+k)g "’ because w = 0
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Hence, the sought number of turns,
Ap u)oz (1+ k2 )R

" T Snk(1+k)g

1.249 It is the moment of friction force which brings the disc to rest. The force of friction is
applied to each section of the disc, and since these sections lie at different distances from
the axis, the moments of the forces of friction differ from section to section.

To find N,, where z is the axis of rotation of the disc let us partition the disc into thin
rings (Fig.). The force of friction acting on the considered element
dfr= k(2nrdro)g, (where o is the density of the disc)
The moment of this force of friction is
dN,= -rdfr= -2nkogridr
Integrating with rcspe:t to r from zero to R, we get

N, = -2nkogfr2dr= —%nkogRs.
0

For the rotation of the disc about the stationary dr
axis z, from the equation N, = I,

(nR%*c)R? akg

2 Bz or ﬁz 3R
Thus from the angular kinematical equation
w,= 0y, + P,

3Rw
- 0+ -8 -2
0 (n0+( 3R | ot akg

-%nkogRs-

1.250 According to the question,
1% /G or, == kit

Vo
Integrating, Vo = —% + Vay,
2,2
or, w=k71-g——fq?£+mo,(Notingthatatt= 0, w = wgy)
Vo
Let the flywheel stops at ¢ = £, then from Eq. (1), £,= __k_o_
Hence sought average angular velocity
AV Yy
k
k212 Voo k
—‘-1-1—2— - 7 + W, dt
<w>=2 -2

k
[a
0
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1.251

1.252

dM,
Let us use the equation Tz = N, relative to the axis through O 1

For this purpose, let us find the angular momentum of the system M, about the given
rotation axis and the corresponding torque N, The angular momentum is

my 2
M, = Io> + mvR = (—+m)R ®

2
m
[where I = 7°R2 and v= o R (no cord slipping)]
dM. 2
So, dtz- (Mf +mR2)ﬁz 2

The downward pull of gravity on the overhanging part is the only external force,
which exerts a torque about the z -axis, passing through O and is given by,

N, = ( ? ) xgR
. MZ
Hence from the equation - N,
MR? m
( > +mR2)ﬂz- -l—ng

B,= —2M& .

Z IR(M+2m)
Note : We may solve this problem using conservation of mechanical energy of the system’
(cylinder + thread) in the uniform field of gravity.

Thus,

(a) Let us indicate the forces acting on the sphere and their points of application. Choose
positive direction of x and @ (rotation angle) along the incline in downward direction and
in the sense of @ (for undirectional rotation) respectively. Now from equations of dynamics
of rigid body i.e. F,= mw_ and N_= I f§, we get :

mgsina— f, = mw 1)
and frR=2mR?p )
But frs kmg cosa 3)

In addition, the absence of slipping provides
the kinematical realtionship between the
accelerations :

w= BR @)
The simultaneous solution of all the four
equations yields :

kcosaz= %sina, or k= %tana

(b) Solving Eqgs. (1) and (2) [of part (a)], we get :
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S .
W= Zgsino.

As the sphere starts at ¢ = 0 along positive x
axis, for pure rolling

v.(t)= w_t= %gsinat )

Hence the sought kinetic energy

12,12 p22 1 -

T 2mv +25mR 10mvf(asm v./R)
2

7 (5 . S p2 2

1Om(7gsmctt) 14mg2s1n at
(a) Let us indicate the forces and their points of application for the cylinder. Choosing
the positive direction for x and @ as shown in the figure, we write the equation of motion
of the cylinder axis and the equation of moments in the C.M. frame relative to that axis
i.e. from equation F, = mw_ and N, = I_§,.

2
mg-2T=mw_; 2IR = m—g—ﬁ

As there is no slipping of thread on the cylinder
w.= R

From these three equations

'ng - - g. §. - 2 2
T 5 13N, B 3R 5 x10°rad/s
(b) we have B = %%
So, w, = §g>0 or, in vector form w, = 38
P=F-v=F-(%.1)

- ng (25 Zme
Let us depict the forces and their points of application corresponding to the cylinder attached

with the elevator. Newton’s second law for solid in vector form in the frame of elevator,
gives :

2T+mg+m(-wy) = mw 1) @ T T
The equation of moment in the C.M. frame
relative to the cylinder axis i.e. from OO )) | )))
N,= I, B, - m o
mR2 ¢
21IR = ﬂ = R
MWo

[as thread does not slip on the cylinder, w' = BR |
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1.255

1.256

mw
or, T= 4
As () THw
so in vector form
= mw
T= - 4 2)

Solving Egs. (1) and (2), W = %(F - wy) and sought force
F=2T- %-m(?— ).

Let us depict the forces and their points of application for the spool. Choosing the positive
direction for x and @ as shown in the fig., we apply F, = mw_ and N_;= I B, and get

0

mgsina~-T= mw; Tr=If

“Notice that if a point of a solid in plane motion
is connected with a thread, the projection of
velocity vector of the solid’s point of contact
along the length of the thread equals the velocity
of the other end of the thread (if it is not
slacked)”

Thus in our problem, v, =V but v,= 0,

hence point P is the instantaneous centre of
rotation of zero velocity for the spool. Therefore

v.= or and subsequently w_ = Pr. 2
Solving the equations simultaneously, we get l’/
- £ 2 - tomss’ -
1+ — g
mr

Let us sketch the force diagram for solid cylinder and apply Newton’s second law in
projection form along x and y axes (Fig.) :

fri+fry= mw, M
and N, +N,-mg-F=20
or N,+N,=mg+F )

Now choosing positive direction of ¢ as shown
in the figure and using N, = I_f,,

we get

2 2
FR-(fry+ fryR="8-p= 222 (3)

[as for pure rolling w_= BR ]. In addition to,
fri+frysk(N;+N,) @




129

Solving the Egs., we get

3kmg _3kmg
Fs G a0 O Fox= 3 3%

k(N +N,)

and We (max) = -

k k 3kmgl  2kg
m U8 * Frnax | m['ng+2—3k] 2 - 3%

1257 (a) Let us choose the positive direction of the rotation angle ¢, such that w_, and B, have
identical signs (Fig.). Equation of motion, F, = mw_, and N_= I_p, gives :
Fcosa-fr=mw_:frR-Fr=100,= ymRzﬁz
In the absence of the slipping of the spool w_ = B, R

From the three equations w_ = w_= Flcoso-(r/R) ] , Where cos a > L 1
x ¢ m(1+y) N R
(b) As static friction (fr) does not work on 1

the spool, from the equation of the increment
of mechanical energy A_, = AT.
2

v
A, = %mvf-r%ymRzR—‘I- %m(l +y) vV

1 1 1
= -i-m(l +Y) 2w, x = —z-m(l +y)2wc(5wctz)
2
F (ccsa - R%) I
2m(l+y)

Note|that at cos a.= r/R, there is no rolling and for cos a.<r/R, w_ <0, i.e. the spool
will move towards negative x-axis and rotate in anticlockwise sense.

1.258 For the cylinder from the equation N, = I, about its stationary axis of rotation.

2Tr = %p or ﬁs% )

For the rotation of the lower cylinder from the
equation N, = I_B,

2
mre , ,_ 4T
2Tr = 2 g’ or, ﬁ_mr-

B

Now for the translational motion of lower
cylinder from the Eq. F, = mw_, :
mg-2T= mw, )
As there is no slipping of threads on the
cylinders :
w. = p'r+fpr=2pr 3)
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1.259

1.260

Simultaneous solution of (1), (2) and (3) yields

- Mg
T 10

Lst us depict the forces acting on the pulley
and weight A, and indicate positive direction
for x and ¢ as shown in the figure. For the
cylinder from the equation F,= m w and

N_ =18, we get

Mg+T,-2T= Mw, Q@)
Iw,
and 2TR+T,(2R)=If= R 2 i
For the weight A from the equation
F = mw,
mg-T, = mw, 3

As there is no slipping of the threads on the
pulleys.

wW,=w+2BR=w_ +2w = 3w, O]
Simultaneous solutions of above four equations
gives :

3M+3mg
w, = 7
- (M +9m+ ——2)
R

(a) For the translational motion of the system (m+ m,), from the equation : F, = mw_
F=(m+myw, or, w=F/(m+m) (¢8)]

Now for the rotational motion of cylinder from the equation : N_ = I B,

mr 2F
Fr= > g or [3r==m—1 2)
But wg=w.+Br, So
F(3m +2
wee L 2E_EQma2m)
m+m, m my (m; +m,)

(b) From the equation of increment of mechanical energy : AT = A_,

Here AT=T(), so, T(t)= A_,
As force F is constant and is directed along x-axis the sought work done.
A= Fx

(where x is the displacement of the point of application of the force F during time interval ¢ )
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1. 5 Fr*(3 m, +2m,)
'F(z”"" Zmmamy 1@
(using Eq. (3)
Alternate : T(t) = T, pi000n (O + T, (5]

Ft 2+lm1r2 2Ft 2- 1“212(3m1+2m2)
(m; + my) 2 2 | mr 2m; (m,, m,)

= %(mli-mz)(

Choosing the positive direction for x and ¢ as shown in Fig, let us we write the equation
of motion for the sphere F, =mw_, and N, =18,

2 2
fr=m,w,; frr-gmzr B

(w, is the acceleration of the C.M. of sphere.) o4
For the plank from the Eq. F, = mw, < —> X
F-f=mw
In addition, the condition for the absence of ,fr
slipping of the sphere yields the kinematical fr m > ¢
. f 7 r
relation between the accelerations :
w =w,+Br /7777777777777
Simultaneous solution of the four equations yields :
F 2
W) =-———— and W= w
m; + 7 m,

(a) Let us depict the forces acting on the cylinder and their point of applications for the
cylinder and indicate positive direction of x and ¢ as shown in the figure. From the
equations for the plane motion of a solid F,= mw_, and N, = I_§, :

kmg=mw_ or w, = kg 1)

2
—kng-m}%B’ or pz--z’—;ﬁ @)

Let the cylinder starts pure rolling at £ = £, after
releasing on the horizontal floor at t= 0.

4

From the angular kinematical equation
w,= w,+p,1 G—-)v " o
or w-u:o-Z%t 3) Q)O
From the equation of the linear kinematics, \ ﬁ;
77777777777/ T 777777~

Vo= Vo v Wt

or v.=0+kgt, O]
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1.263

1.264

But at the moment ¢ = f,, when pure rolling starts v, = wR

wy R
Thus o= ?k_g-

(b) As the cylinder pick, up speed till it starts rolling, the point of contact has a purely

translatory movement equal to %w‘. tg in the forward directions but there is also a backward

movement of the point of contact of magnitude (w,7, - —;—B tg) R. Because of slipping

the net displacement is backwards. The total work done is then,

. = kmg [-;—w B - (0d+3 ﬁF)R]
= kmg [%kgtﬁ - %(-%&) HR- “’o‘oR]

mmoR

3kg [— M “’OR]

The same result can also be obtained by the work-energy theorem, A, = AT.

Let us write the equation of motion for the centre of the sphere at the moment of breaking-off:
mv*/(R +r) = mg cos 6,

where v is the velocity of the centre of the sphere at that moment, and 0 is the corresponding

angle (Fig.). The velocity v can be found from the energy conservation law :

mgh = —;— m? + -;—Imz,

where I is the moment of inertia of the sphere
relative to the axis passing through the sphere’s hI

centre. i.e. I = %mrz. In addition,
v=owr; h= (R+r)(1 -cos0).

From these four equations we obtain

o=V10gR+r)17 4. 0

Since the cylinder moves without sliding, the centre of the cylinder rotates about the point
O, while passing through the common edge of the planes. In other words, the point O
becomes the foot of the instantaneous axis of rotation of the cylinder.
It at any instant during this motion the velocity of the C.M. is v, when the angle (shown
in the figure) is B, we have

mv?

1
R - mgcosB-N,
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where N is the normal reaction of the edge
2
: - _ = 1
or, vi= gRcos B - @

From the energy conservation law,

2
1 % 1. %
EI°R—12_5 I, ;(%- mgR (1 - cos B) \
2 7///////////0 m
But Iy = ﬁg;urmRz - %mRz, g
(from the parallel axis theorem) <
Thus, vf- v(2,+§gR(1-cos B) )

From (1) and (2)
Vo= 335(7cosﬁ-4) - 1%

The angle B in this equation is clearly smaller than or equal to o so putting f = o we get

. gR NR
Vo= 83—(7(:050.—4) - M
where N, is the corresponding reaction. Note that N 2 N, No jumping occurs during

this turning if N, > 0. Hence, v, must be less than

Viax = \/8-3’5(7cosa—4)

Clearly the tendency of bouncing of the hoop will be maximum when the small body A,
will be at the highest point of the hoop during its rolling motion. Let the velocity of C.M.
of the hoop equal v at this position. The static friction does no work on the hoop, so from
conservation of mechanical energy; E; = E,

2 2
1o2e L) CpmeRe Lm@?s lmi s Lmp2 (Y
or, 9+2mvg+2mR (R) mgR 2m(2v) +2mv2+2mR (R) +mgR
or, 3= vg—2gR 1)
From the equation F, = mw, for body A at final position 2 :
2
mg+N' = mo’R = m(i—) R 2)

f—\

&) W
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1.266

1.267

1.268

As the hoop has no acceleration in vertical direction, so for the hoop,

N+N = mg )]
From Egs. (2) and (3),
mv?
N=2mg-— @
As the hoop does not bounce, Nz 0 ®)
So from Egs. (1), (4) and (5),
8gR-
3R ——— 220 o 8 gR= v2

Hence vos V8gR

Since the lower part of the belt is in contact with the rigid floor, velocity of this part
becomes zero. The crawler moves with velocity v, hence the velocity of upper part of the
belt becomes 2v by the rolling condition and kinetic energy of upper part

= -1— -"1 (2v) mv2, which is also the sought kinetic energy, assuming that the length of

the bclt is much larger than the radius of the wheels.

The sphere has two types of motion, one is the rotation about its own axis and the other
is motion in a circle of radius R. Hence the sought kinetic energy

1 2 1 2
T = illm1+712m2 (1)

where I, is the moment of inertia about its own axis, and I, is the moment of inertia about
the vertical axis, passing through O,

But, I,= -§—mr2 and 1, = émr2 + mR? (using parallel axis theorem,) )

In addition to

W, = % and w, = % 3

Using (2) and (3) in (1), we get T/ = — mv2 (1 + 7_1:2.)

For a point mass of mass dm, looked at from C rotating frame, the equation is
dmW = f+dm 7 +2dm (7 x @)
where 7~ = radius vector in the rotating frame with respect to rotation axis and
g velocity in the same frame. The total centrifugal force is clearly
i":f- 2 dm o’ 7" = mmzk:

I—i: is the radius vector of the C.M. of the body with respect to rotation axis, also

—> —! —
F,,,=2my, xw
where we have used the definitions

= 2 dmr” and mv, = 2 dmv”
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1269 Consider a small element of length dx at a distance x from the point C, which is rotating
in a circle of radius r = x sin 0

Now, mass of the element = (%) dx o'
/”‘——-".‘“\\
So, centrifugal force acting on this element { F B

- % dx w*x sin O and moment of this force

about C, g /“{’0
|dN|= (%)dxmzxsine-xcose

2

o .
= sin 2 0 X% dx L
and hence, total moment 0 J
272 Y -
2
mw” . 1 2.2,
N 2f 2 sin20 Pdx= 24mm 1“sin2 0,

0
1.270 Let us consider the system in a frame rotating with the rod. In this frame, the rod is at

—
rest and experiences not only the gravitational force m g’and the reaction force R, but also
—
the centrifugal force F ;.

In the considered frame, from the condition of equilibrium i.e. Ny, = 0

)

or, N;=mg ésin 0

where N, is the moment of centrifugal force
about O. To calculate N, , let us consider an
element of length dx, situated at a distance x
from the point O. This element is subjected to

a horizontal pseudo force % dx ” x sin 0.

The moment of this pseudo force about the
axis of rotation through the point O is

des (l"l__) dx »? x sin 8 x cos 0

[4

mmz

] sin @ cos 0 x> dx

1

mw? 12
3

2
So N =fm;o sin 0 cos 0 x* dx =

C

sin 0 cos 0 )

0
It follows from Egs. (1) and (2) that,

3 - 3
cos9=(3’—o—;§—l) or 0= cos 1(5—0-52—1) 3)
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1.271

1.272

1.273

When the cube is given an initial velocity on
the table in some direction (as shown) it
acquires an angular momentum about an axis
on the table perpendicular to the initial velocity
and (say) just below the C.G.. This angular
momentum will disappear when the cube stops
and this can only by due to a torque. Frictional
forces cannot do this by themselves because
they act in the plain containing the axis. But
if the force of normal reaction act eccentrically
(as shown), their torque can bring about the

vanishing of the angular momentum. We can " Initial
calculate the distance Ax between the point of velocity
application of the normal reaction and the C.G. /v

of the cube as follows. T'akc the mancnt about N ~— focis L fo the
C.G. of all the forces. This must vanish because Initial initial locit
the cube does not turn or turnble on the table. angular velociy

. o on the table
Then if the force of friction is fr momentum
a
fr 5= N Ax

But N= mg and fr= kmg, so

Ax= ka/2
In the process of motion of the given system the kinetic energy and the angular momentum
relative to rotation axis do not vary. Hence, it follows that

1M2 5 1 2,2, y2y 1M
-2-—3—0)0=§m(0) I“+V )+E—3—(D
(w is the final angular velocity of the rod)
2 2
and Ag—lmou Ai;—u)+mlzm

From these equations we obtain

3
o = mo/(l + T{‘;)and
V= wol/ V1+3m/M

Due to hitting of the ball, the angular impulse received by the rod about the C.M. is equal

top % If w is the angular velocity acquired by the rod, we have
m? = pl &
12°72 "% @)

In the frame of C.M,, the rod is rotating about an axis passing through its mid point with
the angular velocity w. Hence the force exerted by one half on the other = mass of one
half x acceleration of C.M. of that part, in the frame of C.M.

m( 2l o’ 9p?_
'2(‘” 4) m=g = omi = °N
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1274 (a) In the process of motion of the given system the Kkinetic energy and the angular

1.275

momentum relative to rotation axis do not vary. Hence it follows that

1, 1, 1(M?) ,
'i'mv = Emv +§( 3 w
and mv-l-- mv’-l—-o-MI—zm
2 2 3
From these equations we obtain
(o [2modM v. and o = SR —
3m+4M | 11 +4m/3M)
—' —> . —' Im-4M\ -
As v % % v,soin vector form v = Im+aM v

(b) Obviously the sought force provides the centripetal acceleration to the C.M. of the

rod and is

F = mw,_

= Mmzi- __L‘Aﬁ___
2 1(1+4M/3m )

n

(a) About the axis of rotation of the rod, the angular momentum of the system is conserved.
Thus if the velocity of the flying bullet is v.

2
myl = (m12+M-I-)w

3
v -3—"2 <«< M 1
w-( M) M s m (6]
m+-5- )

Now from the conservation of mechanical energy of -the system (rod with bullet) in the
uniform field of gravity

2
%(m12+£3l-)m2=(M+m)gé(1—cosa) ?2)

/
[because C.M. of rod raises by the height %( 1-cosa) ]
Solving (1) and (2), we get

v= (%) V%gl singzi and @ = v%s- sin%
(b) Sought Ap = [m(ml)+M((o-iI-)]—mv

where !/ is the veloccity of the bullet and m-é— equals the velocity of C.M. of the rod

after the impact. Putting the value of v and w we get
Ap ~ %mv =M 56_1 sing—

This is caused by the reaction at the hinge on the upper end.
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(c) Let the rod starts swinging with angular velocity o’, in this case. Then, like part (a)

Mi? AP ,  3mvx
myx=| ——+mx W Or @ =
3 Mi?

Final momentum is
4
M M 3 x
! 7 =l v
pi=mxw +fy(o’ dym — ' lm mvy

o l 2 2
3x
So, Ap-pf—pi~mv(—l—1)
This vanishes for X %l

1.276 (a) As force F on the body is radial so its angular momentum about the axis becomes

zero and the angular momentum of the system about the given axis is conserved. Thus

2 2
2 (oo+m(noR2-= 2 (oorm-wo(1+2—;;-)

(b) From the equation of the increment of the mechanical energy of the system :
AT=A_,

1 MR? , 1(MR2
272 2

33 @ -3 +mR )mo-Aw
Putting the value of w from part (a) and solving we get

mmosz 1 2m
“ ()

o 2

1.277 (a) Let z be the rotation axis of disc and ¢ be its rotation angle in accordance with

right-hand screw rule (Fig.). (¢ and @’ are to be measured in the same sense algebraically.)
As M, of the system (disc + man) is conserved and M , (;,...;y = 0, we have at any instant,

2 ’
=l"£_R_d£+ml[(£ii)R+(d£)R]R

2 a dt dr
d ml do
oh = "mr(my2) %7

P L4

. . ido! )

On integrating do= - m do
0 [}

my

or, 9= - —1¥ )
my + =

This gives the total angle of rotation of the disc.
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(b) From Egq. (1)
do_ _(_m \de_ _(_m \v()

dt m, | dt R
m1+'2_2 m1+%
Differentiating with respect to time ‘F§
d’e_ _(_m \1dv(s)
de? m, |R dr
my+ 2~
Thus the sought force moment from the Eq. N,= I8,
m
-m2R2d2(p=-m2R2 ml ldv’(t) R ‘w
22 ds? 2 m, |R dt
my+ 2

m, m,R !
Hence N = -— 27 Vv (¢)
z 2m,+m, dt

(a) Frome the law of conservation of angular momentum of the system relative to vertical
axis z, it follows that:

Lopthoy= (I +1)) o,
Hence W, = (11(’312'*12(’32:)/(11*12) (6]
Not that for w, > 0, the corresponding vector @ coincides with the poitive direction to the

z axis, and vice versa. As both discs rotates about the same vertical axis 2, thus in vector

form.
o= 6o +L©, [ (I +1,)
However, the problem makes sense only if (—o'l tt (—6’2 or u_)'l IR o_)’z

(b) From the equation of increment of mechanical energy of a system: A, = AT.

= 3 +h)e2 -2 Lo+ Lol
Using Eq. (1)
1112 2

For the closed system (disc + rod), the angular momentum is conserved about any axis.
Thus from the conservation of angular momentum of the system about the rotation axis
of rod passing through its C.M. gives :
2
mv—l-- mv‘£+n-”iw 1)

2 2 12
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1.280

(v' is the final velocity of the disc and o angular velocity of the rod)

For the closed system linear momentum is also
conserved. Hence

mv=mv' +mmy, )
(where v, is the velocity of C.M. of the rod)
From Egs (1) and (2) we get
lw ,
ve= 3 and v-Vv =1y,
Applying conservation of kinetic energy, as the collision is elastic

1 1 ,2.1 2,1 "lmlz 2

—2-mv2 3™V + 2nmvc + 3 12 o (3) ]
or v - v2= 4nv 2 and hence v + V' = 4v, J\
Then /2

- 4-n .12y l
V= aen Ot G I
Vectorially, noting that we have taken nd parallel to v~
gl (—11“ = )r
44+

So,i” =0 form=4and i |t ¥ for n>4 O—>--—>‘ﬂ

See the diagram in the book (Fig. 1.72)
(a) When the shaft BB’ is turned through 90° the platform must start turning with angular
velocity € so that the angular momentum remains constant. Here

I+1,)Q= 1, Q Ty 2o
(I+1))Q= 1,00, or, =I+Io

The work performed by the motor is therefore

2 2
11, o9

27T+,
If the shaft is turned through 180°, angular velocity of the sphere changes sign. Thus from
conservation of angular momentum,

S U+1,) Q2

(Here -1, w, is the complete angular momentum of the sphere i. e. we assume that the

angular velocity of the sphere is just — wg). Then
Do

and the work done must be,

2 .2
1,21 2 1 2 2y
EIQ +EIO(00—510(00= -
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(b) In the case (a), first part, the angular momentum vector of the sphere is precessing
with angular velocity Q. Thus a torque,
2 2

I, 0, Q= 0—mois needed
070 I+1, :

1.281 The total centrifugal force can be calculated by,

f—w xdx = ml »?

/
Then for equilibrium, 0

) ly
(Tz“T1)5= mg;

and, T, + T, = mlom

Thus T, vanishes, when

2,28 .\ B8 .
0= l,w— l—6rad/s e | |1

7 X

Iy
Then T, = mg—l- = 25N

1.282 See the diagram in the book (Fig. 1.71).

(a) The angular velocity ® about OO ' can be resolved into a component parallel to the
rod and a component ® sin® perpendicular to the rod through C. The component parallel

to the rod does not contribute so the angular momentum

M= Iosind = —llz—mlzmsine

Also, M,= Msind = 2-m1*wsin®0

This can be obtained directly also,

(b) The modulus of M does not change but
the modulus of the change of M s | AM |

| AM | = 2Msin (90 -0) = ——m12m51n29

(c) Here M, = M cosO = I o sin0 cos0

wdt 1 .2 2.2
= [ w sinO cos® = 24 ml“w*sin“0

Now ar

—
as M precesses with angular velocity w.
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1.283 Here M= [ o is along the symmetry axis. It has two components, the part I  cos0 is

1.284

constant and the part M, = I @ sin® presesses, then

% = ] wsin® w’ = mgl sinB

or, ' = precession frequency = %f)! = 0-7rad/s
(b) This force is the centripetal force due to precession. It acts inward and has the magnitude
|;'1 - '2 m,-u)’zﬁ,-'l = mw'?1sin® = 12mN.

p; is the distance of the ith element from the axis. This is the force that the table will
exert on the top. See the diagram in the answer sheet

M4
ML

ML

mg, |

See the diagram in the book (Fig. 1.73).

The moment of inertia of the disc about its symmentry axis is %mRz. If the angular

1 mR? . The precession frequency

velocity of the disc is o then the angular momentum is 2

being 2n n,

we have I 2w x 2nn

This must equal m (g+ w)]l, the effective gravitational torques (g being replaced by
g +w in the elevator). Thus,
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1.287

1.288

1.289
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The effective g is V gz +w? inclined at angle tan~ ! g— with the vertical. Then with reference
to the new " vertical" we proceed as in problem 1-283. Thus

, miVgiew?

® = ———— = (-8 rad/s.
Iw

The vector @ forms an angle 6 = tzm'l-‘gZ = 6° with the normal vertical.

The moment of inertia of the sphere is ZmR % and hence the value of angular momentum

5
is %mR2 w. Since it precesses at speed o’ the torque required is

%mszm’=F'l

So, F' = %mRzm(o’/I = 300N
(The force F' must be vertical.)

NSUPTIRI | .1 .
The moment of inertia is 7mr2 and angular momentum is = mr? w. The axle oscillates

2

about a horizontal axis making an instantaneous angle.

. 2t
P= @, S
This means that there is a variable precession with a rate of precession ar The maximum
- @, - . .
value of this is T"’. When the angle between the axle and the axis is at its maximum

value, a torque /0 Q

1, 2mp, wmrlog,
=2mr w T = T

acts on it.
nmr? WP,
Ir
The revolutions per minute of the flywheel being », the angular momentum of the flywheel
\4
R
Thus N = 2xINV/R = 597 kN.m.

The corresponding gyroscopic force will be =90 N

is I x 27n. The rate of precession is

As in the previous problem a couple 2n/nv/R must come in play. This can be done if a
force, —2% acts on the rails in opposite directions in addition to the centrifugal and other

forces. The force on the outer rail is increased and that on the inner rail decreased.
The additional force in this case has the magnitude 1-4 kN. m.
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1.6

1.290

1.291

1.292

ELASTIC DEFORMATIONS OF A SOLID BODY

Variation of length with temperature is given by
L= lo(1+aAr) or $= aArm ¢ )
0
o
But €= E ’

Thus o = aAtE, which is the sought stress of pressure.
Putting the value of a and E from Appendix and taking Az = 100°C, we get

o= 22x10° atm.

(a) Consider a transverse section of the tube and concentrate on an element which subtends
an angle Ag at the centre. The forces acting on a portion of length Al on the element are

(1) tensile forces side ways of magnitude cArAL
The resultant of these is

20ArAlksin A%- oArAlAg

radially towards the cente.
(2) The force due to fluid pressure = prAgpAl
Ar

Since these balance, we get p . =~ Op

where o, is the maximum tensile force.

Putting the values we get p_ .. = 19-7 atmos.

(b) Consider an element of area dS = n (7 AO/2 )2 about z —axis chosen arbitrarily. There

are tangential tensile forces all around the ring of the cap. Their resultant is

AB \:)

0[2n(r > ) Ar] sin =
Hence in the limit

2

pmn(%) = omn(r—gg)ArAe

A8

20, Ar 2
~— = 39:5 atmos. 2

or p,.=

Let us consider an element of rod at a distance x from its rotation axis (Fig.). From

Newton’s second law in projection form directed towards the rotation axis
m
-dl = (dm)mzx- 7m2xdx

On integrating

2.2
mo“x
T C ( constant )

_T-
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1456

But at x= :t‘% or free end, T= 0
2 ;2 2

mo”l mo 1

Thus 0= 2 4+CorC-- 3
2 2
Hence T= r_ng)__(:l‘__gl_) ¢
Y
mo?1l
Thus T ™ (at mid point)
Condition required for the problem is L % _)% J
T .= S0, dx
2
mw1 24/%n

So, 3 -Scmorm-l o

Hence the sought number of rp s

I _1_\/__"‘0»' i 8 x 107
n=--=1 o [using the table n 0-8 x 10“1ps ]
Let us consider an element of the ring (Fig.). From Newton’s law F,= mw, for this
element, we get,

Td6 = (—;"; do ) o’r [see solution of 1.930r 1.92}

m
So, T= 2w

Condition for the problem is : «— \T
-l-s o, o, 29 Tso
i Om O g
2 /C
o, @2 =-———————2u On” -—0—"—
o Omae™ 2 (mrp)  pr?
Thus sought number of 1ps T
o Ome 1 4/0n
2 2mr P

Using the table of appendices n = 231ps
Let the point O desend by the distance x (Fig.). From the condition of equilibrium of point
o.

i = = m = ﬂ& 2 2
2Tsin0= mg or T —_g—2sin0 > V(I/2) +x 1)
2
Now, T G=eEorT= Ent @
n(d/2) 4

( o here is stress and & is strain.)
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e= % 2=\/1+(%)2-1(3)

1.295

1.296

In addition to it,

Vv (1/2)2+x2 _d

/,
.

From Egs. (1), (2) and (3) 7 0 9 7

X - x:,x =:E1§12 as x<<l J‘: 4

o N
o M mgl 0
217 nEd? m
Vs 3
or, x= l(—ﬁg—i) = 2-5cm
2nEd

Let us consider an element of the rod at a distance x from the free end (Fig.). For the
considered element ‘7 - T’ are internal restoring forces which produce elongation and
dT provides the acceleration to the element. For the element from Newton’s law :

dT = (dm mu\Fe _ oy
e 30)2

As free end has zero tension, on integrating the above expression,

T FO FO
denT dx or T=—l-x

Elongation in the considered element of lenght dx :

a T F,xdx
08=F () di=gpde=—co
1
Th 1 elengati Fo f dx F,!
us total elengation §=m xde=scr
* L 7+dT 5
Hence the sought strain <X —> 4 é_—
gL
O=1725E

Let us consider an element of the rod at a distance r from it’s rotation axis. As the element
rotates in a horizontal circle of radius r, we have from Newton’s second law in projection
form directed toward the axis of rotation :

T-(T+dT) = (dm) 0*r
or, -dTl = (%dr)mzr- '—;‘-mzrdr

~
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At the free end tension becomes zero. Integrating the above experession we get, thus

1
—de= mezfrdr
T r

2/,2 2 2 2
Thus T M (l ;r)smml(l_r2)

1 2 2
Elongation in elemental length dr is given by :

.o - T
E E dr SEdr

(where S is the cross sectional area of the rod and T is the tension in the rod at the
considered element)

2 2
mw”l r
or, dE= 2 SE (l-lz)dr s
Thus the sought elongation
PO At |
m(o l r e 3 <«
s- a3 5 ( ’zﬁ)d' ™o dr

mw?l2l (S p) o2
o 8= SSE 3~ 35E° P

243
= %ﬂ%—l— (where p is the density of the copper.)

Volume of a solid cylinder
V=nrl

AV  n2rArl wnPAl 2Ar Al
22 . + - + = (1)
14 nrtl artl r l

But longitudinal strain Al/I and accompanying lateral strain A r/r are related as

So,

Ar Al
- = - l (2)
Using (2) in (1), we get :
AV Al
ar . = 3
=T a-2p ©
Al _ -F/nr
But T =T E

(Because the increment in the length of cylinder Al is negative)
AV -F .
So, = = 1-2
V  xrFE ( "
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1.298

1.299

Thus, AV = -‘-Ef—’- 1-2p)

Negative sign means that the volume of the cylinder has decreased.

(a) As free end has zero tension, thus the tension in the rod-at a vestical distance y from
its lower end

m
T= T8y ®
Let 8l be the elongation of the element of length dy, then
-0
al E dy
= g%dy = ﬂ;ﬂl’EaX= p gydy/E (where p is the density of the copper)

Thus the sought elongation
1
A1=fal= pgngxs %pglz/E )
0

(b) If the longitudinal (tensile) strain is € = él—l , the accompanying lateral (compressive)
strain is given by

el_é'.'—r-_ue 3)

Then since V = n 72 we have
AV _2ar Al
|4 r l
Al .
- (1-24) T [Using (3)

where -AI—I is given in part (a), p is the Poisson ratio for copper.

Consider a cube of unit length before pressure is applied. The pressure acts on each face.

The pressures on the opposite faces constitute a tensile stress producing longitudianl com-

pression and lateral extension. The compressions is % and the lateral extension is u%

The net result is a compression

%(1 -2p) in each side.

= - §EE(1 -2 ) because from symmetry A—‘Y= 3 ATI

AV

Hence v
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(b) Let us consider a cube under an equal compressive stress o, acting on all its faces.
AV ¢

Then, volume strain = - vV=r (6]
where k is the bulk modulus of elasticity.
o 30

So t~ E 1-2pw

3 1
or, E=3k(1-2p)==(1-2n)|as k= —

p B
n < 1 if £ and B are both to remain positive.

2

A beam clamped at one end and supporting an applied load at the free end is called a
cantilever. The theory of cantilevers is discussed in advanced text book on mechanics. The
key result is that elastic forces in the beam generate a couple, whose moment, called the
moment of resistances, balances the external bending moment due to weight of the beam,
load etc. The moment of resistance, also called internal bending moment (I.B.M) is given
by
LB.M. = EI/R

Here R is the radius of curvature of the beam at the representative point (x, y). [ is called
the geometrical moment of inertia

1-f£ds

of the cross section relative to the axis passing through the netural layer which remains
unstretched. (Fig.1.). The section of the beam beyond P exerts the bending moment
N (x) and we have,

EI
F bl N(x)

If there is no load other than that due to the
weight of the beam, then

—

 'ds

N@)= %pg(l-x)zbh

where p = density of steel.

Hence, at x=0
I\ pgl’bh
R 2E]I

Here b= width of the beam perpendicular to paper.

h/2

bh®

Also, 1-f£bdz= TR
-n2

2
Hence, (1) = 828 _ (0.121 km)-!
R) EW




150

1.301

1.302

1.303

We use the equation given above and use the result that when y is small
A _x N@)
R dx? > a&* EI
(a) Here N (x) = N, is a constant. Then integration gives,
dy _ Nyx +C,
dc EI
But (%) = 0 for x= 0, so C; = 0. Integrating again,
N, x?
Y

where we have used y= 0 for x= 0 to set the constant of integration at zero. This is the
equation of a parabola. The sag of the free end is
N, I?
2EI
(b) In this case N (x) = F (I -x) because the load F at the extremity is balanced by a
similar force at F directed upward and they constitute a couple. Then

d’y F(-x)

o Er -

2
Integrating, % = F(lx_EIx/gl +C,

A=y(x= )=

As before C, = 0. Integrating again, using y= 0 for x = 0

£
Fl2 6 FP

Y= TTE here A= 31

Here for a square cross section
/2

I=f22adz= a*/12.

-a/2

One can think of it as analogous to the previous
case but with a beam of length I/2 loaded

upward by a force F/2. TF/Z l 'L/ZT

FI? A ]
Thus A= 48 El’ A\::\ l ’,;:/%

-
-
R

On using the last result of the previous problem.

(a) In this case N (x) = 2 ~pgbh(l- x)* where b= width of the girder.

Also I= bHh/12. Then,
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2
Ebi d’y f’—g—(12-21x+x2).

12 ¢

3

- & _6pg(2, 2,5

Integrating, i g 1“x lx2+3
using %- 0 for x = 0. Again integrating

6pg (I’ 1’ x'

Y= |2 "3 12

_6pglf(1 1 1

Thus A= 2 |2 3+12

2
(b) As before, EI d_l’X = N (x) where N (x) is the bending moment due to section PB.
dx

This bending moment is clearly
2

N=fwd'§(§-x)-wl(2!-x)

- w(2!2-2xl+%2)-w1(21-x)- w(";-xl)

(Here w= p gb h is weight of the beam per unit length)

2
Now integrating, EI Zx_y -w (%3 - "TI) +¢, == 21

->
i —‘Z= = = 3
or since ; 0 forx=1co=wl’/3 P

4

3

As y= 0 for x= 0, ¢, = 0. From this we find

swit Spgl4
A=y = D= 2 B 2P

The deflection of the plate can be noticed by going to a co- rotating frame. In this frame
cach element of the plate experiences a pseudo force proportional to its mass. These
forces have a moment which constitutes the bending moment of the problem. To calculate

this moment we note that the acceleration of an element at a distance & from the axis is
a= EP and the moment of the forces exerted by the section between x and [ is
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1
N= plthEsz- %plhﬁ(ls—x?’).
X
From the fundamental equation

da’y _1 3_ .3
EIdx2 3plhﬂ(l x).

+h/2
3

The moment ofinertial-fzzldz- 11!2'_

-h/2
Note that the neutral surface (i.e. the surface which contains lines which are neither

stretched nor compressed) is a vertical plane here and z is perpendicular to it.

d’y 4 .
—22 = «E%zﬁ (I3 - £°). Integrating

dy 4pB(3
E— 'E—’?-(l X 4 +C

Since %= 0, for x= 0, ¢, = 0. Integrating again,
J4ep (P2 X
YT ER 2 T20)7%
c,= 0 because y= 0 for x=0
9ppI’°
Thu A=y@x=1]=
s ylx=1) SER

(a) Consider a hollow cylinder of length I, outer radius r + Ar inner radius 7, fixed at one
end and twisted at the other by means of a couple of moment N. The angular displacement
¢, at a distance [ from the fixed end, is proportional to both / and . Consider an element
of length dx at the twisted end. It is moved by an angle @ as shown. A vertical section
is also shown and the twisting of the parallelopipe of length !/ and area Ar dx under the
action of the twisting couple can be discussed by elementary means. If f is the tangential
force generated then shearing stress is f/Ar dx and this must equal

Go= G%, since 0 = '—;2

Hence, f=GArdx LIQ

The force f has moment fr about the axis and so the total moment is

3
N- GAr%#fdx- MG
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(b) For a solid cylinder we must integrate over r. Thus

dx N=f2nr3drq>G_ :rtr4Gq>
N ‘\\ 1 21
XOP\ ™ 0
F e—i Y \x\ \\\\
: v
1 H ]
1 H 1
] ] I
! ] H
l ! 1
& P
AN | i
\\ E E—»f
\“| {
s
o a1
dy2
2nr drgG n 4 L4
1.306 Clearly N = =Ech(d2-d1)
4,2
. 10 N
using G=281GPa=81x10"—

m

dy=5%x10"%m, d,= 3x10™?m

p=20°= —radlans I=3m

90
_nmx8Ixm 287,
N= __32x3x90(625 81) x 10°N'm

= 0:5033 x 10°N'm =~ 0-5k N-m
1.307 The maximum power that can be transmitted by means of a shaft rotating about its axis
is clearly N ® where N is the moment of the couple producing the maximum permissible
torsion, ¢p. Thus

4
P= %‘Z-m - 169 kw

1.308 Consider an elementary ring of width dr at a distant r from the axis. The part outside
exerts a couple N +%dr on this ring while the part inside exerts a couple N in the
opposite direction. We have for equilibrium

dN
o dr= - dIp
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1.309

1.310

where dI is the moment of inertia of the elementary ring, p is the angular acceleration
and minus sign is needed because the couple N (r) decreases, with distance vanshing at
the outer radius, N (r,) = 0. Now

dl = ——T——qudr r

m(g=1)
- 2mB 5
Thus dN ( ’%_ r}) rdr
or, N= %#% (r; - r‘), on integration

N+aN
=t

—) ’?

We assume that the deformation is wholly due to external load, neglecting the effect of
the weight of the rod (see next problem). Then a well known formula says,

elastic energy per unit volume

1 .1
= — stres: straln = —O ¢
p Sess 2

im

20 E &% = 0-04kJ for the total deformation energy.

This gives

When a rod is deformed by its own weight the stress increases as one moves up, the
stretching force being the weight of the portion below the element considered.

l

The stress on the element dx is 7

prrr(l-x)g/nrP=pg(-x) T
The extension of the element is

Adx=dAx= pg(l-x)dx/E x
Integrating Al = %p gl %/E is the extension of l d

ey

the whole rod. The elastic energy of the element i,
is

1 l-x

3 pg(l-x) &g—%—l nr?dx
Integrating [x

2
AU= 2’ p* g I/E = %mzus(ﬂ) N
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The work done to make a loop out of a steel band appears as the elastic energy of the
loop and may be calculated from the same.

If the length of the band is / the radius of the loop R = 2—11; Now consider an element

ABCD of the loop. The elastic energy of this element can be calculated by the same sort
of arguments as used to derive the formula for internal bending moment. Consider a fibre
at a distance z from the neutral surface PQ. This fibre experiences a force p and undergoes

an extension ds where ds = Zd ¢, while PQ = s = Rd ¢. Thus strain % = % If o is the

cross sectional area of the fibre, the elastic energy associated with it is
2
1 _.(Z
> E ( R) Rdyp a
Summing over all the fibres we get

Elg 2_Eldg
2R 28" T
For the whole loop this gives,

usingf do=2m,

Eln_ 2EIx
R 1
8/2
Now I=f22hdZ
-8/2
2 3
So the energy is %n Elhé

When the rod is twisted through an angle 6, a couple

N (0) = G 0 appears to resist this. Work done in twisting the rod by an angle ¢ is

art
21
then

@
4
fN(O) do= -n—:{l—c-;-(pz = 7] on putting the values.
0

3
Jtrler(pz

The energy between radii r and r +dr is, by differentiation,

xrdr Gqu:_l_Gq)zr2
2ardrl 1 2 2

Its density is

The energy density is as usual 1/2 stress x strain. Stress is the pressure p g h. Strain is
 x p gh by defination of . Thus

u= %B (p gh)2 = 23-5kJ/m’ on putting the values.



156

1.7

1.315

1.316

HYDRODYNAMICS

Between 1 and 2 fluid particles are in nearly circular motion and therefore have centripetal
acceleration. The force for this acceleration, like for any other situation in an ideal fluid,
can only come from the pressure variation along the line joining 1 and 2. This requires
that pressure at 1 should be greater than the pressure at 2 i.e.

Py>p
so that the fluid particles can have required acceleration. If there is no turbulence. the
motion can be taken as irrotational. Then by considering

_(ﬁ vedl= 0

along the circuit shown we infer that
V>V,
(The portion of the circuit near 1 and 2 are

streamlines while the other two arms are at
right angle to streamlines)

In an incompressible liquid we also have div V=0
By electrostatic analogy we then find that the density of streamlines is proportional to the
velocity at that point.

From the conservation of mass
Vi S) = 1,5, M

But §; < S, as shown in the figure of the problem, therefore
vy >V,
As every streamline is horizontal between 1 & 2, Bernoull’s theorem becomes
p+ —;— pv2 = constant, which gives
pl<p238V1>V2
As the difference in height of the water column is Ah, therefore
Py, —p; = pg8Ah €3]

From Bemnoull’s theorem between points 1 and 2 of a streamline

1 2 1 -
P1*§PV1’P2+§PV2

1

or, Pr-pi=5 000 - W)
of pgAh = % p(? - (3 (using Eq. 2)
using (1) in (3), we get I l J l

2gAh N —

vy =5, 2 _ g2
2 72 ——— T
L 2

Hence the sought volume of water flowing per see

ZgAh
Q=v1S1=S152V 2 2
s2 - s

2
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Applying Bemnoulli’s theorem for the point A and B,

1
pA=pB~v--2-pv2 as, v,=0

1
or, 2PV =py-py= Ahpog
\/ZAhpog
So, v\ ——
p
1 /2Ah
Thus, rate of flow of gas, Q= Sv=§ kil 11

P
The gas flows over the tube past it at B. But at A the gas becomes stationary as the gas
will move into the tube which already contains gas.

In applying Bemoulli’s theorem we should remember that % + %vz + gz is constant along

a streamline. In the present case, we are really applying Bernoulli’s theorem somewhat
indirectly. The streamline at A is not the streamline at B. Nevertheless the result is correct.
To be convinced of this, we need only apply Bernoull’s theorem to the streamline that
goes through A by comparing the situation at A with that above B on the same level. In
steady conditions, this agrees with the result derived because there cannot be a transverse
pressure differential.

Since, the density of water is greater than that of kerosene oil, it will collect at the bottom.
Now, pressure due to water level equals h; p, g and pressure due to kerosene oil level

equals h, p, g. So, net pressure becomes h, p, g + h, p, 8.
From Bernoulli’s theorem, this pressure energy

will be converted into kinetic energy while
flowing through the whole A.

. 1
ie. hypg+hypg= Eplv2

Hencev = \/ 2 h1+h2£2- g =3m/s =
P1 A

Let, H be the total height of water column and the hole is made at a height 4 from the
bottom.

Then from Bernoulli’s theorem

1
Spvi= (H-h)pg

> AV

or,v= V(H - h) 2g, which is directed horizontally.

For the horizontal range, /= v ¢

=V2gH-h) - % = 2V(Hh-H)
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1.320

1.321

2
Now, for maximum I, d H:h.h =0

which yields h= %{-- 25 cm.
Let the velocity of the water jet, near the orifice be v/, then applying Bernoullis theorem,

1 4 1 5
2PV hopg+5pv

or, V= Vi 2g h, (6))
Here the pressure term on both sides is the same and equal to atmospheric pressure. (In
the problem book Fig. should be more clear.)

Now, if it rises upto a height A, then at this height, whole of its kinetic-energy will be

converted into potential energy. So,
12

l 2 = - —
2 pVv pgh or h %
v .
- Z-—ho = 20 cm, [using Eq. (1)]
Water flows through the small clearance into the orifice. Let d be the clearance. Then
from the equation of continuity
(2nRd)v;= (2nrd)v= (2nRd)v,
or ViR =vr=wR, (¢)) I

where v , v, and v are respectively the inward ZZZ////////////}////// (L

radial velocities of the fluid at 1, 2 and 3.
Now by Bemnoulli’s theorem just before 2 and _ _ _ _|_| ' .
just after it in the clearance il b Ry T T T
1 2 === p £p ===

Pot hpg=py+ 5pv; @ —=-1o > |T===
Applying the same theorem at 3 and 1 we find =—= ¥ = =- T -
that this also equals 2 3 '\\I J [ 1

1 2 :
P+ 2Pv 'PO 2pV1 (3)

(since the pressure in the orifice is p, )

From Egs. (2) and (3) we also hence

v;=V 2gh “

1 2 v
and p-po+§-pv1(1-(;I))

2

=P + hpg (1 - (%) ) [Using (1) and (4)]
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1322 et the force acting on the piston be F and the length of the cylinder be L

1323

1324

Then, work done = Fl (4))
Applying Bermnoulli’'s theorem for points

A and B,p= %pv2 where p is the density %:—-.-::\:/1: ===
S VI =TS s
and v is the velocity at point B. Now, force N = ———— T2
’ —t e T e — - rNN—
on the piston, é_‘:-—-_: A- ~==
N-=-=--==z== B
1 2 N - D = ===
F=pA==pv'A ¥)) N — — =~ — =
2 AN —— ——
where A is the cross section area of piston. hl 4 °
Also, discharge through the orifice during time
interval ¢ = Svt and this is equal to the volume
of the cylinder, i.c.,
| 4
V=St or v= 5t 3
From Eq. (1), (2) and (3) work done
1 2 1 2P § 3.2
SPVAl= > pA(St)zl 2pV3/S t2 (as Al= V)

Let at any moment of time, water level in the vessel be H then speed of'flow of water
through the orifice, at that moment will be

v=V2gH ()
In the time interval df, the volume of water ejected through orifice,

dVe= svdt )
On the other hand, the volume of water in the vessel at time ¢ equals

V=SH
Differentiating (3) with respect to time,
av

dH
-Z--Sdt or dV=SdH )

Egs. (2) and (4)
SdH= svdt or dt= S_di from (2)
sV2gH’

R 0
. S dh
Ingring [ 5l &
[ k

Thus, tw :9_-\/_2_"_
s 8

In a rotating frame (with constant angular velocity) the Eulerian equation is
_.I

—Vp+p?+2p(7x5’+pmz?=pid%—

In the frame of rotating tube the liquid in the "column* is practically static because the
orifice is sufficiently small. Thus the Eulerian Eq. in projection form along 7 (which is
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1.325

1.326

the position vector of an arbitrary liquid element of lenth dr relative to the rotation axis)

reduces to
-dp ‘2
ar +pr=0
or, dp=p o’ rdr
P r
S0, f dp = pm)2 f rdr
Py (- k)
2
Thus p(r) = py + 2‘2—"— [ - -w’] )
Hence the pressure at the end B just before the orifice ie.
2 2
p() = po + - @A - ) @)

Then applying Bernoull’s theorem at the orifice for the points just inside and outside of
the end B

Po + —12-p o2 Qlh- h2) = p, + %p Vv ( where v is the sought velocity)

2y

v = oh h

So,

v = = — .
The Euler’s equation is p - f-Vp=-V(p+pge), Where z1is vertically upwards.

dv av > -
Now i (v:V) v )
= =21 2 — -
But v:V)v=V P -vxCurlv 03}

we consider the steady (i.c. av7 ot = 0) flow of an incompressible fluid then p = constant.

.and as the motion is irrotational Curl v=0

So from (1) and (2) p V( —;— vz) = - 6.(p +pg2)

or,

V(p+-;-pv2+pgz) =0

Hence p+-;-pv2+pgz = constant.

Let the velocity of water, flowing through A be v, and that through B be v, then discharging
rate through A= Q, = Sv, and similarly through B = S vp.

Now, force of reaction at A,

Fy= pQava= PSV3
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Hence, the net force,

2 2 =g = -?-‘—E.;E:T T
F=pS(vg-vy as F, t| Fy (€)) === /A
Applying Bernoulli’s theorem to the liquid ?_T_':-‘—‘_AL
flowing out of A we get =Ic- §.T

1 - o=

Po + Pgh = po + 3 PVa g i

and similarly at B S -:-_-_:_ - ;‘:.:.

1 B

Po + pg(h+AR) = py + 5 V3 ===

8 gty

Hence V5 - V) ‘;- = Ahpg T

=4

Thus F = 2pgSAh = 0-50N ==

Consider an element of height dy at a distance y from the top. The velocity of the fluid
coming out of the element is
v=V2gy

The force of reaction dF due to this is dF = pdA v2, as in the previous problem,
= p(bdy)2gy \
Integrating F=pgb f 2y dy
k-1
=pgb [~ (h-1*]= pgbl 2h-1)
(The slit runs from a depth 4 -/ to a depth 4 from the top.)
Let the velocity of water flowing through the tube at a certain instant of time be u, then

U= —Q—z, where Q is the rate of flow of water and & r* is the cross section area of the tube.
nr

From impulse momentum theorem, for the stream of water striking the tube comer, in
x—direction in the time interval d,

Fdt=-pQudt or F,= -pQu
and similarly, Fy= pQu
Therefore, the force exerted on the water stream
by the tube,
= i rad
F=-pQui+pQuj
According to third law, the reaction forcg on

the tube’s wall by the stream equals (- F) \
= = A\
=pQui-pQuj. == /AN
Hence, the sought moment of force about 0 oo
becomes — ==

-b- __—> —: 7»- —:&2 —>
N=Il(-i)x(pQui-pQuj)= pQulk nrzlk

- 2
and IN]= 2210 070 Nm
nr
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1.329 Suppose the radius at A is R and it decreases uniformaly to r at B where S = nR? and
s = 7. Assume also that the semi vectical angle at 0 is a. Then
R r y

L, L «x

So y=r+R_r (x - Ly
1

L,-L
where y is the radius at the point P distant x from the vertex O. Suppose the velocity with
which the liquid flows out is V at A, v at B and u at P. Then by the equation of continuity

TRV = nrly = nyzu
The velocity v of efflux is given by
v =V2gh

and Bernoulli’s theorem gives

Jll

||‘Fll|

"'
]

)

I'l
)

1, 1
Pty ol =pyt+ 5 pV

J

l|l

|
Vo

Iy
[ B]
|“)

|

where p, is the pressure at P and p, is the

atmospheric pressure which is the pressure just

outside of B. The force on the nozzle tending B f T T !
to pull it out is then

F =f (P, - pg) sin® 2nyds

We have subtracted p, which is the force due to atmosphenic pressure the factor sin 0

gives horizontal component of the force and ds is the length of the element of nozzle
surface, ds = dx sec 0 and

1
\

R-r
t:mf)an_L1
Thus
LZ
1.2 2 R-r
F fz(v u)p 2my L2_lex

Ll
R
A
-npftrz(l—7)ydy
y
r

4 2 _ 22

21 (2 2 1 2 (R” - r’)
-anE(R—r+R2"")'pgh( Z
= pgh (S-5)%/S = 602N on putting the values.

Note : If we try to calculate F from the momentum change of the liquid flowing out wi
will be wrong even as regards the sign of the force.

There is of course the effect of pressure at S and s but quantitative derivation of F fron
Newton’s law is difficult.
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1330 The Euler’s equation is pd—? - 7— Vp in the space fixed frame where ?— - pgl?

1.331

downward Wc assume incompressible fluid so p is constant.

Then f = - V (pg z) where z is the height vertically upwards from some fixed origin. We
go to rotating frame where the equation becomes

p%= —V(p+pgz)+pm27'+2p(17yxc_u)’)
the additional terms on the right are the well known coriolis and centrifugal forces. In the
frame rotating with the liquid v = 0so
‘?(p+ pgz—%poﬁrz) =0

or p+pgz-%pm2r2-constant
On the free surface p = constant, thus

z= ‘2”—8 7 + constant
If we choose the origin at point 7 = 0 (i.e. the axis) of the free surface then “cosntant” = 0 and

z= —r2 (The paraboloid of revolution)

At the bottom 2z = constant
So p= %pm2r2+ constant
If p = p, on the axis at the bottom, then

P=po+ % pw’r.

When the disc rotates the fuild in contact with, corotates but the fluid in contact with the
walls of the cavity does not rotate. A velocity gradient is then set up leading to viscous forces.

At a distance r from the axis the linear velocity is @ r so there is a velocity gradient

-(P’-'L both in the upper and lower clearance. The corresponding force on the element whose

radial width is dr is

n 2nrdr —— er (from the formular F = nA I )
The torque due to this force is
M 2mrdr ﬂh’; r
dnd the net torque considering both the upper and lower clearance is
R
()
2 { n2 P dr N
= nR*on/h

So power developed is
P= nR'o™/h=9-05 W (on putting the values).
(As instructed end effects i.e. rotation of fluid in the clearance 7 > R has been neglected.)
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1.332

1.333

Let us consider a coaxial cylinder of radius r and thickness dr, then force of friction or

viscous force on this elemental layer, F = in rin %

This force must be constant from layer to layer so that steady motion may be possible.

or, g- 2nindy. (6]
Integrating,
4
' ’ 2 \
Ff——-= 2nl'r]fdv R r R _?'
2 0 1 |
%
r A
or, Fln (—) =2nlnv ¥)) \
R,
Putting r= R,, we get

R,
Fin -R;; = 2niny,
From (2) by (3) we get,
Inr/R,
“InR,/R,
Note : The force F is supplied by the agency which tries to carry the inner cylinder with
velocity v, .

y=

(a) Let us consider an elemental cylinder of radius r and thickness dr then from Newton’s
formula

dw 2do
F=2nrinr ar - 2xlmr ar
and moment of this force acting on the element,

22 PIn®e, 2aPIne
N=2nr'ln drr—ZJtrlqdr

or, 2nlndm=N£§ ?2)
r

As in the previous problem N is constant when
conditions are steady

© r
d
Integrating, 2nin f do=N —r—;-
0 R,
N1 1
- | == 3
or, 2ninw Z[Ri ’2] (E)]
Putting r=R, o= 0,, we get

N[1 1
2rinwy= 5| —3-—>3 @
2[R1 Ry
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From (3) and (4),

R?R?
0=, 114, [1 1]

R-R|R 7
(b) From Eq. (4),
2 p2
N RiR;
Nl = —= 475 nw, o —
! R;-R;
1334 (a) Let dV be the volume flowing per second through the cylindrical shell of thickness

dl thcn’
dV - d 0 2 r I 4

and the total volume,

(b) Let, dE be the kinetic energy, within the above cylindrical shell. Then
dT = %-(dm) V= %(anldrp) v

. 2 3 5
= %(hlp)rdrv%{l—#} ulpvoir—%w’R—A]dr

Hence, total energy of the fluid,
R

37 AR p v}
T= nlpvﬁf(r—%-kéj)dr- __gp___o
0

(c) Here frictional force is the shearing force on the tube, exerted by the fluid, which

equals —T]S‘;—:.
Given, V=, (1 —%)
dy r
SO, ‘a—r= —2V0F
2v,
And at reR, 2. _Z%
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1.335

1.336

1.337

Then, viscous force is given by, F = —n (2x Rl) (%)
r= R

2y,
= -2nxRn! “RIl" 4nnv,yl
(d) Taking a cylindrical shell of thickness dr and radius r viscous force,
dv
F= - n (23't r I) dar’

Let Ap be the pressure difference, then net force on the element = Ap ©t P+2n nlr %

But, since the flow is steady, F,_,= 0

v

_2,;1&,1,-%"_ -2xnl nr(-2v°R2)
r

or, - = =4 I/R?
=7 " HAC

The loss of pressure head in travelling a distance / is seen from the middle section to be
hy— h;= 10 cm. Since h, - h; = h; in our problem and h;-hy=15cm =5 +h, - h; ,
we see that a pressure head of 5 cm remains incompensated and must be converted into
kinetic energy, the liquid flowing out. Thus

2
%= pgAh where Ah= hy- h,

Thus v=1yy 2gAh = 1 m/s

We know that, Reynold’s number (R,) is defined as, R, = p vI/m, where v is the velocity

1 is the characteristic length and m| the coefficient of viscosity. In the case of circular cross

section the chracteristic length is the diameter of cross-section d, and v is taken as average

velocity of flow of liquid.

pd; vy
mmn

Now, R ‘1 (Reynold’s number at x; from the pipe end) = where v, is the velocity

at distance x,

R

V. d,v

and similarly, R, = pd:‘, 2 so Re‘ zl—v}-
2V2

From equation of continuity, A; v, = A, v,
or, R vy= kv, or divyr = dyvyry
dv, r, rye
1 2_To -
d e e e e (s y-xy = AY)
2V 1 re

1

ThllS R_‘Z_- ean- 5

&

We know that Reynold’s number for turbulent flow is greater than that on laminar flow:

pvd 2pyviny 2pyvyry
Now, R)= —= ——— and (R),= ———=
( e)l M m ( e)t n
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But, (R), = (R),
- P1Vir1 M2

= Sum/s on ing the values.
2o P22 My " putting

so

vpod

We have R = and v is given by

4x
6anrve=2-r'(p-pog
(p = density of lead, p, = density of glycerine.)

‘9%.'(""’0)3'2' "181—“(9—90)8"2

V=

1 1 3
Thus 2= W(P-Po)gpod

and d=[9M%/py(p-py)g]”> = 52 mm on putting the values.

mﬂ- mg-6nxmrv
dr g n

dv 6zanr
or at m VT8

dv 6rmr
or dt+kv-g,k- -

vd ok K d k b

or e 7d7+ke ve= ge” or e v=ge
or ve¥ = %e*’+c or v= -i—+Ce'" (where C is const.)
Since ve 0 for t= o,o-%,uc
So C-—i-
Thus v= i—(l—e'h)

The steady state velocity is %

v differs from i- by n where e ¥=n

or t= —l-lnn
k

4n
1_ 3 rsP_ _4r2P_ _dzp
k 6xnr 187 187
We have neglected buoyancy in olive oil.

Thus

1687
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1.8 RELATIVISTIC MECHANICS

1.340 From the formula for length contraction

1Y
(Io‘lo V 1‘:3 )’ nk

2

1%
, l—c—z- (1-m)% or v=cVn(Z-n)

So

1.341 (a) In the frame in which the triangle is at rest the space coordinates of the vertices are

Vi 4 V3 a
(000), (aT,i-i',O) (a—i—’_E

frame the corresponding coordinates at time ¢’ are
A:(vﬂ,O,O),B:(%V?Tv1_B2 +V¢',%,0) and C:(%ﬁ\/i———f+ vt’,—%,O)

The perimeter P is then

,O), all measured at the same time ¢. In the moving

172

P= ‘“’2"(%(1-52)*‘%] = a(1+V4—3[52)

(b) The coordinates in the first frame are shown at time r. The coordinates in the moving
frame are,

(%Y 0)

A

(0,0,0) C (a,ojo)

A:(vt’,O,O),B:(EVI—BZ+vt’, aﬁ 0), C:(a\/l—ﬁ2 +vt’,0,0>

2 2

The perimeter P is then

P= aVI—ﬁ2+%[1-B2+3]V2x 2= a(Vl—ﬁ2+V4—|32> here B = 1:—

1.342 In the rest frame, the coordinates of the ends of the rod in terms of proper length /,
A :(0,0,0) B : (I, cosBy , I, sinf , 0)

at time . In the laboratory frame the coordinates at time ¢’ are

A:(v,0,0),B: (10 cosB, V1 - B2 +wr', I, sin8,, o)
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Therefore we can write,

Icos 8y = I, cos0, V1 - B2 and Isin 0= [;sinf,

Hence 102 - (12 ) (0032 0+ il—_ﬁgz ) Sin2 9) | B
1 - 1 9
” ) 1 'sf;;l A Y
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In the frame K in which the cone is at rest the coordinates of A are (0,0,0) and of B are
(h, h tan 6, 0). In the frame K’, which is moving with velocity v along the axis of the cone,

the coordinates of A and B at time ¢’ are
A:(-v,00),B: (m/l —B% - v, htan e,o)
Thus the taper angle in the frame K’ is
anb (_ Yp-Ya
Vv 1- 62 x’B - x'A
and the lateral surface area is,
S = wh'?seco’ tan®’

- a1 -p)—22 V1. B8 VI Fees’0
\/l_ﬂz 1-8

Here S, = = h? secO tanO is the lateral surface area in the rest frame and
KH=hV1-p2,B=v/c.

Because of time dilation, a moving clock reads less time. We write,

t-At= tV1-p*, B= -Z-

2
Thus, 1_%_._(%‘.) = l-ﬂz

or, v-cvéi(Z—é—t)
t t

In the frame K the length / of the rod is related to the time of flight Az by
l=vAt

tan @' =

In the reference frame fixed to the rod (frame K')the proper length /; of the rod is
given by

Io =y At,
l v At )4

- , B=
Vl_Bz VI_B2 ¢

But Iy=
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1.346

1.347

1.348

1.349

ThUS, VAL = v Ar
Vi-g?
At 2 Ar\2
So l—Bz-(E;) or v=_¢ 1—(-A7)

and Iy= c;V(At’)z— A’ = ¢ At"v 1- (%)2

The distance travelled in the laboratory frame of reference is vA r where v is the velocity
of the particle. But by time dilation

Ar, N ETeTVYi
At= ——— So v=cV1-(At At)2
V1 -v¥/¢? 4

Thus the distance traversed is

cAtV1 - (Aty/At)?

(a) If t, is the proper life time of the muon the life time in the moving frame is

and hence |= ———
V1 -v¥/¢3 V1 -1/

Thus Ty = Lisze
v
(The words "from the muon’s stand point" are not part of any standard terminology)

In the frame K in which the particles are at rest, their positions are A and B whose
coordinates may be taken as,

A : (0,0,0), B = (lo ’ 0) O)
In the frame K’ with respect to which K is moving with a velocity v the coordinates of
A and B at time ¢ in the moving frame are

A= (,00)B = (10\/1 —p +w, 0,0), B==

®

Suppose B hits a stationary target in K’ after
time ¢’y while A hits it after time ¢ + At. Then,

m-‘-

Io\ll—ﬂ2+vt’a- v(t'sg+ A1) /A
v At

So IN
’ 1-v2/c2

In the reference frame fixed to the ruler the rod is moving with a velocity v and suffers
Lorentz contraction. If l; is the proper length of the rod, its measured length will be

Av,= V1=, B=
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In the reference frame fixed to the rod the ruler suffers Lorentz contraction and we must
have

Ax, V1 -7 = |, thus I, = VAx, Ax,

and l—ﬁzaﬁor v-ch--é—x—l
Ax, Ax

2

The coordinates of the ends of the rods in the frame fixed to the left rod are shown.
The points B and D coincides when
c, -1
ly=c,-vty or t,= 19
The points A and E coincide when
vy c,+l,V1-p?
0=c,+,,V1-8%-w,, L= 1_o_v__ﬁ_
)
Thus At-tl—to-;o(lt\/l—ﬂz) A B8 D £
) -vt,00
N , 10,0,0) (Ly:00) (€ )
or (vl— - 1) =1-p2=1- v_2 (G+lo iR%-vt,00)
0 c
22 A/l 21/ At
From this Ve 5 - 3
1+EAY/E 1+ (Iy/c M)
In K|, the rest frame of the particles, the events corresponding to the decay of the particles

are,
A:(0,0,0,0) and (0,/, 0,0)= B

In the reference frame K, the corresponding coordintes are by Lorentz transformation

i
L — 00
-p?

A:(0,000),B:

vl
cz\/l—ﬂ2 , \/1
Now LV1-p% =1

by Lorentz Fitzgerald contraction formula. Thus the time lag of the decay time of B is

At viy vl vl
= = T 2 2
szl_ﬁz c“1-p) c“-v

B decays later (B is the forward particle in the direction of motion)

(a) In the reference frame K with respect to which the rod is moving with velocity v, the
coordinates of A and B are

A:t,x,+v(t-t,)0,0

B:t,xg+v(t-13),0,0
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1.353

Thus I=x,-x5-v(t,—tg) = [;V1 -

X, =Xxg—v(t, —1g)
Vi-v2/¢?

) = lp-vit, -ty = I=1,V1 -2/

(since x, — xg can be either +/;, or -1,)

Thus v(g,-tp)= (= 1-V1-V7/c, ),

1 + t
ie. f,—tp= ;“(1- 1-"—2)
C

I
or tg-t, = ;0,(1+V1—v2/c2)

At the instant the picture is taken the coordintes of A, B,A’, B’ in the rest frame of A B
are

So Ihy=

A:(0,0,0,0) Al g’
B:(0,1,0,0) ———o—
B':(0,0,0,0) 2’:—————9
A0, -1, V1 -3/ ,0,0) 5

In this frame the coordinates of B’ at other times are B': (1, t, 0, 0). So B’ is opposite to

]
B at time ¢ (B) = ;0. In the frame in which B’, A’ is at rest the time corresponding this

is by Lorentz tranformation.

Iy Vi l
P B)= —1——(3——29)- 2V
V
)
c

Similarly in the rest frame of A, B, te coordinates of A at other times are

A':(t,—lt-,VI—ﬁ2 +vt,0,0)
c
. . . by \/ v
A’ is opposite tu A at time ¢ (4) = ” 1-=
c

The corresponding time in the frame in which A’, B’ are at rest is

IO
tA)=yt@A)=

1.354 By Lorentz transformation ¢' = ———-1—( - _vxi)
2 c
14

1-—
(_‘2
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F V12

Ifx>0r <0, if x<0, ¢ >0 and we get the diagram given below "in terms of the K-clock".

SSCGI0NSS
- OOOOOOD®

The situation in terms of the K’ clock is reversed.

So at time t=0,t'=

1.355 Suppose x () is the locus of points in the frame K at which the readings of the clocks of
both reference system are permanently identical, then by Lorentz transformation

/= 1 t_Vx(t) -t
Vi-vZe 2

C

2 2
So differentiating x (1) = 5‘7(1- 1-2 )- S(1-vi-?), B- %’

? B
Let B=tanhO, 0< 6 <o, Then
c Vi-wnrile )= cos kO _ 1
x ()= umhe(l' 1 “‘“he) csinhe(l coshB)

CcoshB—l - /coshe—l - ctanhg <v
sinh 0 coshO+1 2

-(tan h 6 is a monotonically increasing function of 0)

1.356 We can take the coordinates of the two events to be
A:(0,0,0,0) B:(At,4a,0,0)

For B to be the effect and A to be cause we must have At > 1%[.

In the moving frame the coordinates of A and B become

A:(0,0,0,0),B:[y(m—gg), y(a-—VAx),0,0] where y=
c

Since
2
”

2_a- 2 _avy 1 2| 2
ar') 2 y[(At CZ) Cz(a VAt)] (Ar) c2>0

!
a
we must have Ar > Lc—l
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1.357 (a) The four-dimensional interval between A and B (assuming Ay = Az= 0) is :

52 - 3% = 16 units

Therefore the time interval between these two events in the reference frame in which the

events occurred at the same place is

c(Wy-r,)=V16 = 4m C*7
or tp-t,= %- %xlO'ss ;
(b) The four dimensional interval between 4
A and C is (assuming Ay = Az = 0) 3
3?-52=-16 2

So the distance between the two events in the frame [~ |A
in which they are simultaneous is 4 units = 4m. 0

1.358 By the velocity “addition formula

., W=V v},\ll-Vz/c2
G T V.V

1-
(,‘2 C2

2. .2 2,2
- 1-V</
and Vv = v’3+v’§-\[(v" V) +v,( )
_va
&2

1.359 (a) By definition the velocity of apporach is
dx, dx,
Vapproach ™ T—T- vl—("VZ)- VitV
in the reference frame K .
(b) The relative velocity is obtained by the transformation law
v,-(=v) vi+V,
1_"1(“’2) Lert2

—_— +
C C2

.V, =

1.360 The velocity of one of the rods in the reference frame fixed to the other rod is

V= vy 2v
V2 l+Bi
1+—§
c

The length of the moving rod in this frame is

42/ 1-p
l= lo'\/ 1-(“‘32)2 = lo1+t32

1.361 The approach velocity is defined by

- dr; dr, -
Vappmat:h= EI——Tit_' Vl— 2

. N
in the laboratory frame. So V, . o0n = vi +V)

1234 567

}g\!
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On the other hand, the relative velocity can be obtained by using the velocity addition
formula and has the components

1
Vi

The components of the velocity of the unstable particle in the frame K are

(v,v'\h-%,o)
C

!
so the velocity relative to X is y

1272
2. ,2 v'°V
'\/V vt

The life time in this frame dilates to

V2 vl2 vlzv2 $ I

C2 (4

vV
1v2
soV, = vi+v§- 3
c

and the distance traversed is
A VV2+ v12 _ (vl2 VZ)/CZ
'Vi-v¥/ & V1-v2/ 3
In the frame K’ the components of the velocity of the particle are

Vo vcos 8-V

* 1_vV:::os() ® @

. vsin®V1-V2/?

Vy= —
Y vV

1-—cos9 .

v

2
Vv ;
Hence, tan@' = —X= ﬂg—\'(l -V? )/c2 0
vcos0-V

Ve

In K' the coordinates of A and B are
A:(1,0,-v'¢,0,B:(t,],-v'1t,0)
After performing Lorentz transformation to the frame K we get

A:t=yr B:t= y(t’+v—2l)
C

x=yVe \x=y(I+V?)
\
y=Vvi y= -Vt
z=0 z=0

By translating ¢ — ¢ - Vl, we can write
y ng ‘;7

the coordinates of B as B:t= y¢t'
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1.365

2 ’
Thus Ax=1 1__V_ ,Ay=v¥I
2 c
Hence tan 0’ - vy
2 V’V
c 1-—
)
t l+dt ®
v v+ wdt

®

ey

V441 B

In K the velocities at time ¢ and ¢ + df are respectively v and v + wdt along x — axis which

- —>
is parallel to the vector V. In the frame K’ moving with velocity V with respect to K, the

velocities are respectively,

v-V v+wdt-V
Vand 7
1-5 1-(v+wd)
c c

The latter velocity is written as

v-V wdt v-V W—V-dts v-V .

+ +
\% |4 v 2 \'%4 2
l-v—= 1-v— |[1-— 1-v— 14
c &2 ( c‘z/) &2 (l_c‘z/)

Also by Lorentz transformation
dt - Vdx/c* P w/c?
V1-V/e V1-V¥/¢

Thus the acceleration in the K’ frame is

dt' =

372
ar v 3 2
2]

() In the K frame the velocities of the particle at the time ¢ and ¢+ di are repectively

(0, v, 0) and (0, v + wdt, 0)

—
where V is along x-axis. In the K’ frame the velocities are

(- V,vV1-V*/& ,o)

and (— V,(v+wd)V1- V/c? , 0) respectively
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Thus the acceleration
. watV(1- VD) (
W= ————= wi|l
dt
dt
V1-v/e

In the instantaneous rest frame v= V and
w = — __ (from 1.365a)

- ﬁz) along the y-axis.
c

We have used df' =

1-—
-5
So, _d_vm- w dt
VZ
1__.
C2

w’ is constant by assumption. Thus integration gives
w't

2 ! \2
Integrating once again x = f-v'- ( 1+ %—t —1)

The boost time T, in the reference frame fixed to the rocket is related to the time T elapsed

on the earth by
172

T T (ﬂ)z
zo-f\/l_ﬁ dr-f -~ | 4

¢ (w't)

0 0 1+ (2L

(W tVe

=f w‘)._f@._m

m=
Vi-g
For B =1 LI ml - Vf:l
’ mo - n
We define the density p in the frame K in such a way that p dc dydz is the rest mass

dm,, of the element. That is p dx dy dz = p, dx,dy, dz, , where p,, is the proper density
dx,, dy,, dz, are the dimensions of the element in the rest frame K Now

dy= dy,, dz= dz,, dx= dxo\/l_!;
[+
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1.370

1371

1.372

if the frame K is moving with velocity, v relative to the frame K. Thus

Po
P
1-5
c
Defining 1 by p= py(1+n)
2
We get 1+n=_;_ or, %_1_ 1 5= 7](2'”12)
2 c (1+m)® (1+m)
1-3
C
or \/n(2+n) cVn2+m)
1 +n)’ 14m
We have
myv ' 1/ 2
—2 — -p o L
¥ c?
Vi-2 V1-—
2
2 2 2 2
or l'il' 2mg '1"2p22
¢ mic+p* P +mye
C
P C
or v=
Vp?+mie 2" \/ myc\2
1+|—
p
-12
2 o\
- myc
So Las 1-(1+(%) ] xlOO%-—;-(—;—)XIOO%
By definition of n),
myv v

=1nmyv or 1- -—1-
0 e 712

1%
1-=5
C

or v-ch——l—f-ﬁVnz—l
n

The work done is equal to change in kinetic energy which is different in the two cases
Classically i.e. in nonrelativistic mechanics, the change in kinetic energy is

> my ¢ (08 - (06)°) = 2y 2028 = 014 my c?
Relativistically it is, -
mO C2 mO C2 mO C2 mO C2

= myc? (1-666 - 1:250)

Vi-08? Vi-@e? 06 08

= 0416 myc® = 0-42my ¢
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myc
0
= 2moc2

1-

GN | <N

or 1-—;

\4
or —-
[

Relativistically

But Classically, = — s0 == 7= €

Hence if 5 <3E

the velocity B is given by the classical formula with an error less than €.

From the formula

\/h—_ﬁ

we find E*= P emic or (myt+ T = *p*+mict
or T(2m0c2+T)=c2p ie. p= VT(2m0c2+T)

Let the total force exerted by the beam on the target surface be F and the power liberated
there be P. Then, using the result of the previous problem we see

F=Np= %’fr(r»f 2myc?) = é VT (T +2myc?)
since I = Ne, N being the number of particles striking the target per second. Also,

2
mycC
P=N|— —m0c2]= fr

Vi-v?*/

These will be, respectively, equal to the pressure and power developed per unit area of
the target if I is current density.
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1.377 In the frame fixed to the sphere :- The momentum transferred to the eastically scatterred

particle is
2 my
v
1 ——
&2
The density of the moving element is, from 1.369, n 1
e
&2
and the momentum transferred per unit time per unit area is
2my 1 2 mnv?
D = the pressure = n cv= 3
Vi2 Vi 1-5
1-— 1-— 2
(:2 c2 c

In the frame fixed to the gas :- When the sphere hits a stationary particle, the latter recoils
with a velocity

v+ 2v
1+v l+v
3 2
m2y
The momentum transferred is 1+v/e = 2 mvz
) 4%/ 1-%
1=+ Je) )2 c
. 2mv 2 mm/?
and the pressure is ——'n:v= ——
v v
1- 1-
3 3
1.378 The equation of motion is
d myv
= =F
dt
1 -——
&
F
Integrating = vie . B = ——, using v=0 for t= 0
ViZ R
1 - —
2
2 2 1) Fct
_ﬁ__z, Fr or, B?= 2(F) 5 o, Ve e
1-p myc (Ft)* + (mg c) V(myc)* + (Ft)

Fet dt cf EdE CVEE+me 2 +c6
or x= | —m—m————=— == +m; ¢ + constant
VF2t2+mo§c2 F \'1§2+(m‘,c)2 F o

my c2)2 my 2

. 2.2
orusing x= 0 at t= 0, we get, x= c‘t +( F F
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- 2
VZiz, . c“t
1379 x= Va*+c tz, SO X=y= ———
a+c’t
2 2
v myv m,c
or, - s (2 )LD
2 a dt ) a
v v
1"'—5 1_—2'
c c
.
1.380 _’_ii_ myv v Vs 1
= ——|=my———=+my—5 vV
dr > 0 2 ¥
2 c 2
v v v
1-— 1-- 1-—%
c c c
—>
- .
Thus Fi=myos, W= v, W,V
1-8

1.381 By definition,

2 3
c myc” dt Ve cmydx
E= MOF= s y Pe= My = 7
l—y-Ji 1_."3
e ¢

where ds® = c>df - dx? is the invariant interval (dy = dz= 0)

Thus oo Y (dx-Vi) P~ VE/S
S Y 7
v,
dr s E-V
E’-mocsz-csmoy - - Py,
M
c2

1.382 For a photon moving in the x direction
€= cp,, p=p,= 0,

ey 1 1-P 3 .3
Note that € 21f,4 1+6 or B 5,V 5"
1.383 As before
dt dx
E= mocsa,px- moc o
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dz
=myc -

Similarly Py=mc d s

. P
Then Ez-czpzs Ez—cz(pi+p§+p,2‘)

2 c* (c%f-dfd; dy*-d?) 4, 4

= myc is invariant

1384 (b) & (a) In the CM frame, the total momentum is zero, Thus
P, VI(T+ 2m0 ¢’ /
T E+E, T+ 2m, ¢ T+ Zm0

where we have used the result of probiem (1.375)

Then
1 1 1 /T+2moc2
Vi-v2 L/ ?
1

°I<

T 2my c
T+2m, ?
. Total energy in the CM frame is

2m, c* 1/T+2mc2
= 2 \/Zmoc(T+2mc)-T+2mc

Vi-V2

So T=2m,c? \/ 1+—T-7 -1
2myc

Also 2 cZﬁQ+m(2)c4 = V2m0C2(T+2’”062) , 4c’p*=2my T, or p= V %moT
1.385 M0c2= 1/Ez_czp"z
\/(2m0c2+1')2—T(2m0c2+T) = \/2m0c2(2m0c2+T) = c\/2m0(2m0c2+1')

Also cp= \/T(T+2mo v= ——E-c S -

T +2myc?

1.386 Let T' = kinetic energy of a proton striking another stationary particle of the same rest
mass. Then, combined kinetic energy in the CM frame

’ 2 !
-2m0c2( 141 2—1)-2T, (—T—5+1)=1+ T
N m,C

2
2my c N 2my ¢

T’ _'T(2m0c2+T) e 2T (T +2m, c*)

3= 2 4 ’ V)
2m, c myc myc
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1.387 We have
E\+Ey+Ey~ myc?, pr+py+p3=0

Hence (m, - El)2 - czf’f = (E,+ E3)2 - (ﬁ;+f; )2 &
The LHS. = (myc*-E)*-c*pi= (mi+md)c*-2myc*E,

The R.H.S. is an invariant. We can evaluate it in any frame. Choose the CM frame of the
particles 2 and 3.

In this frame RH.S. = (E', + E'))’ = (my 4 my)* ¢*
Thus  (m+m?) c* - 2my ?E, = (m, + m;)* c*

”’o + m1 (m, + m3)
2my,

or 2myc’E,s {m§+mf—(m2+m3)2}c4, or E <

1.388 The velocity of ejected gases is u realtive to the rocket. In an earth centred frame it is

v-u
vu
1-
P

in the direction of the rocket. The momentum conservation equation then reads

(m+dm) (v +dv) + v-uv (-dm)= mv

1__

or mdy - ( vldm=0

Here - dm is the mass of the ejected gases. so

uv?
—u+ 2 W2
mdy - ———dm = 0, or mdv+u( )dm=0
1-% ¢’
C
(neglecting 1 — — since u is non- relativistic.)
Integrating (B = !), f—— = 0, ln +ZInm = constant
c ﬁ c
The constant = <1n my since § = O initially.
[o4
w'c
m
u/c 1-1—
1-8 m my
Thus 1+6 = ('”o) or B we



