PART TWO

THERMODYNAMICS AND MOLECULAR PHYSICS

2.1 EQUATION OF THE GAS STATE « PROCESSES
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Let m, and m, be the masses of the gas in the vessel before and after the gas is releaseds
Hence mass of the gas released,

Am = m; -m,
Now from ideal gas equation

R R
p V= mlHTo and p,V= ’"2A7T°

as V and T are same before and after the release of the gas.

R R
s, (pl_PZ)V= (ml-mz)ﬁro= AmﬁTO
P1-P)VM  pApVM
or, Am = R TO -= R To (1)
R M P
We also know p= p—T 50, == — o
P=PuM RT,” b, ®

(where p,= standard atmospheric pressure and T, = 273 K)
From Egs. (1) and (2) we get
Am = pV-yl= 1-3x30x%= 30g
Po 1
Let m, be the mass of the gas enclosed.
Then, V=V, RT

When heated, some gas, passes into the evacuated vessel till préssure difference becomes
Ap. Let p’, and p’, be the pressure on the two sides of the valve. Then
p V=V |RT, and

pyV=vVv,RT)= (v,-Vv')RT,
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But, p-ph=Ap
So, ps= (% - %%AE)T 2
= !% -p,-Ap
or, Py = —;—(PIT]TZ - Ap) = 0-08 atm

Let the mixture contain v; and v, moles of H, and H, respectively. If molecular weights
of H, and H, are M, and M), then respective masses in the mixture are equal to
my=v, M, and m,= v, M,
Therefore, for the total mass of the mixture we get,
m=mi+my or m=v, M +v,M, (6]
Also, if v is the total number of moles of the mixture in the vessels, then we know,
V=V +V, )

Solving (1) ‘and (2) for v, and v,, we get,

(vM,-m) m-vM,
it oM, 0 2T M- M,
vM,-m) (m-vM)

Therefore, we get m; = M, - and my =

M,-M, 2M,-M,
m, M, (VM,-m)
% m, M,(m-vM)
One can also express the above result in terms of the effective molecular weight M of the
mixture, defined as,
RT
pv
m M M,-M 1-M/M,

Thus, m,” M, M-M; M/M,-1

m
M=—=m
v

Using the data and table, we get :

m,
M= 30g and, —= 0-50
my
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2.4 We know, for the mixture, N, and CO, (being regarded as ideal gases, their mixture too

2.5

behaves like an ideal gas)
pV=vRT, so p,V=vRT

where, v is the total number of moles of the gases (mixture) present and V is the volume
of the vessel. If v, and v, are number of moles of N, and CO, respectively present in

the mixture, then
Vv = Vl + V2

Now number of moles of N, and CO, is, by definition, given by

m, )
vy= —and, v,= —
M, M,

where, m, is the mass of N, (Moleculer weight = M) in the mixture and m, is the mass
of CO, (Molecular weight = M) in the mixture.

Therefore density of the mixture is given by
m+m, m+m,
P="v " GRI/P,)

_ P mtmy Po(my + my) M, M,
RT v;+v, RT(m M,+m,M,)

= 1:5kg/m> on substitution

(a) The mixture contains v;,v, and v; moles of O,, N, and CO, respectively. Then the
total number of moles of the mixture
V= vi+V,+V;
We know, ideal gas equation for the mixture
vRT

pV=vRT or p= v

(vi+Vv,+Vv3)RT

v = 1-968 atm on substitution

or,

(b) Mass of oxygen (O,) present in the mixture : m; = v; M,
Mass of nitrogen (N,) present in the mixture : m, = v, M,

. Mass of carbon dioxide (CO,) present in the mixture : my = v3 M,

So, mass of the mixture

m=m +my+my= v, M, +v, M, +v; My

mass of the mixture
total number of moles

Moleculer mass of the mixture : M =

- vy M+ vy My + vy M,

= 36-7 g/mol. on substitution
‘Vl + Vz + V3
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Let p, and p, be the pressure in the upper and lower part of the cylinder respectively at
temperature T, At the equilibrium position for the piston :

pS+mg=p,S or, p + ng—- P; (m is the mass of the piston.)

RT,
But p, = W% (where Vj is the initial volume of the lower part)

W STV A

Let T be the sought temperature and at this temperature the volume of the lower part
becomes V', then according to the problem the volume of the upper part becomes 1y V'

Hence, mg 51 (1 - —17) )

RT, RT, RT,
So, o e, 0 IR, °(1-l) )

S Vv n
From (1) and (2).

r (1 - l) v
RTy ¢ 1\ RT 1 o M
—1-=|= —|1-=| of, T'= —————
Vo n v n
As, the total volume must be constant,

Vo(l+m)=V' (1+%') or, V=

Putting the value of V' in Eq. (3), we get
1 (1+m)
To (1 _ n) o)
1
(i)

T =

T’ - )n’
M *-1n
Let p, be the density after the first stroke. The the mass remains constant

om VO
17 (v+AY)
Similarly, if p, is the density after second stroke

= 0-42kK

Vp' (V+Av)p1! or,

2

| 4 | 4
Voy= (V+AV)p, or, py= (V+AV) Pr= (V+AV) Po
In this way after nth stroke.

n

- |4
Pn= \Viav| Po

Since pressure o density,
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n

v ;
p,= (V+ AV) P, (because temperature is constant.)

It is required by E to be 1
Do n

s (VY o (veany
’ n- |lveavy] &M v
chCC n=—1n—%—‘,—7—-
ln(1+—)
v

From the ideal gas equation p = %-R—J

dp _ RT dm @
d MV dt

In each stroke, volume v of the gas is ejected, where v is given by

In case of continuous ejection, if (m, _,) corresponds to mass of gas in the vessel at time
t, then m, is the mass at time ¢ + At, where A, is the time in which volume v of the gas

.. v,
has come out. The rate of evacuation is therefore — i.e.

At
ce Y. _ \%4 _m(t+ Atf) - m(1)
At m(t + Ar) At
In the limit At - 0, we get
V dm
Cwma @
From (1) and (2)
dp__CmRT__C @ _<C
&~ Vmv - TVP o Ty
PU 0
i dp _ __C_f p__¢C
Integrating f 7 v dt or In . V!
Y4 t
Thus p=pye Y

Let p be the instantaneous density, then instantancous mass = V. In a short interval df

the volume is increased by Cdt.
So, ’ Vo= (V+Cdt) (p +dp)
(because mass remains constant in a short interval dr)
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g__C
5 th

Since pressure a density gf-- - g‘;dt

e <,
or » V’
P,
or t-zln&- Zlnl— 1-0 min
cC p C
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2.10 The physical system consists of one mole of gas confined in the smooth vertical tube. Let
m, and m, be the masses of upper and lower pistons and S, and S, are their respective

areas.
For the lower piston
pPS,+myg=p,S,+T,

or, T=(p-py)S,+myg 1)

SO

Similarly for the upper piston

PSS +T+mg=pS,,

or, T=(p-p))S,-mg )
From (1) and (2)

A

14 'Po) (Sl ‘Sz) = (’"1 + ’"2) 13
or, P-py)AS=mg
m
so, p= ZS& + p, = constant

From the gas law, pV= vRT
PAV=vRAT (because p is constant)

So, (p0+—'1;—’S5)A/sz=RAT,
Hence, AT= Il—z(poAS+mg)I-0'9K

2

R
2 () p=Po—aV2=po-a(7

(as, V= RT/p for one mole of gas)

’rhus’ R\/—P vp R\/_ 'PoP p

_d_(PoP2 —p3)

must be zero
dp

For T_,,

2
R
///4;
[/
14 gj/
fATf
Y 7
I8 Y
q4°F
1

)
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2.12

2.13

. . 2
which yields, P=3Po
1 2 1 / 2 2 (Po 1 /Po
Hence, T = ——= P L L
ENCe max R\/(; 3P0 Do 3P0 3(R) 3a
(®) p=pye PV = pje PXT?
so w-ln&, andT--B—lnl—’g
p p BR ~ p
<o, dT . .
For T, the condition is 2;- 0, which yields
P
P ="
Hence using this value of p in Eq. (1), we get
P,
Tmax = eBR

2 2
T= T0+aV2- T0+aR—rpT

(as, V= RT/p for one mole of gas)

So, p=VaRT(T-T)"?
For Puin » % =0, which gives
T = 2To

From (1) and (2), we get,
pmin- \/G—R ZTO (ZTO = TO)_I_/2- 2RVQ io

)

)

@)

)

Consider a thin layer at a height & and thickness dh. Let p and dp + p be the pressure on
the two sides of the layer. The mass of the layer is Sdhp. Equating vertical downward

force to the upward force acting on the layer.
Sdhpg+(p+dp)S=pS

@ __
S0 =P8 ® \ |(pede)s
A
But, p= L RT, we have dp = ﬁd]‘, Ty
M M sdhg |P:
B yro h SRS
o, - MdT- pgdh
a _ _sM _ _
So, ah R 34 K/km

. That means, temperature of air drops by 34°C at a height of 1 km above bottom.



2.14 We have ap = - pg (See 2.13)

2.15

2.16

> dh

But, from p= Cp" (where C is, a const) %%- Cnp"!

We have from gas low p=p %T, so using (2)

Cp'= p—R—-T, or T= %Cp”'1

M
ar M =2

Thus, d—p——'ﬁ* C(n—l)p
But, dr_ dT dp dp

dh dp dp dh

E A_l n-2 1 —Mg !n = 1!
SO, dh RC(”'l)P Cn n—l(_pg) nR
We have, dp = - p g dh and from gas law p = 11;—/;: P
g _ Mg
Thus RT dh
Integrating, we get
» h
Mg f e, _Me
or, f P RT dh or, lnpo RT h,
2, 0

(where p, is the pressure at the surface of the Earth.)

p= Poe—Mgh/RT, )
[Under standard condition, p,= 1 atm, T= 273K

/

Pressure at a height of 5 atm = 1 x ¢~ 2*¥81x5000/8314x2B _ .5 atm.
Pressure in a mine at a depth of 5 km = 1 x g~ B*%81x(=3000VBUXIB _ 5 447

We have dp = - pg dh but from gas law p = }\%RT’
Thus dp = ‘—IAE-RT at const. temperature

dp _gM
So, RT dh

P
[ h
Integrating within limits f ap_ f EM
P RT
0

Py

191
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p__gM
or, In Py RT h
RT
So, p=poe MR gnd ha - 1n £
P Mg po

(a) Given T= 273°K, %9'- e

Thus h--%lne‘1=8hn.

() T = 273°K and

PP _ 001 or £ = 099
Po Po

Thus hu 2L 10 L . 009km onsubstitution

Mg " p,
From the Barometric formula, we have

P=pp o~ Meh/RT
- M

and from gas law P= "7

So, at constant temperature from these two Egs.

Mpy  _ sgnrr Mg h/RT
2 — e - 1

P =pPoe

Eq. (1) shows that density varies with height in the same manner as pressure. Let us
consider the mass element of the gas contained in the coltmn.

M,
dm= p (Sdh) = T’;‘le"’f"f‘"sah

Hence the sought mass,
]

Mp,§ f - Mg W/RT PoS - Mg h/RT
=z J € dh = p (1—e )
0

As the gravitational field is constant the centre of gravity and the centre of mass are same.
The location of C.M.

fhdm fhpdh
h=2

- 0
fdm fpdh
0 0

But from Barometric formula and gas law p= p,e

- Mg h/RT
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a

fh(e‘”‘m") dh

0 RT

a = Mg
f(e—Mgh/RT) dh
0

2.19 (a) We know that the variation of pressure with height of a fluid is given by :

So, h=

dp=-pgdh
But from gas law p= LRT or p= 2
M ’ RT
From these two Egs.

dp=-%sdh )
dp _-Mgdh

o5 P RT,(1-ah)

h
, dp _ -Mg f dh

Integrating, » = RT, (1 - ahy we get

0

)

2 = In(1 - an)Ms/R%
Py

Hence, Pp=py(1-ah) Mg/aRT,  Obvionsly & < %

(b) Proceed up to Eq. (1) of part (a), and then put T = T, (1 + a h) and proceed further
in the same fashion to get

§ )
= T \Mp/aRT,
4 (1 + ah)"& %%

2.20 Let us consider the mass element of the gas
(thin layer) in the cylinder at a distance r from )
its open end as shown in the figure.

Using Newton’s second law for the element : A N
2 J

F,= mw,; X

(p+dp)S-pS= (pSdr)w’r

M
dp= pw?rdr=E%p?
o, dp=pwrdr RT® rdr
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r
dp_ Mo’ f dp _ Mo’
So, » RT rdr or, o = “RT
2
pP_Mo® ; - oMo' F2RT
Thus, lnpo >RT  °b P=Poe

= ..E.

So, p= 0082 x 300 x -57212 atms = 279-5 atmosphere

For Vander Waal gas Eq.

(p'!-%) (V-vb)= vRT, whereV = vV,

vRT av? mRT/M am®

TVVETVIT T Tms VI
M

V-

- PRT _ 749— 79-2 atm

" M- pb
222 (a) p= { (1 )- —_
Vu
(The pressure is less for a Vander Waal gas than for an ideal gas)
a(l+m) 1+I| NVyt+b
or, = RT|— = RT—7—=
£ VM Vy-b Vu(Vy-b)

- a(l+m)(Vy,-b)
RV, 0V, +b)

or,

, (here V,, is the molar volume.)

_ 135 x11x(1-0039)
0-082 x (0-139)
(b) The corresponding pressure is

pu KT RT a a(l+m) a
V-5 VZT VVy+B) V2

= 125K

a VutnVy-nV,-b) _a_(VM-b)
. V2 M VM"'b) V:, (VM*‘b)

135 " 0-961
1 0139

=~ 9-3 atm
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1 a 1 a
223 p;= RT, V_b V2’ py= Rsz‘Vj
So, PPy = V—_bl‘
R(T,-T, R(T,-T.
or, V—b-—(-—z—i) o, b= V——(—"‘——--2
P-py P2=Py
P-P1 a
Also, =T, -,
P 1T,-1,” V2
a _ T,(p,-p) —py = Iip,-p T,
vz h,-T, ! -1
or, g 2 PP T

2.24 p= V_b—Vj'

225

TZ - Tl
Using T, = 300K, p, = 90 atms, T, = 350K, p,= 110 atm, V= 0-250 litre

a= 1-87 atm. litre2/mole?, b = 0-045 litre/mole

RT _a _ () _ RIV 2
“\av),T w-bp V2
T

? Vi),

_[RTV’-2a(v-0)?] _ V3(V-b)
V2 (V- b)? [Rrv3-2a(v-b)2]

For an ideal gas x, = s

835 ¥o= RT

VbR [ 2aW-b2| b 2 by |
Now xS0y 200 o B2

-Ko{l——z‘?+z%},toleading order in @, b

Now K>k, if R2-I-—‘.Iv>% or T<-B‘-1R-

If a, b do not vary much with temperature, then the effect at high temperature is clearly
determined by b and its effect is repulsive so compressibility is less.
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2.2 THE FIRST LAW OF THERMODYNAMICS. HEAT CAPACITY

2.26 Internal energy of air, treating as an ideal gas
m m R |4
UBMCVT-My-IT—y—l @

. . G,
Using Cy since C, - Cy = R and c. =V

-1’ v
Thus at constant pressure U = constant, because the volume of the room is a constant.
Puting the value of p=p_, and V in Eq. (1), we gct U =10 MJ.
2.27 From energy conservation

1 2
U + E(VM)V =U;

or, AU = %VM v (6]
But from U = VYRT1 , AU = YVRI AT (trom the previous problem) 2)
Hence from Egs. (1) and (2).
2
AT = My Z(Rx -1)

2.28 On opening the valve, the air will flow from the vesscl at heigher pressure to the vessel
at lower pressure till both vessels have the same air pressure. If this air pressure is p, the
total volume of the air in the two vessels will be (V, +V,). Also if v, and v, be the

number of moles of air initially in the two vessels, we have

p1Vi=Vv,RT, and p,V,= v, RT, M
After the air is mixed up, the total number of moles are (v; + v,) and the mixture is at
temperature T.
Hence p(Vi+ V)= (vi+V))RT )

Let us look at the two portions of air as one single system. Since this system is contained
in a thermally insulated vessel, no heat exchange is involved in the process. That is, total
heat transfer for the combined system Q@ = 0

Moreover, this combined system does not perform mechanical work either. The walls of
the containers are rigid and there are no pistons etc to be pushed, looking at the total
system, we know A = 0.

Hence, internal energy of the combined system does not change in the process. Initially
energy of the combined system is equal to the sum of internal energies of the two portions
of air :

v;RT, v,RT,

y-1 " y-1 ®)

U= U, +U,=
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Final internal energy of (n, + n,) moles of air at temperature T is given by

(vi + V) RT
Uf - y-1 4
Therefore, U; = U; implies :
T= "17'1'“'27‘2= pVi+p v, - T T Vit V,
vi+V, e V/T)+ 0, V,/T)) 172p, VT +p,V,T,

From (2), therefore, final pressure is given by :

WitV . R _pVipV,
P yv, R= gy, il = =1+

This process in an example of free adiabatic expansion of ideal gas.

2.29 By the first law of thermodynamics,

O=AU+A
Here A = 0, as the volume remains constant,
vR

So, Q= AU= y-lAT
From gas law, poV=VvRT,

P VAT
So, AU= -———=-025K

T,(vy-1)

Hence amount of heat lost = — AU = 0.25 kJ
2.30 By the first law of thermodynamics Q= AU +A

= AV- i
But AU P—_y—l 7-1 (as p is constant)
- A 1A 14 o,
Q_Y-1+A-Y—1-1'4-1X2 77

2.31 Under isobaric process A= pAV= RAT(as v=1)= 0-6 kJ
From the first law of thermodynamics
AU= Q-A= Q-RAT=1K]

Again increment in internal energy AU = RAT , forv=1

RAT 0

Thus Q-RAT= y-1 Y=m=

16

2.32 Let v = 2 moles of the gas. In the first phase, under isochoric process, A; = 0, therefore
from gas law if pressure is reduced n times so that temperature i.c. new temperature
becomes T/n.

Now from first law of thermodynamics

vRAT
-1

Q,= AU, =
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y-1

" niy-1)
During the second phase (under isobaric process),

A,= pAV= vR AT
Thus from first law of thermodynamics :

vR AT

VR (T,, ) vRT,(1-n)
ARAl]

Q= AU, +A, = -1 + VRAT

-1

Ty
VR TO'“,T Y VRT,(n-1)y

Y-1 T G-
Hence the total amount of heat absorbed

Q=0 +0)=

VRT,(1-n) vRT,(n-1)y

ny-1) T nQy
VRT,(n-1)y
RS

2.33 Total no. of moles of the mixture v = v, +v,

At a certain temperature, U= U, +U, or vCy= v, C‘,l +v, CVz

R R )
v,

Vi
v1CV‘+v2CV1 ( -1

«1)

(-1+y)= vRTo(l—-:;)

Y- 1

Thus Cy= > = =

v,C, +v,C
Similarly C,= —-——"—V—”

V111 Cy + V372 Cy,

v "‘"_‘YIR + V. YZR
1Y1-1 2

Y -1

v 14

c vl—-———-Yl R+v, Yzl
et Yl- ‘YZ_

Thus

R

Y'c"- v 5ol g
Ly -1 2y,-1

- Vi (=D +vy7,(1,-1)

Vi =1 +vy (v, - 1)
23 Yrom the previous problem

Vl‘:{';_—l'+‘v2':{—

Cy= 2 . 152¥/mole. K

‘Vl‘\' Na
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v -——YIR +v ———YZR
by, =17 2y,-1
and c,= h Y2 o 2385 1/mole.K
; Total mass 20+7
Now molar mass of the mixture (M) Total number of moles ~ 1 1 36
2 4
Cy [N
Hence Cy= 3= 0-42J/g K and ¢, = oM 0-66J/g'K

2.35 Let S be the area of the piston and F be the force exerted by the external agent.
Then, F+pS = p,S (Fig.) at an arbitrary instant of time. Here p is the pressure at the
instant the volume is V. (Initially the pressure inside is py)
LA

A (Work done by the agent)= f Fdx

Vn
nv, v F
- [ @o-ps-ae= [ @o-prav sl ||
% %
K nY TPS v
=Po(’]“l)Vo"deV"Po("]'l)Vo"f"RT'dVV
VO Vo

= M-1)p, V- nRT Inn = (n~1)VRT-vRT In7
= VRT(n-1-Inm)= RT(n -1 -1Inmn) (For v= 1mole)
2.36 Let the agent move the piston to the right by~ x. In equilibirium position,
P1S+F = p,S, o, Fo.,=@,-p)S
Work done by the agent in an infinitesmal change dx is
Fogens* X =~ (py = py) Sdx = (p, - p)) dV
By applying pV = constant, for the two parts,
p1(Vy+8x)= p, V,, and p,(V,-Sx) = p, V,
DoV 25x - 2o VoV
V-5 VAoV

So, Py-p1= (where Sx= V)

When the volume of the left end is 1 times the volume of the right end

-1
(Vo+ V)= (V,=V), or, V= :”Vo
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v |4
2p, Vo, V
A=f<Pz-Px>dV-f 77 4V = -povo[mV:-Vz)]V
0 A Vo -V 0

= -povo[ln(vg-vz)-lnvg]
- -povo[m{vg-(—rl—'—%)vg}-mvg]
N+l
4 (m+1)?
-—pOVO(ln(n+l)2)=p0VOln n

2.37 In the isothermal process, heat transfer to the gas is given by

Q,= VRT, lnYE- vRT,In For -KZ---P—1
1 oy, oM " V," p,
In the isochoric process, A = 0
Thus heat transfer to the gas is given by
VR R
Q,= AU= vCy,AT= y-lAT (for Cy= Y-l)
But &5- orTTgl— n T, forngl—
pp T °p, 0 P,
VR
or, AT=nT,-Tp= n-1)T; so, Q,= _1-(7|—1)T0
Thus, net heat transfer to the gas
0- vRTolnn+YV_R1 sm-1)T,
£ _ n-1 L2 jinen=t
or, “RT, ]nn+y_1, or, RT, Inn S =1
n-1 6-1
or, =14+ =1+ = 14
Y Q oy 80x10° ) |
VRT, 3x8314x273

2.38 (a) From ideal gas law p = (-‘%’Ii T = kT |where k= !‘Ili

For isochoric process, obviously k = constant, thus p = kT, represents a straight line passing

through the origin and its slope becomes k.

For isobaric process p = constant, thus on p — T curve, it is a horizontal straight line parallel

to T - axis, if T is along horizontal (or x - axis)

For isothermal process, T = constant, thus on p — T curve, it represents a vertical straight

line if T is taken along horizontal (or x - axis)

For adiabatic process T"p'~"

After diffrentiating, we get (1-y)p Ydp-T +yp' -1 " .dT= 0

= constant
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B 5o ) 7 )- ()2

The approximate plots of isochoric, isobaric, isothermal, and adiabatic processess are drawn
in the answersheet.
(b) As p is not considered as variable, we have from ideal gas law

Ve R 1o v T(where k = 2R
P P

On V - T co-ordinate system let us, take T along x - axis.

For isochoric process V = constant, thus k' = constant and V= k'T obviously represents a
straight line pasing through the origin of the co-ordinate system and k' is its slope.

For isothermal process T = constant. Thus on the stated co- ordinate system it represents
a straight line parallel to the V - axis.

For adiabatic process TV'™ ! = constant

After differentiating, we get (y - 1) V'~ 2dV-T+ V'~ 'dT= 0
v _ (_1_ X
ar - " |y- 1) T

The approximate plots of isochoric, isobaric, isothermal and adiabatic processess are drawn

in the answer sheet.

According to T - p relation in adiabatic process, T' = kp"~! (where k= constant)
-1
T, ) P2 ! T P2
and =| = |= So, —=n""!{for n=—=

Py Ty 1
Hence T=T,7 L;—l = 290 x 10014- 14 056 kK

(b) Using the solution of part (a), sought work done

VRT,
VRAT V70 (n(" Wr 1) = 5:61kJ (on substitution)

A= y-1 y-1

Let (pg, V, Ty) be the initial state of the gas.

-vRAT
vy-1

But from the equation TV ™' = constant, we get AT = T, (71 -1 1)

-vRr, (11 -1)
y-1

We know A, = (work done by the gas)

Thus A ™

On the other hand, we know A, = vRT,In (%) = -vR T,Inn (work done by the gas)

Aadia ILY_I—I 504-1
A, (¢-1)lam 04xInS

Thus 1-4
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241 Since here the piston is conducting and it is moved slowly the temperature on the two
sides increases and maintained at the same value.

Elementary work done by the agent = Work done in compression - Work done in expansion
ie.dA= p,dV-p,dV= (p,-p)dV

where p; and p, are pressures at any instant of the gas on expansion and compression
side respectively.

From the gas law p, (V,, + Sx) = vRT and p, (V, - Sx) = vRT, for each section

(x is the displacement of the piston towards section 2)

2.5x 2V
So, -p;= VRT——=—5= vVRT-———(as Sx=
2 Vi-s22 V§-V2( v
S the vRT =2
V -V

Also, from the first law of thermodynamics
dA= -dU= -2vYR;1dT (as dQ = 0)
R

So, work done on the gas = -dA = 2v - ;———dT
Thus 2v —X— a7 = vRT -2~ de
y-1 v2-v
or, ‘—11- -1 ﬁ-VdV
’ T V02 -V As
When the left end is 7 times the volume of g
the right end. (—'st
-n-1 ———>]
Vo+V)=n(Vp-V) or V= }TITV Fage?zt
T
VdV
On integrating f%—= (y- l)f
T,
T 1 Y
or lnTO (v 1){ 2ln(o )L

= _Y—;—l[m(Vg-vz)-mvg-v%-m Voz]

2

2
=1 2_mepa )4 =l _Y-1. Mm+1)
= InV, ]nVo{l ('1'*1) } ) In I,

1=t

2\ 2
Hence T= 1T, (m—gh—ll-)
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2.4

203

From energy conservation as in the derivation of Bemoullis theorem it reads

%4. %v2 +gz+u+Q, = constant @)

In the Eq. (1) u is the internal energy per unit mass and in this case is the thermal energy
per unit mass of the gas. As the gas vessel is thermally insulated Q, = 0, also in our case.

CyT RT p _RT .
M T MF-1) also 0 ayY; Inside the vessel v = 0 also. Just

outside p=0, and u = 0. Ingeneral gz is not very significant for gases.
Thus applying Eq. (1) just inside and outside the hole, we get

Just inside the vessel u =

_RT__RT _ _yRT
M Mky-1) ME-1)

2YRT 2YRT
Hence Vv - .4 . or, v = . S 3.22 km/s.
M@E-1) ME-1)

Note : The velocity here is the velocity of hydrodynamic flow of the gas into vaccum.
This requires that the diameter of the hole is not too small (D > mean free path /). In the
opposite case (D < < l) the flow is called effusion. Then the above result does not apply
and kinetic theory methods are needed.

The differential work done by the gas
2
d4 = pdv = XL (- L )dT- —VRdT

a |17

(as pV=vRT and V= %)

T+ AT
So, = -f VRAT = - vRAT
T
From tke first law of thermodynamics
Q= AU +A = Y"Rl AT - vRAT

= vRAT-j—:I-= RAT’?_;Y (for v=1mole)

According to the problem : Aa U or dA = aU (where a is proportionality constant)

avRdT

or, pdv = y-1

)

From ideal gas law, pV= vRT, on differentiating
pdV + Vdp = v RdT ?2)
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2.46

Thus from (1) and (2)
PV = 25 (pdV + Vip)

a
or,pdV(Y_l—) y-1 0

or, pdV(k-1)+kVdp= 0 (where k= £ - another constant)

or, pdV!c—;—l-+Vdp- 0

pdVn + Vdp = 0 (where kol n = ratio)

k

Dividing both the sides by pV

nﬂ+‘—12=0
V p

On integrating n In V+1n p= In C (where C is constant)
or, In(V")=InC or, pV"= C (const.)
In the polytropic process work done by the gas

dim VR[T,-T f ]

-1
(where T; and T; are initial and ﬁna;’ temperature of the gas like in adiabatic process)
and AV = ;- T)
By the first law of thermodynamics QO=AU+A
- T+ @G- T)
= (T;-T)R [Y i - i 1] (nvkl[)n(Y ﬂ1) AT

According to definition of molar heat capacity when number of moles
v=1 and AT = 1 then Q = Molar heat capacity.

R(n-y)
Here, C,= -1 G-1) <0 for 1<n<y

Let the process be polytropic according to the law pV" = constant

Thus, psVi=p V] o (p—;) = f
So a"=pf or InB=nlna or n= in
’ B Ina

In the polytropic process molar heat capacity is given by
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C = R(n-y) - R R
" (n-1)(y-1) y-1 n-1

R RIna InB
-y—l—lnB-lna’ whcren-ma

8314 8314In4
59, Co=166-1 In8-Ind

= =42 J/mol.K

(a) Increment of internal energy for AT, becomes

A= YRAL _RAT_ _ 3343(as v= 1mole)
y-1 y-1
From first law of thermodynamics
RAT RAT
Q=AU+A= y-1 “hol- 011 kJ
Vs
s k av

(b) Sought work done, A, = f pdvV = —V—"

v

(where pV" = k= p, V= p; V()

k (PfV;Vfl_n "ininVil_”)

1-n 1-n
1—n<Vf Vi ) 1-n
_PVi-pVi vR(I;-T)

1-n 1-n

VRAT _ _RAT _ 44313 (as v = 1 mole)
n-1 n-

Law of the process is p= aV or pV‘l- a
so the process is polytropic of index n= -1
As p=aV so, p;=aV; and p;= anV,
(a) Increment of the internal energy is given by
vR P[V[ -pV;
AU 7-1 [Tf—I}]= y-1
(b) Work done by the gas is given by

Ao PVimpVy aVo-amVomY

n-1 -1-1
‘1V§(1-“n5 1 2, 2
- ——_2——= '2"(1Vo(1] -1)
() Molar heat capacity is given by
Cc - R-Y) R(-1-y) _Ry+1

-G -1) (C1-1)F-1) 2y-1

205
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vR
y-1
where C, is the molar heat capacity in the process. It is given that Q = - AU

R R
So, C,AT= y—IAT’ or Cn-—?_1
(b) By the first law of thermodynamics, dQ = dU +dA,

or, 2dQ=dA (asdQ=-dU)
2C,dT = pdV, or, f’f‘; dT+ pdV = 0

2RV vRT 2dT dv
y—ldT+ v dV=0, or, (y—l)T+V=

249 (a) AU= AT and Q = vC, AT

So,

0

or, giz + L-2—1- % = 0’ or, NY- vz = constant.

(n-y)R
(n-1)(y-1)
But from part (a), we have C, = -Y—Ij-l—
R __(n-y)R
y-1 (-1)k-1)

() We know C, =

Thus -

which yields

From part (b); we know TV~ 2 = constant
(y-172

T
So, T" - (T‘,,—) = n(y—l)/2 (where T is the final temperature)
0

Work done by the gas for one mole is given by
(To-D  2RT,[1-n1"17]

AR n-1 y-1

2.50 Given p= a T° (for one mole of gas)

-a
So, pT %=a or p(ERZ) = a,

or, pl eV %= aR™* or, pv*“ D= constant

Here polytropic exponent 7 = "

(a) In the polytropic process for one mole of gas :
RAT RAT

1-n= a
[1-a%3)

(b) Molar heat capacity is given by

R R __R R R
y-1 n-1 y-1 a y-1

A= = RAT(1 - 0)

C=
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2.51 Given U= aV*®

or, vCyT=aV®, or, vcv% =qV*®
a R 1 a-1, -1 Cy
or, aVv o pv 1, o, V p Ra
l1-a 51 = - - - R
or pv c, constant= a(y-1)| as Cy, = 1]

So polytropric index n= 1 - q.
(a) Work done by the gas is given by

A= -VRAT and AU = v RAT
n-1 y-1
Hence A= _AU(Y_I)- Ay -1 (as n=1-0a)
n-1 a

‘By the first law of thermodynamics, Q= AU+A
= AU+ AU(a'l) - AU[I +7—;1]

(b) Molar heat capacity is given by
R R R R
y-1 n-1 y-1 1-0a-1

Cm=

R
y-1+a (asn=1-0a)

2.52 (a) By the first law .of thermodynamics
dQ = dU +dA = vC,dT + pdV
Molar specific heat according to definition
dQ Cydl +pdv

C= 1™~ var
vRT
.vCVdT+ v dV-C +£_7_'ﬂ
vdT V' v dar’
We have T= Toe“V
After differentiating, we get dT = a. Tye®" - dV
So LJK - ;
’ DT aToeuv’
v
RT 1 RTge® R
Hence C=Cy+ V'aToe“v- V+aV]'oe“"-CV+O.V

(b) Process is p= pye®’

- En euV
P= Py



208

o, T= queuv-V

R
RT dV v R R
So, C=Cy+——==Cy +pje® - ————=C,+
vIvaarT VTR eV vayy . YV 1+aV
2.53 Using 2.52
-c +BLdV_ .  pdV
(@) C=Cy+ v dT—CV+ ar (for one mole of gas)
We have p= py+=, or R +3. o, RT=p,V+a
p po V’ ’ V pO VY ’ PO
dvV R
Therefore RdT = p,dvV, So, 37-1—);
R R a
Hence C=C,+ +(—1- e ———4l1+—I|R
v (Po V) 7o 1-1 ( Pov)
R o yR oR
=|R+ + = +
( Y'l) pV v-1 pV
(b) Work done is given by
v,
A f N gV e py (V= V) + aln 22
= +—=|dV= -V)+aln-
V(Po V) PolVy=Vy v,

1

V, pV
AU= C (T,-T)= cv(p 2R 2 -E‘E—l) (for one mole)

- G-Ll)i @, V2-p1 V)

V,-V,
= Yil[(Po‘*aVz) Vz'(Po+%) Vl]’ pO(Yil L
By the first law of thermodynamics Q = AU +A
_"3+P0(V2"V1)
Vi G-
- YPO(VZ_V1)+(1]I\E
y-1 Vi

=p,(V,-V)+aln

2.54 (a) Heat capacity is given by

RT aV .
C=Cy,+ vV ar (see solution of 2.52)
T,
We have T=T,+aV o V-—T-—--2
o a

: - av 1
After differentiating, we get, T- o
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RT' 1 R R(Tj+aV) i
Hence C= CV+V a-y—1+ = 5

R Ty yR  RI, RT RT,
= 7-1+R(aV+1) “itav St TSt oy

(b) Given T= T, +aV

As T= BRK for one mole of gas

R RT
p= V(To+aV)- V- oR

v2 V2
RT,
Now A= | pdV= - o R|dV (for one mole)
Vl Vl
V2

AU- CV(T2— Tl)
- CV[TO +a V2 - To o Vl] - GCV(V2 - Vl)
By the first law of thermodynamics Q= AU +A

oR V.
] (V2-V1)+RTolnv2+aR(V2—Vl)
1

1 v,
= OtR(Vz-Vl)[1+;—_—1-]+RT01nV1
- acp(vz-V1+RT01n‘—;3
1
= ctC‘,(V.‘,—V1)+RT0111-“;Z
1
2.5 Heat capacity is given by C= C, + R—J%
(@) Given C= Cy+aTl
So, C,+al= cv+-R—VTZ—¥or, %dT- %

Integrating both sides, we get %T =InV +InCy=1In VC,,C, is a constant.

Or, V-Cy= ™R or V-e*TRa El-- constant

0
(b)C=Cy,+BV
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2.56

RT dVv RT dV
and C=Cy+ Vv ar 5% CVV dT-CV-l-BV
RTdV dv _Bdr -2_dI
or, vV ar =8V o ,-—Vz RT or, V'°=
Rv!
Integrating both sides, we get — B B T = InT+InCy=In T-C,
Com - B T.Co RV -rpv_ 1
So, InT-C, BV T-C, o, Te Cy constant
RT dv
(c) C=Cy+ap and C= CV+——V T
RT dV RT av
So, Cyt+tap= Cy+ VvV ar $0, ap= "~ r
or, R—-——T= RE @ (asp= RE for one mole of gas)
. vV var\®P Yy &
av
or, - o dV= adT or, dT.T

So,T= §+ constant or V - T = constant

(a) By the first law of thermodynamics A = Q - AU

or, = CdT - C,dT = (C - C,) dT (for one mole)

Given c-i;__
w7,
T,
So, A-f(%-cv)dT- a]n-%g—cv(nTo-To)
TQ
RT
-alnn—CvTo(n—l)-alnn+§—_—1-(n—1)
dg _ RTdV
® C=+ap=va*
: , RTdV _a
Given C= so Cy,+ Var- T
R 1 av a
or, 7—17(7—'+ V-RT?dT
av  «a 1 dT
or, V-RT,ldT—Y_l. T
&V a@-1) . dT
or, (‘Y—l) V = RIQ dT T

Integrating both sides, we get
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2.58

2.59

or, y-1)InV= -Q—(IYH_.—I)-lnTHnK
or, InVY- lT "_q'ﬂ'_ll

y-l.zz,-a -1
b RK pv

V' —aq-wv
or, RK e

oY
or, pv’ = RK = constant

The work done is
A-fpdV f(v—b Vz)dV

=RT In 'b+ L. L
vis v,V

(a) The increment in the internal energy is

A

oo [ (39) av

A

But from second law

(7 7= 7,

RT a
On the other hand 4 Vb V2
op\ _ _RT Uy a
o T (ar)v v-b ™ |ov| = ¥
1 1
So, AU= a (Vl - Vz)
(b) From the first law
V,-b

Q= A+AU=RT In 5—p

(a) From the first law for an adiabatic
dQ=dU+pdV=10
From the previous problem

av= () ar+ (%) av- c ar+ Lav
T), v

a BV

RTdvV

S
o, 0= Cydl+ 5

211
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This equation can be integrated if we assume that Cy, and b are constant then

R dv dr R
CVV-b+ T= 0, o, InT+ Cvln(V-b)- constant
or, T (V-b)?a constant
(b) We use
dU = CVdT+%dV
RT
Now, dg = CVdT-O-'V—'_—b'dV
RT (aV
So along constant p, Cp- CV+V—_b-(8T )p
RT (dV RT a
Thus C,-Cy= V——?(ar)p’ But p= Vo5V
. - RT 2a)\ (oV R
On differentiating, 0= (— (V—b)2+ V2) (ar ),+ Ty
- Ta_ _ _RT/V-b _ V-b
’ T RT  2a T
p 2__33 1_2a(V b
v-b° Vv RTV?
R
and C-C,m ———
PV _2a(V-b)
RTV3

2.60 From the first law
Q= U;-U;+A= 0, as the vessels are themally insulated.
As this is frec expansion, A= 0, so, Us= U;
2

But U= vcvr-f"v—
a a —aVzv
So, Cy(T;-T)= (V1+V2-Vl)v- s
-a(y-1)V,v
or, AT = _(Y__?__l_
RV (Vi+ V)

Substitution gives AT = —-3K
261 0=U;-U;+A=U;- U, (as A = 0 in free expansion).
So at constant temperature.
2 1 1" Y2
= 0-33kJ from the given data.




2.3 KINETIC THEORY OF GASES. BOLTZMANN’S LAW AND
MAXWELL’S DISTRIBUTION

2.62 From the formula p= nkT

ne P 4x107Px101x10° s
T~ T138x10-5x300

= 1x10" per m®= 10° per c.c
Mean distance between molecules
(10'5 cc) = 10"*%x10"%cm = 02 mm.

213

2.63 After dissociation each N, molecule becomes two N-atoms and so contributes, 2 x 3 degrees

of freedom. Thus the number of moles becomes

m mRT

M(l +m) and p= MV (1+m)
Here M is the molecular weight in grams of N,.

2.64 Let n, = number density of He atoms, n, = number density of N, molecules

Then p=nm+n,m,

where m; = mass of He atom, m, = mass of N, molecule also p = (n; + ny) kT

From these two equations we get

i8-8

nvx2mycos 0 xdA cos 0
265 p= A

= 2mnv*cos’0
2.66 From the formula

If i = number of degrees of freedom of the gas then

C,= C,+RT and Cy= %RT

C
y-—£-1+2.— or i= 2 = 22
Cv l Y—l &_1
p

VTR 1 L\ JET
2.67 Vyouna 0 o > N Vs - M
Vsound 1 / Yoy /i +2
50, Vims 3 3
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2.68

2.69

2.70

(2) For monoatomic gases i = 3

v,
Zomt L /2 L 05
Vims 9

(b) For rigid diatomic molecules i= 5

vsound 7
v = 15~ a8

rms

For a general noncollinear, nonplanar molecule

mean energy = %k T (translational) + -;—kT (rotational) + (3 N - 6) kT (vibrational)
= (3N - 3) kT per molecule

For linear molecules, mean energy = %kT (translational)

+ kT (rotational) + (3N - 5) kT (vibrational)

= (3 N- %) kT per molecule

1 .
ZN-1) and 2N..-5- in the two cases.
3

Translational energy is a fraction

(a) A diatomic molecile has 2 translational, 2 rotational and one vibrational degrees of
freedom. The corresponding energy per mole is

%RT , (for translational) + 2 x %RT , (for rotational)

+ 1 x RT, (for vibrational) = -;—RT

7 .9
Thus, Cy= 2R, and y= Cvs 7 |
(b) For linear N- atomic molecules energy per mole
= (3N - %) RT as before
] 6N -3
= - = —— Y
So, Cy=|3N 2 R and vy 6N =5
(c) For noncollinear N- atomic molecules

3N-2 N-2/3

Cy= 3(N-1)R as betore (2.68) y= IN-3~ N-1

In the isobaric process, work done is
A = pdv = RdT per mole.
On the other hand heat transferred Q@ = C, dT

Now C, = (3N - 2) R for non-collinear molecules and C, = (3N - %) R for linear molecules
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il non collinear
A |3N-2 !
Thus —-
Q 3 linear
3N - 2
For monoatomic gascs, Cp= %.and 3—- -52-

2.71 Given specific heats c,, c, (per unit mass)

R
M(c,-c)=R or, M=
pv c,-¢,
c 2c,
Also y= L= 2T+1, 0s, i-i- Y
c, i c_p1 €=C;
CV
J 29
272 (a) C,=29 K mole = 83
20-7 29 7
Co= B3 B ¥=p7= 143
i=35
(b) In the process pT = const.
2
-1;,—= const, So Z%Z—d—‘y-z 0

Thus  CdT= C,dT+pdV= CvdT+£‘3—dV-CvdT+21%TdT

or C=Cy+2R= (%)R So Cy= ZiR= 3k
Hence i = 3 (monoatomic)
2.73 Obviously
1 3 S

ECV= zhtsh

(Since a monoatomic gas has C\, = %R and a diatomic gas has C,, = -;—R. [The diatomic

molecule is rigid so no vibration])
1 3 5
ECP= FNtzNtN+Y,

C, Sy,+7
Hence y= £ LR

C‘,= 3y, +5y,

2.74 The internal energy of the molecules are

U= -}sz<(u7-v 2> = %mN<uz—v2>
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2.75

2.76

2.77

where v= velocity of the vessel, N = number of molecules, each of mass m. When the

vessel is stopped, internal energy becomes %mN <>

So there is an increase in internal energy of AU = %mN v2. This will give rise to a rise

in temperature of

-;-mN v
AT= ;
ER
- mN
iR
there being no flow of heat. This change of temperature will lead to an excess pressure
R A T_ mNv® v?
Ap= v
Ag Mv2 _ 5
and finally iRT 22 %

where M = molecular weight of N, , i = number of degrees of freedom of N,

(a) From the equipartition theorem

E-%kT-6x10’211;and Vo \/ kT 28T - 047kmss

(b) In equilibrium the mean kinetic energy of the droplet will be equal to that of a molecule.

iz : 3 VL .
3 dapvm-sz or v, =3 7 0-15m/s

nd p

Here i= 5,C, = 5R y--‘57—g1Ven

.‘/3RT 1,/3RT 1
M n ’m-'l'] M or T-nzT

Now in an adiabatic process

TV !« TV = constant or VT“?= constant
1\ . . .
V'(——2T) =VI? or Vn =V o V=1V

U

The gas must be expanded ni times, i.e 7-6 times.

Here Cy= §-——R (i= S here)

m= mass of the gas, M= molecular weight. If v, increases n times, the temperature will

have increased nztimes. This will require (neglecting expansion of the vessels) a heat flow
of amount
Sm

——— 2_ =
S R@P-1T = 10 .
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2.78 The root mean square angular velocity is given by

%I w’= 2x %k T (2 degrees of rotations)
or o= # = 63 x 10 rad/s

2.79 Under compression, the temperature will rise
TV'~ ! = constant, TV?* = constant

or, T(n'lVo)M= T,V¥ o, T= n*¥r,
So mean kinetic energy of rotation per molecule in the compressed state
= kT = kTyn™ = 072 x 102 ]

2.80 No. of collisions = %n <y>= p

vV onao> 1 T
Now, —= — = —
vV n <> 7 T

(When the gas is expanded 7 times, n decreases by a factor 1). Also
; . : ’ . -i-1
T(nv)Z/l-IVZ/l or T' nZ/IT SO, Yv_- %n-l/l-n R

i+l
i.e. collisions decrease by a factorvy i , i = 5 here.

281 Ina polytropic process pV" = constant., where n is called the polytropic index. For this

process
pV"= constant or TV" ! = constant
dT av
T+(n—1) V-O
Then dQ=CdT=dU+pdV=C,dT+pdV
i RT i 1 i 1
= 2RdT+ VdV-— 2RdT——n_leT— (Z—n—l)RdT
i
Now C=R so 2-n—1=1
1 i_1=_i‘2 or n=————i
o n-1-2 2 i-2

Now LA ===

v n’<v’>=l T 1(V
v n<w> YT qi\Vv

1 i-1

l-l-m —l-m- -_'i__zltimcs-—l-—times
- n = 252
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2.82 If a is the polytropic index then
pV°®= constant, TV*~! = constant.

vV na> V_ /T’ |
Now —=———==\ = s=1
v n <> V T vr

Hence or o= -1

1
2
Then C-—l§—+

283 v = VEL _ /B /2 . 045 kmys,
P m M [
Vo = -\/§P- =:51km/s and v, = \/—31’- = 0-55 km/s
np p

2.84 (a) The formula is

= 3R

4 , .72 v
df (u) = u“e” du, where u= —
f )= o v,,
1+dn
lv-v,|
Now Prob -—V—L<6n = | df (u)
P 1-0n
4 1 8 &n = 00166
7€ x20m \,&-ebn 0-0166
v-v, v v
(b) Prob ™l <dm |= Prob| |- = <dm -2
v v, VY A

= ix%e'yzxZ V 3 dn= _12_\’5_(3_3,26“ = 0-0185



285 @ Vims=V, = (ﬁ—ﬁ)\/%‘z = Av,

2.86

2.87

2.88

I= 2\ -V

(b) Clearly v is the most probable speed at this temperature. So

2kT mv?
\/ - =y or T= % = 342K
(a) We have,

v% z/z v% 2,2 vl2 2 2,2 2 2kT v%—v%
—e = ZeT% or =e"™%% o P e
m  (Invi/vd)

2
- %(——*—A" ) /K = 384K

v, vp Vs
22
m(vi-v
So T= —-(—172) = 330K
v
2kin—
V2
2 2.2
(b) F(v)= —“——v—ze""/"rxl = eomies: from F(Wadv=df(u), du= v
T, Vo \ Vp Ve
2 2,2 2kT, 2kT,
YV -v = 2 -V, = 0 2=__0
Thus vsp e I v/vpze 2, vil ot Vo, - 7 now
1

By L o M1\ 3,

N A T 4 Y I
-‘/Bmo .‘/ Inm

Thus V= - 1-1/7

v N B, AT

BN my MN’ Pn) MO

v, -V =Av—v—21iz (I—VI—M—A-’)
LN VM, M,

M, (Av)? my, (Av)?
ro M@ my@) gk
- \/ My _‘/'_"ﬁ )
2R (1 M, ) 2% (1 M,
™ 372
V2 - V2 o vz{%_ ?*_l;) (ml-le)
e Py = 35 e e O € = m_
Py v’ﬂ. "
In ml-}e / H

, Putting the values we get v = 1:60 km/s

219
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2,2
289 dN(v)= %’i" dv -,
V

For a given range v to v +dv (i.c. given v and dv ) this is maximum when

8 AN _ . (-3v-"+2—‘;i)e-“’":
VP

—5—;’;N;2dv P
3 2. T 1m?
or, vz-zvp = Thus T 3k
290 Py 2mv dv,dv,
32

Thus dn(v)= N(2 kT

) e"z% (v§+vf_)dvx2nvlde

291 <v,>= 0 by symmetry

<|vl>= flee urdv/feurdv- ve?krdv/fezkrdv

_\/_Zﬁz fue"‘zdu/fe'"zdu
m
0 0

gy

2.93 Here vdA = No. of molecules hitting an area dA of the wall per second

-de(vx) v, dA
[
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2
my

p 12 ,
m i |
= 2%T
or, v fn(anT) e v, dv,
0

] f #(zg)”e-«’m

SR PRVL.LIPLY [ S S
2 mx 2mn 4 ’
dA
( SkT )
where <v> = —_
mx
2
294 Let, dn(v)= n|— e~ g
‘ Y= M\ 2nkT x

be the number of molecules per unit volume with x component of velocity in the range
v, o v +dy,

Then p= f 2my, v dn(v)
0

L]

m \V2 .
2 -mv /2 kT
f2mv"n(2nkT) e dv,
0

(o

2
- 2L 2 - g,
m

-

(=]

4 f -y dx
= —=nkT - == = kT
\/;t_n oxe 2\/;

2.95 2 2
<> | (-2 o5 it
" 2w kT e AT 4 v dvv
0

32
m 1 2kT —
(ZJrkT) e m e idx
0
cafm N (2m L (16 a4
2n kT T kT n® 8kT x <v>
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2
296 dN(v)= N[-T_ - mv /2T 2 0 A AO)
) N(2JrkT) e 4 v dv= dN () 2 de
3/2
dN (¢) m N i, adv
% de N(anT) ¢ Y
Now, e= —m? so £1-!’--—1—
de mv
32
dN (g) m - /AT 2 1
% de N (anT ) € ix m m
- sz— (KT)~372 =1 (172
n
i.e. dN () = N-‘/z-—(kﬂ'a/ze"/” £ de
T
The most probable kinetic energy is given from
12
ad; -——dj:s(e)s 0 or, %s'we"/kr—%e‘/ﬂa 0 or e= -;—kT- €y
. v s kT
The corresponding velocity is v = ol
2.97 The mean kinetic energy is
3/2 -e/kT V2 - /T reés2 3
<e> fe e da/fe e de kTI‘(3/2) 2kT
0 0
Thus
-;-(1+br|)k1‘
%. f \/—2_-(k1)'3/2e"/" e2de
n
2er1-om)

3/2
2 -3n(3 -3 [6 3n
\/j-t—e (2) 206m=3 x ¢ on

If 81 = 1% this gives 09 %

298 é}_\_{&, ‘/L_(kn-s/zf Vee ¥ 4¢
n
%o

- %(k]’)'a/2 \/e_o-f e"/"de(so» kT)
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(In evaluating the intcgra], we have taken out Ve as \/Eo_ since the integral is dominated
by the lower limit.)

2
299 (a) F(v)= Avie ™21
For the most probable value of the velocity
LEO) g oor 3a2e ™ _gPLIY miaT_ g

dv %uT
3T
So, Vpr = o

This should be compared with the value v, = \/ %%T' for the Maxwellian distribution.

(b) In terms of energy, € = %mv2
dv

- 3 _—m/2kT
F(e)= Av'e R

m 2me  m
From this the probable energy comes out as follows : F' (g) = 0 implies

-zé(e"’”-—g—e"/")= 0, or, ¢,= kT

-A(Zs) @~ M 1 =A—2£e"/"r

2 kT

2.100 The number of molecules reaching a unit area of wall at angle between 6 and 8 +d6 to
its normal per unit time is

dv-f dn() 22y cos 0
4n
va 0 0

2
-fn(Z:n:kT) e ™ 23 dysinOcos0dOx2n
0

va 12
= n(lkz) fe"‘xdx sinBcos0dO= n(ﬂ) sin®cos0d0
mn mx
0

2.101 Similarly the number of molecules reaching the wall (per unit area of the wall with velocities
in the interval v to v + dv per unit time is
0= %2

dv-f dn (v) %—i—z- vcos 0

0=0
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0= n2

m 3/2 .
= -mv/2kT 3 .
-f n(anT) e v’ dv sind cos0 dO x 2x
0= 0

m 372 .
= —-mv /2T 3’]
”"(27:/:1) € v

2.102 If the force exerted is F then the law of variation of concentration with height reads

n(Z)=n0e'Fz”‘T So, =" F=E%I%n-9x 10 N

2103 Here F= 2P apge 210N o y o SRTINT
4 N.h ztdsgAph

In the problem, ;?- = 1:39 here
0

T=290K, n=2 h=4x10"m, d=4x10""m,g=98m/s?,Ap=02x10°kg/m’
and R = 831 J/k

Hence, N 6 x 831 x290 x1n2

2% _ . 23 -1
o nx64x9'8200x4)<10 = 636 x 10“ mole

concetration of H, @ My ShRT

2104 = o S g 1 € ™, "M, gh/RT
2

=
concentration of N,

So more N, at the bottom, (-T?- = 1.39 here)
o

2.105 n ()= n e-mlgh/kt’ ny (k)= n, LY 2

n
They are equal at a height /1 where -’;l- Pl e L
2
Inn,-1nn
or h= .kl..._L_Z
g m-m

2.106 At a temperature T the concentration n (z ) varies with height according to
ni)= noe""g”kr
-]

This means that the cylinder contains f n(z)dsz
0

n, kT
=fn0e"""‘/kr dz = —
mg

[}

particles per unit area of the base. Clearly this cannot change. Thus ny kT = p, = pressure
at the bottom of the cylinder must not change with change of temperature.
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2.108

2.109

2.110
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f mgz e~ """ dz f xedx
0 0 re
<U> — kT — kT Q) kT
fe""“/"rdz fe"‘dx
0 0

When there are many kinds of molecules, this formula holds for each kind and the

average energy
kT
<Us = Ef‘— kT

2 1
where f; a fractional concentration of each kind at the ground level.

The constant acceleration is equivalent to a pseudo force wherein a concentration gradient
is set up. Then
e MaWVRT _ | _ o
_RTIn (1-n) - nRT -
M, M,

or w= 0g

In a centrifuge rotating with angular velocity w about an axis, there is a centrifugal acceleration

w?r where r is the radial distance from the axis. In a fluid if there are suspended colloidal
particles they experience an additional force. If m is the mass of each particle then its

..m . v
volume is F and the excess force on this particle is

%(p - pg) w’ r outward corresponding to a potential energy — 2—";-(;) - po) w?r?
This gives rise to a concentration variation

n(r)= nocxp(i-#(p_po)uﬂrz)

n(r) M 348 3
Thus n(fl)-n-exp(+2pRT(p—p0)w (rZ—rl))
m M . ;
where %= R’ M= N, m is the molecular weight
Thus 2pRTInn

" (p-p)) 2 (Z-7)
2 2

; ; i . 1
The potential energy associated with each molecule is : - Fmo'r

and there is a concentration variation

n(r)= nyex ﬂz---'i—nex Ma'r
= Mo SXP\ T | T Mo XP\ToRT
Thus o M o? P 2RT
u n P SRT or w 1YL n
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2111

2.112

Using M= 12+32= 44gm, /= 100cm, R= 831 x 107-‘,—;%,T 300,
we get w = 280 radians per second.

2
Here n (r) = nyexp (— %)

(a) The number of molecules located at the distance between r and r +dr is
2
dxrtdrn (r)= 4 nyexp (— %) P dr

d 2ar° kT
®) r lsgwenbyd Pn(r)=0 or, 2r- T =0 orr,= ,
(c) The fraction of molecules lying between r and r +dr is

dN 4n Pdr ngexp (- arz/kT)

N -

f anrtdr ngexp (- ar*/kT)
0

f4nrdrexp( )("’) 4nf L exp (-
(3 @)

372
Thus %],V— = (;%) 4 drexp (_k‘;:z)
a 32 (17'2
(d) dN = N(m) anrtdr exp( kT)
v2 ar’
So n(ry=N ( kT) exp (—75—)

When T decreases 7 times n(0) = n, will increase 1]3/2 times.

Write U = ar’ = dr =
rite ar’ or r Va so dr= V 2\/— 2‘/2—(-]-

so dN= n04n%]-

u_ (U
vVau P kT

-372 U1/2

=2xnnya exp (:k-i,q)dU

The most probable value of U is given by
d (dN 1 U1/2 1
—_— - = | ——— - = —kT
du (dU) 0 (2 Ya kT | ( kIL',) o Up=3

From 2.111 (b), the potential energy at the most probable distance is kT.



2.4 THE SECOND LAW OF THERMODYNAMICS. ENTROPY

2.113 The efficiency is given by

n= s >
Tl 1 2
Now in the two cases the efficiencies are
T,+AT-T, g 1
T]h = ——T—ﬁT 5 1 mcrease
T,-T,+ AT
1= ————, T, decreased
T,
Thus N<n
7
2.114 For H,, y= ¢
5 ,DT)[/,
PiVi=pVy, p3V3=p,V, Qi
PVi=pyVi, p,Vi=p, Vi P

227

Define n by V;= nV, " ad‘abaac

Then p3= p,n”" so Pu;vu
- - | ’ Psls

P4V4=P3V3“P2V2n1 ’sprln‘ 1 QZ s
P Vl=p, V] so Vi T'= v} tal=" or V= nv,
Al V2 ' V3 1-y V3

S8 Ql-p2V2an—’ Q,=pV; an—n -pzvzlnv—

1 4 4
Finally n= 1_%= 1_n1‘1= 0242
1

(b) Define n by p; = %

P V)= %-V; or V;=n'"V,
So we get the formulae here by n — '

vy)-1
n= l—n( Lk l—n"\?f— 0-18

in the previous case.

2.115 Used as a refrigerator, the refrigerating
efficiency of a heat engine is given by

Qzl Qzl _ Qz’/ Ql

A 0-0 | 0

O

where 7 is the efficiency of the heat engine.

. s 8 9 here,
n
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2.116

2.117

2.118

Given V= nV,, V,= nV,
Q.= Heat taken at the upper temperature HVI T
= RT)Inn+RT,Inn=R(T;+T))Inn
L 7
T\-1 2
Now  I,V]"'= T,V or V,= (—i) v, Pl
2
- =1 2l
T\1-1 T,\r-1 7 5%
Similarlly V= (—3) Ve, V= (—i) v, (4 2
T T;

Vs

Thus Q, = heat ejected at the lower temperature = — RT;In 2

1 1
T\-1V. (TN\T-T Y,
= -RT;In (—i) L _RTin (—‘) -

T,] V, T, n*V,
1 1
R, In |22 (T 2RT,I
= oo T, n?\T, - s n
Th -5
] CV
Q= Cv(-Ty)= 5 V,(p,-p3)
Cy
Q= 'FV1 (1-pd) 4%1/7
Thus n=1 ————V2 (p2 -P3) szz
Vi -py)
On the other hand, Qr [

6p, Vi=p, V], pyV]=p, V] also V= nV,

A7

Thus p, = p,n', p,= p;n? % ;-73}%z
and n=1-n'"" with y= %for N, this is n = 0-602

C c
Ql’-Rﬁe'Pl(Vz"Vl)’ Q'z"}sz(Vs'V‘s)

V,-V,
o e 120 /A
Pl(Vz‘Vl) l (A3
1
Now p, = np,, p; V] or V3= nyV,
1
pVi=p Vi or Vy=n1V, |
P L1, e Vo B

SO 'r|=1_;'.-n‘l= 1-nv 2)4‘ QZ-




2.119

2.120
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Since the absolute temperature of the gas rises # times both in the isochoric heating and
in the isobaric expansion
py=np, and V,= nV, . Heat taken is

Q1= 0y +0n
where Q)= C,(n-1)T; and Q;,= CVTI(I—%)
Heat rejected is I Q nTy
Q= Q5 +Q'y, where AV ' 71
1 ’ v’ f
Q= CyTy(n-1), @'p=C,T, (1-—)
n v ’
1- i L 7 Qa
Qr Cv(n 1)+C 7\
Thus n = I—Q—— 1- '
1 C (n—1)+CV(1--) N
’ T, 2,V Q22 £2,Ve
. . (t/n) Z
n-1+y(1——J 1+
_1- ! nf=1_ n_q_nty
1 1™ Tt
y(n-1)+(1—n) Y+
(a) Here p,=np,, p, V= p,V,,
np, V= pyVy %mp 7170
, Y
Qh=RTyIn—, 0;=CyTy(n-1)
Vi Q
o 1
But nVl"'ls Vg'l o, V;=Vynv-1 D
5 AT, p7,V1 ) O)VO
Q’2=RT01nn7‘1-Y_llnn | Y sothermal
L Q2 (Tempr)
n >
Thus n= 1— 1,onusingCV= 1 -
(b) Here V, = nV1 sP1Vi=p Yy
and p(nV) = p,Vy§
ie. n'VI leVi! or Vl"n_v—z_lVo
Al C, T 1 ',= RT,1 i
s0 Q= C,To(n- )'Qz', o“‘ﬁ 2 //’r,Vz,T”b
Y i acrabatie

or Q'y=RTylnny-1= —%%To]nn=CpTolnn o

Q
Inn isothermal Pa Vo
n-1 7o

Thus n=1-
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2.121

2.122

Here the isothermal process proceeds at the maximum temperature instead of at the minimum
temperature of the cycle as in 2.120.

Po, Vs,
BT jsothermal (hilyTe)
Q4R V,To Q

P tsochor . isothermal

0, adwabatic

; 2
adigbatic g, - T , (A,1,,T0)
@ v > (B Yo
(b)

p
(a) Here p; V= po Vo, Pr= 71

P Vi=pyV§ or p, V= npg 14

1

ie. Vit avi™! or V;= Vyny-1
, (1 Vi R
Q,= CVTOKI—; , Q1= RT"h‘_Vis Y_llnn- CyTylnn.
le n-1
Thus n-l_Qlal_nlnn

Vl
(b) Here V, = 7’p0Vo'P1V1
Po Vg= Py szs pln“'f V]Y - V(!’_ln-‘(vlv-l of Vl- n(y/y-l)Vo

v
0, = CPTO(I—%), 0,= Ry = R Tiinn=C,Tylnn

Vo v-1

n-1

Thus =l
The section from (p,, V,, Tp) to (p,, V,, Ty/n) is a polytropic process of index o. We shall

assume that the corresponding specific heat C is + ve.
Here, dQ = CdT = CdT + pdV

Now pV®= constant or TV®~'= constant. P

RT R isothermal
so pdV = 7dV= 'E_-TdT 1/1,7;'7

p .
Then C= Cy-—2—u g1 -1 oé(h,qp:i
Via-1 y-1 a-1 Q, ‘ndex
RT, V

We have p,V,= RTy= p,V,= ——n—°= 1—’171 'PZ.VZ,WJ/]&

vV
PoVo=p,Vi=np, Vo py VoY =P, sz’



1
pVi=pV3 or Vi7l= %V—}"l or V,=Vyny-1
a-1 1 a-1 . S S
Vi -;{Vz or Vi=na-1V,=ny-1"a-1V)
Now @', = CT, 1-1 Q=RT11\&=RT 1 1 \an=cTynn
2 0 nlP 1 0 VO 0 Y- 1 a-1 0
n-1
Thus m=d-= ninn
2123 B, Voo y
gt A, Vo, 1T
|\ adiabatic &
—>
Q —-—>Q2/
l adiabatic -~
B,Va,r/n ) #Qﬁ, Ao, Ty Po,Vo,70

’ T, 1 T,
(a) Here Q',=C, T1—7 = CPTI(I —;), 0,=Cy To';'
Along the adiabatic line

T Vi '=Ty(nV)'™! or, Ty=Tyn'""

y(n-1)
nY1

T
S0 leCV%(nY—l). Thus n=1-

(b) Here Q',= C,(nT,-Tp), 0,=C, T (n-1)
Along the adiabatic line TV' ™! = constant

-1
V. Y
T,V '=T, (7") or T,=n"""T,

n'-1
Thus B ] e ——
" yn' ' (n-1)
2.124

(2]
ﬂ}%’%‘? To | NP, V0,7b77

!

///

Q2=RTolnn

Po, Vo, To

(b)

231
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2.125

2.126

F 1 n ' 1 ! ”
@ Q= CPTO(I_;)’ Q"= RTyInn, Q' = CvTo(l_;)’ Q,=0,+0"
1
o cp(l';)
So n= l—a—z= 1- 1
1 Cv(l——)+Rlnn
n
81— Y‘ - - Y(n—l)
1+£nlnn n-1+(-1)nlnn

Cyn-1
®) 2,=C,Ty(n-1),0",= C, T(n-1) Q",=RTylnn, Q',= Q",+Q",

_n-1+@F-1)nn
y(r-1)

So

Q,
=1-—=1
n 0,
We have
Q1= tRT Inv, 0",= C, Ty(t-1)Q,= Q' +Q", and
",=RTylnv, Q" = C, T, (x-1)

as well as O, =Q,"+Q," and

QZI = Q2H + Q2HI
Q'

So n=1-—+1
n Ql

+Inv

Cy(t-1)+Rlnv
-CV(T—1)+‘|ZR1nV

y-1

31 +tlnv
y-1

Here 0," =C,T;(r-1), Q'1" =tRTJnn and
Q," =CPT(t-1), Q," = RTjnn

in addition to we have

Q,=0,/+Q," and

(t-1Dlnv
t-1
y-1

=1_

Tinv+

QZI - Q2H + Q2Nl

f C (t-1)+RInn
So n=1—g—2=1— -1

o C,t-1)+TRInn

=1-

1
T_1+(1-;)lnn

-1+ 1-l Tinn
Y

1:-1+(1'

=1-

—1-) Inn

¥ - (t-1)Inn
1-1+(1—$)171nn tlnn+%—1—l)
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2.127 Because of the linearity of the section

2.128

2.129

B C whose equation is

B

vV
S < Sm— =
PV (mp=aV)

T
We have ;‘= vV or v= \/;

Here Q",= C,T,(Vt-1),

o - cpro(l-\—/l_—)= p\/_(\/€-1)

'I‘l).uS Q 2 Qll + Ql"

- 1 + _Y_
Along BC, the specific heat C is given by

CdT = C,dT +pdV = C dT+d( aVz) ( %)

L_
Thus 0, = 2R 1\/;
) o, Vi+y 1 (-Dr-1)
samelly n=1—Q1=1 2\/;+1Y+1_(y+1)(\/1_:+1)

We write Claussius inequality in the form

fee-foe.

where d'Q is the heat transeferred to the system but &, Q is heat rejected by the system,
both are +ve and this explains the minus sign before &, Q,

In this inequality 7. >7T>T_ and we can write

[aefae_,
Tmax Tmln

e 2, T 25

Thus —< = or
Tmax Tmm Tmax Ql
Q 2 Tmm
or =1- <l-———=
n Ql me Nearnor

We consider an infinitesimal carnot cycle with isothermal process at temperatures
T+dT and T.

Let 84 be the work done in the cycle and dQ, be the heat received at the higher temperature.
Then by Carnot’s theorem
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2.130

2131

2132

2133

1
L4 Prdp == 2 .
50, T [ Se— :
ap! 4
On the other hand dA = dpdV = (BT) ardv

dv

while 8Q, = dU,, + pdV = [(%) +p
T

U ap
Hence |—| +p=T )
(), 7= 7(38), y

(a) In an isochoric process the entropy change will be

T

C,dT T R1
- - _£= - nn
AS f T Cyln T, Cylnn y-1

T

For carbon dioxide y= 1-30
s0, AS = 19-2 Joule/°K - mole
(b) For an isobaric process,

T o,
AS= C In-f= C Inn=LRIn7 \‘,/zsoz‘/zerm
2T [ y-1 \

13 .

= 25 Joule/°K —~mole \,
In an isothermal expansion s

Vv N
AS= vRIn:t S

1]

Vv
so, —f eAS/VR

| %

13

= 2:0 times 2.132

The entropy change depends on the final & initial states only, so we can calculate it
directly along the isotherm, it is AS= 2RInn = 20J/°K

(assuming that the final volume is » times the inital volume)

If the initial temperature is T, and volume is V; then in adiabatic expansion.
y-1 vy-1
TV' " =T, V,

1- Vi
50, T=Tyn '=T, where n= —
Yo

V, being the volume at the end of the adiabatic process. There is no entropy change in
this process. Next the gas is compressed isobarically and the net entropy change is

m T,
AS = (M CP) In T,
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2.135

2.136
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But hob T;= T, L
u [ —
T, T, * 4Ty on”
1
S = — — - ——"-—Y—- -
o AS (MCI’)lnn Clnn My 1lnn 97J/K
The entropy change depends on the initial and f pa, Vo ,7?7
final state only so can be calculated for any
process whatsoever.
‘We choose to evaluate the entropy change along Y
the pair of lines shown above. Then
ﬂ aT,
B B > é
vC,dT f daT Y7, .
AS = - ° To P,
f T ) VST T)Vor— J,&VO,‘CE
T, T, s '73‘
B
Joule

=(-CymnB+C,lna)v= r(y]na—]nﬁ)" - 11 ==

°K

To calculate the required entropy difference we only have to calculate the entropy difference
for a process in which the state of the gas in vessel 1 is changed to that in vessel 2.
Tl Tl
AS=v f T T f
uB P’)Vf)rl
= v (Cpln o -Cylnaf)
= V(Rlna— R nils)- vR(lna-l'LB—)
y-1 y-1
With y=§,a=23ndﬁ=1-5,v= 12, p .

1 T B P T
this gives AS = 0-85 Joule/°K i )Vbo[_ﬂ 'DZ z/,'—' Vf“’g’
For the polytropic process with index n

p V"= constant
Along this process (See 2.122)
1 1 n-y
¢ R(y—l _n—l) y-1)(n- 1)
T,
dar n-
So AS = C—= Rlnz
f T (-D(r-1)
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2.137 The process in question may be written as

where a is a constant and p,, V,, are some reference values. For this process (see 2.127)

the specific heat is
1 r(A_, L) 1lgytl
C= CV+2R-R Y—1+2 = 2Ry—1
Along the line volume increases o times then so does the pressure. The temperature must
then increase o ’times. Thus

02T0
AS=va£= l'ﬁy—"'—l-lnotz= vRLﬂlna
T 2 y-1 y-1
TO
if v=2, y= §,a=2,AS=46-1.Ioule/°K

2.138 Let (p,, V)) be a reference point on the line

P=py-aV
and let (p, V') be any other point.
The entropy difference

AS = S(PaV)“S(Ple)

o

AV

PocnYocm?®YicnY
C‘,lnp1+Cpan1 Cyln o 20 v

For an exetremum of AS

dAS -aCy +§_£_0 F,V

WV p-aV'V (/’11/,)

or Cp(po—av)—/(lVCy- 0

Y Do

a(y+1)
> AS
This gives a maximum of AS because oA <0

or Y(pp-aV)-aV=0 or V=V =

(Note :- a maximum of AS is a maximum of S (p, V) )

2.139 Along the process line : S= aT+CyInT
or the specific heat is : C = T%- aT+C,
On the other hand : dQ = CdT = C, dT + pdV for an ideal gas.

Thus, pdv = R-VTst aTdT



2.140

2.141

2.142

T
2.143 As.fC;T.f ’”“’%”T’dr- mb (T, - T,) + maln =2

8>

or L‘Y- dar or, %ln V+ constant = T

Using T= T, when V= V,,weget, T= Ty+olng
0

For a Vander Waal gas
a
+—|(V-b)=RT

The entropy change along an isotherm can be calculated from

2
as
-f )
vl
It follows from (2.129) that

8-
ov), \oT), V-b

assuming a, b to be known constants.

Th AS= RIn 222
us = nVI—b
T
VZ’TZ
o s [ scun- () dnf( ) w
V. T, o % v, =8

1

deT f dv=C,l R1 Vb
v-5 V= nT1+ nVl-b

assuming Cy,, a, b to be known constants.

We can take S =0 as T— 0 Then

T T

ar 2 gro L 73

S-fCT faT dar 3aT
0 0

T T,

I
I, I

237
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2.144 Here T=aS" or S= (;7:)

2.145

2.146

2.147

I =

T" S
Then C= Tn U T g
Clearly C<0 if n<0.
We know, . 7 ,P C>0
CcdT
S-5,= T = c ln T,
T, v
assuming C to be a known constant. 0
S-S,
Then T= T,exp ( C ) <0
_rHs__a > S
) 0= deT- aln—
T,
(c) W= AQ-AU = alni+CV(T1-T2)
Since for an ideal gas C,, is constant 74 Q
4 1
and AU = Cy(T,~T)) So,To ST
(U does not depend on V)
(a) We have from the definition Y
Q= f TdS = area under the curve
/
Q= T, (S, - So) qz Sl,ﬁ
, 1
Qz=§(To+T1)(51‘So) >3
7
T
Thus, using T, = —nﬂ, 4 So,70
1+=
_1_T0+T1_1_ n_ n-1
N 27, 2 2n A Qr
1 ¥
(b) Here Q, = 5 S, -S)(T,+ Ty
Q= T,(5,-Sp ‘ <
2T, T,-T, n-1 SoTr V0 SnTi
n=1- - l. Q2
T,+T, T T n+1 > S
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In this case, called free expansion no work is done and no heat is exchanged. So internal
energy must remain unchanged U= U, For an ideal gas this implies constant temperature

T; = T, The process is irreversible but the entropy change can be calculated by considering

a reversible isothermal process. Then, as before
v,

2
AS:fiTQ—sf%= vRInn = 201 J/K
Vl

The process consists of two parts. The first part is free expansion in which Uy = U,. The

second part is adiabatic compression in which work done results in change of internal

energy. Obviously,

Yo

0= UF-U,+fpdV, V=2V,
\4
f

Now in the first part p, = % Po Vi= 2V, because there is no change of temperature.

In the second part, p VY= % Po(2Vy)' = 21 1Po Vo

%

v, “
-1 -1
fpst 27 pVs p°ngV= 27 2% p"w’V""
4 -y+1 2v,
2v, 2%,

1277701 @-1

=21-1 Yy~
27 p Vo Vo Y1 y-1

RT

RTO e
Thus AU= Up-U; = —1@"71-1)

The entropy change AS = AS,+ AS,
AS;= RIn2 and ASj, = 0 as the process is reversible adiabatic. Thus AS = Rn 2.

In all adiabatic processes
Q=U;-U;+A=0

by virtue of the first law of thermodynamics. Thus,
Uf - []'- —A
v

For a slow process, A’ = f pdV where for a quasistatic adiabatic process pV" = constant.

Y

On the other hand for a fast process the external work done is A" <A'. In fact A” = 0
for free expansion. Thus U'; (slow) <U"'; (fast)

Since U depends on temperature only, T'; < T";
Consequently, p”f > p'f
(From the ideal gas equation pV= RT)
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2151

2.152

2.153

2.154

Let Vi= Vg, V,= nV,

Since the temperature is the same, the required entropy change can be calculated by con-
sidering isothermal expansion of the gas in either parts into the whole vessel.

V,+V,

Vi+V,
Thus AS = AS;+ AS; = leln—+v2Rln——V-—
2

Vi

= v,RIn(1 +7) +v,R1In 1:” - 51I/K

Letc, = speciﬁc heat of copper specific heat of water = c,
974273

c,m,dT m, c,dT 370
Then AS-f f = m2c21n280—m1c11n—i:——

7+273

T, is found from
280m,cy +370m ¢y

camy (Tg-280) = my ¢ (B10-Tp) o Tp= — =2

using ¢;=0391/g°K, ¢c,= 4181/g °K,

Ty~ 300°K and AS = 284 -24-5« 39)J/°K
For an ideal gas the internal energy depends on temperature only. We can consider the

process in question to be one of simultaneous free expansion. Then the total energy

U= U, +U,. Since

T, +T,
2

entropy change is obtained by considering isochoric processes because in effect, the gas
remains confined to its vessel.

U= CyT, Uy= C,T, U= 2C,

and (T, +T,)/2 is the final temperature. The

(T+
Cy dT f (T1+T2)
v ="CV
T 4T, T,
(T,+T,)2
Since (T1+T?) “(Tl"Tz) +4T,T,, AS>0

(a) Each atom has a probability % to be in either campartment. Thus

p=27
(b) Typical atomic velocity at room temperature is.~ 10° cm/s so it takes an atom
1075 sec to cross the vessel. This is the relevant time scale for our problem. Let

T= 10"’ sec, then in time ¢ there will be £/T crossing or arrangements of the atoms. This
will be large enough to produce the given arrangement if

12N 4 or N DI g5
T In2
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2.156

2157

2.158

2159
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The statistical weight is

N 10x9Ix8x7x6
Negs ™ N~ 8xax3xz - 2?2
N/2!'2—!

The probability distribution is
Ne 27 =252%x27"= 246 %
The probabilites that the half A contains » molecules is
N!
n!(N-n)!
The probability of one molecule being confined to the marked volume is

N x 27%= 27N

Y
=V
We can choose this molecule in many (Ncl) ways. The probability that » molecules get
confined to the marked volume is cearly
NC‘P' @ ‘P)N_"
In a sphere of diameter d there are

3
N-= 1ti-n0 molecules

”,(N n),p "a-p "

where n, = Loschmidt’s number = No. of molecules per unit volume (1 cc) under NTP.

The relative fluctuation in this number is
aN_ VN 1
N "N"W "
p 173
or %=%d3no o &= 5 of ds( 3 ) = 0-41 ym
N nng M N’ n,

The average number of molecules in this sphere is —17 = 108

For a monoatomic gas Cy, = %R per mole

The entropy change in the process is
T+ AT

ss=5-50- [ 4= Sam(1 40)

To
Now from the Boltzmann equation
S=kinQ

3N,
A 3:6,‘10”

Q -5 ATz (1) . .
ol 1+ 1430 10 x 10

Thus the statistical weight increases by this factor.
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2.5 LIQUIDS. CAPILLARY EFFECTS

2.160 1 1 4a
@ Ap= o (d/2 * d/z) d
4—)("&0-5'1;06— = 1:307x 10° —Ii= 13 atmosphere
1-5x10 m?
(b) The soap bubble has two surfaces
8a
s Ap=2a (4/2 * d/2) d
8x 45

= Wx 1073 = 12x1073 atomsphere.
X

2.161 The pressure just inside the hole will be less than the outside pressure by 4 o/d. This can
support a height . of Hg where

4a 4o
pgh= p or h= ned
-3
4 %490 x 10 200 ~ 21 m of Hg

T 136x10°x98x70x10-°  136x70
2.162 By Boyle’s law

)5 - ()5 ()

3
or po(l 2—)- 870‘(112-1)
3
Thus o= —pod(l-:?'-)(nz-l)

2.163 The pressure has terms due to hydrostatic pressure and capillarity and they add

4o
p=Po+pgh+7

( 5x98x10° 4x-73x1073
=1+ +

TS ax10-°" " 10'5) atoms = 2-22 atom.
X

2.164 By Boyle’s law
r3
(po+hgp+ ) Zf = (Po nd) : &L

or [hgp -D (n3 - 1)] = % (n2 -1)

or h= [Po ("3 -1+ % (n2 -1) ] /g p = 498 meter of water
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2.168

2.169

243

Clearly

W
I

Lt

Ahpg= 4a|cos6|(dll—§12-)

Wiy
i

dajos 8| (dy - )
d,d,pg

|
|

11 mm oo

TN

In a capillary with diameter d = 0-5 mm water

will rise to a height
2a 40

pgr pgd ,’R \
-3 v
B T'Y 'S (. .
10° x 9-8 x 0-5 x 10

Since this is greater than the height
(= 25 mm) of the tube, a meniscus of radius
R will be formed at the top of the tube, where

_ 2 __ 2x73x107°
Pgh  10°x98x25x1073

[4
'
\)

by
diyli

HITERY

l)l,”l

1
(I

——

)]
11
]

I

|
1N

-
—

\
1

R

=~ 0-6 mm

IR
1

h
|
]

Initially the pressure of air in the cppillary is p, and it’s length is . When submerged
under water, the pressure of air in the portion above water must be p, + 49—, since the

level of water inside the capillary is the same as the level outside. Thus by Boyle’s law

(po+47,°1)(l—x)=pol

or ﬂ(l-)c)- X or x= :
d _pO = p()d
1+4a
We have by Boyle’s law
(Po‘Pgh+4a‘close (I-m=pyl
or. 4ctcos(9= h+Po
Poh) d
Hence, o= (pgh+l—h)4cos9

Suppose the liquid rises to a height 4. Then the total energy of the liquid in the capillary

1S
L ) h
E(W=7(d;-d) hxpgx5-n(d,-d)ah

Minimising E we get
4a

h= R a—— 86 m°
pg(d2'd1)
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2.170 Let h be the height of the water level at a

distance x from the edge. Then the total energy
of water in the wedge above the level outside is.

E=fx6(p-dx*h-pgg--Zfdx-h-acosO

=fdx—;~xpg6q)(h2-2wh) -

xpgdy
2 2. 2
1 20cos0 4a cos” 0 4
=) dce-xpgd h- -
f >XPg q’[( xpgf)(p) x2p2g26(p2]
20 cos O

This is minimum when h = ———— \__/
xpgdo

2.171 From the equation of continuity

14 nd2
T2, 2(4) . = n
4d2 v 4(n) V or V=n"v

We then apply Bernoulli’s theorem

£+—1—v2+®= constant
p 2

The pressure p differs from the atmospheric pressure by capillary effects. At the upper

section
20
P= Do+ d
neglecting the curvature in the vertical plane. Thus,
Bg 20 B # 2na
°Td 1, 0" Td 1 4,
+-2—v +gl= ---——-—--—p +-2-nv

VZ gl- 312 m-1)

or V= ____L._
n'-1

Finally, the liquid coming out per second is,

4o
Ve %Hdz-\/Zgl— d(n-—l)

4
n -1
2.172 The radius of curvaturc of the drop is R, at the upper end of the drop and R, at the lower

end. Then the pressurc inside the drop is py + i—a at the top end and p, + gRE at the bottom

1 2
end. Hence
201 20, 2a(R,-R,)
PotR = Potg tPEh o —pp—=rpgh

To a first approximation R; = R, =~ ;—l so Ry-R;= %pgh */a. = 020 mm

if h=23mm, a=73mN/m
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2.173 We must first calculate the pressure difference inside the film from that outside. This is

2.174

2.175

2.176

6

eaflsl
d rnonf
Here 27 |cos O [= h and r, ~ - R the radius

of the tablet and can be neglected. Thus the
total force exerted by mercury drop on the upper

glass plate is
2nR%a cos 0|
h

We should put /1 / n for & because the tablet is compresed n times. Then since Hg is nearly,
incompressible, 7R* /i = constants so R —> RV . Thus,

2nR%*alcos 0] o

=t

Part of the force is needed to keep the Hg in the shape of a table rather than in the shape
of infinitely thin sheet. This part can be calculated being putting n = 1 above. Thus

2nRalcos0] 2nR’alcos0] ,
mg + ; d - n

typically

total force =

h
2
o m=ﬁ%M(n2—1)-0'7kg
The pressure inside the film is less than that outside by an amount a l+ 2 where

rnon
ry and r, are the principal radii of curvature of the meniscus. One of these is small being
given by A= 2r,cos 8 while the other is large and will be ignored. Then
Fa 2Acos O
h

Now A= = SO F=2m;1
ph ph

This is analogous to the previous problem except that ;: A = xR :

2nR%a
S Fum =" — =
© h

The energy of the liquid between the plates is
E= zdhpg’z—‘-zazh- %pgldh2—2alh

o where A = area of the water film between the plates.

when 0 (the angle of contact) = 0

= 06 kN

2

1 2a) 2021
==-pgldlh-—| -
Al ( pgd) pgd
This energy is minimum when, s = gad and
221

the minimum potential energy is then E =

" pgd
The force of attraction between the plates can be obtained from this as
-dE 2
F = mo 20 . {minus sign means the force is attractive.)
ad pgd

alh

Thus F= ——d—- 13N
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2.177 Suppose the radius of the bubble is x at some instant. Then the pressure inside is

Do+ 4—;—‘-. The flow through the capillary is by Poiseuille’s equation,

4
xr_do 2dx
Q 8nlx 4x dt
. nrta 4 4
Integrating 2nl t= n(R" -x) where we have used the fact that 1= 0 where x = R.
2nIR*

This gives ¢ = +— as the life time of the bubble corresponding to x = 0
ar
2.178 1If the liquid rises to a height 4, the energy of the liquid column becomes
2 2
h 1 o 2
E=pgarh -=-2arha=~pgnfrh-2—) - =
PE 2 aF& ( pg) P8

This is minimum when rh = i—(gz and that is relevant height to which water must rise.

2
At this point, E . =- 228
P8

min

2
Since E = 0 in the absence of surface tension a heat Q0 = 2a0

must have been liberated.

2.179 (a) The free encrgy per unit area being o,
F=noad?=3puJ
(b) F= 2o d? because the soap bubble has two surfaces. Substitution gives
F =10 pJ
2.180 When two mercury drops each of diameter d merge, the resulting drop has diameter d,
. i
6 6
The increase in free energy is
AF= 1227 d%q-2nd%a=2nd*a(2"-1) = =143 u]J
2.181 Work must be done to stretch the soap film and compress the air inside. The former is

simply 2 a x4 nR%= 8 nR2a, there being two sides of the film. To get the latter we
note that the compression is isothermal and work done is

where d2=Zd*x2 or d, =2"d

V=V
- fpdV where V;p,= (p0+iRg-)-V, V= %JP-R3
V=Y
\4 40
or V-E-—, = pot—
0 Do pP=Dp R

and minus sign is needed becaue we are calculating work done on the system. Thus since
PV remains constants, the work done is

VO
Vin—=pVin &
p Vv p Py

So A'=8nR2a+len—1—’-
Py
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When heat is given to a soap bubble the temperature of the air inside rises and the bubble
expands but unless the bubble bursts, the amount of air inside does not change. Further
we shall neglect the variation of the surface tension with temperature. Then from the gas
equations

Po+ 47“) 47“ = vRT, v= Constant

Differentiating
8a 2
(Po* -37)4nr dr=vRdT
vRdT

,8a
Po 3r

or dV=4nridr=

Now trom the first law

& Q=vCdl=vC,dT+ VRZZ-(poi-%)

Po*3;
4a
Pot "
or C=Cy+R 8o
Po3,
R
using C,=Cy+R, C=Cp+-—3—P—7
1+ 8;

Consider an infinitesimal Carnot cycle with isotherms at 7~ dT and T. Let A be the work
done during the cycle. Then A

A= [a(T-dT)-a(T)]d0= —‘di—(;,dTéo
Where 00 is the change in the area of film

T-d7

(we are considering only one surface).

dr L Y

A )
Then m = Q1«= T by Carnot therom. :
da. ! T
or——_deTao- & o g= -T2 : %6 ; g
gdc T 1 dT r; >

As before we can calculate the heat required. It, is taking into account two sides of the
soap film

da
dq = —TdT60x2

Y9 _ _,da
Thus AS = T ZdTbo

Now AF=2ad0c so, AU= AF+TAS-2((1-TZ—(;.)60
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2.6

2.185

2.186

2.187

2.188

2.189

PHASE TRANSFORMATIONS

The condensation takes place at constant pressure and tcmpcrature and the work done is
PAV
where AV is the volume of the condensed vapour in the vapour phase. It is
Am
= —RT = 12067J
pPAV % R
where M = 18 gm is the molecular weight of water.

The specific volume of water (the liquid) will be written as V',. Since V', > > V'), most of
the weight is due to water. Thus if m, is mass of the liquid and m,, that of the vapour then

m=m+m,

V=amV,+m,V, or V-mV,=m,(V -V)

V-mV, .
So m,= Vv 20 gm in the present case. Its volume is m, V', = 101
v V1
The volume of the condensed vapour was originally V,, -V at temperature 7= 373 K.
Its mass will be given by
Mp(V,-
p(Vy-V)= %RT or m= % = 2gm where p=atmospheric pressure

We let V';= specific volume of liquid. V', = N V', = specific volume of vapour.
Let V= Original volume of the vapour. Then

B -t L
MRT m+m, NV, or — (my+Nm) V",

1

V. -
So  (N-1)mV,= v(1--)-§(,,_1) or eV nol

V/n O N-1

In the case when the final volume of the substance corresponds to the midpoint of a
horizontal portion of the isothermal line in the p, v diagram, the final volume must be

n

Vv
(1+N) —i_l per unit mass of the substance. Of this the volume of the liquid is V';/2 per unit

total mass of the substance.

1
ibus M= 1+n§
From the first law of thermodynamics
AU+A=Q=mgq
where q is the specific latent heat of vaporization

Now A=p(V‘v-V',)m=m%

Thus AU=m(q-%}')

For water this gives = 2-08 x 10° Joules.
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Some of the heat used in heating water to the boiling temperature
T= 100°C = 373 K. The remaining heat
=Q-mcAT
(c = specific heat of water, AT = 100 K) is used to create vapour. If the piston rises to

a height h then the volume of vapour will be ~ sh(neglecting water). Its mass will be
Po sh Py shMq
RT x M and heat of vapourization will be ~RT - To this must be added the work

done in creating the saturated vapour = p,sh. Thus

Q—chT-pOSh(l+%l) or h= Lomecldl 20 cm
pos(1+%")

of saturated vapour must condense to heat the water to boiling

me (T - T,
A quantity ( v

point T= 373°K
(Here ¢ = specific heat of water, T, = 295 K = initial water temperature).
The work done in lowering the piston will then be

mc (T-T,
-——( O)XE-ZSJ,

q M
i i . RT
since work done per unit mass of the condensed vapour is p V = i
m
Given AP = &_22- &xfﬂ_ - A_'fRT_ M RT
T Pldnp"“"anp_Mp"

or - 4aM

P1RTn

For water o= 73 dynes/cm, M = 18gm, p,= gm/cc, T= 300K, and with n =~ 0-01, we
get
dm 02pm

In equilibrium the number of "liquid" molecules evaporoting must equals the number of
"vapour" molecules condensing. By kinetic theory, this number is

x}-n<v> x—l—nx \’gﬂ
>3 >3 nm
Its mass is

3§ =nNnkT =

= XX RXYFo0 =) Viak
\/_L : 2,
=M~V 3xrT = 035 g/cm” s.

where p, is atmospheric pressure and T= 373K and M = molecular weight of water.
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2.194 Here we must assume that p is also the rate at which the tungsten filament loses mass
when in an atmosphere of its own vapour at this temperature and that 1 (of the previous

problem) ~ 1. Then
p=u V ZALT = 09 nPa

M
from the previous problem where p = pressure of the saturated vapour.

2.195 From the Vander Waals equation
RT a
P=v_p~ 72
where V= Volume of one gm mole of the substances.
For water V= 18 c.c. per mole = 1-8 x 10~ Aitre per mole

a = 547 atmos - _lit_[eiz
mole
If molecular attraction vanished the equation will be
., _RT
PEVve
for the same specific volume. Thus
Ap = —‘% = -1—853%? x 10* atmos ~ 1-7 x 10* atmos

2.196 The internal pressure being Vaf’ the work done in condensation is

\4
8
a a a a
ZdV= —-— = —
.[V2 Vi Vp VY

1
This by assumption is Mg, M being the molecular weight and V), Vg being the molar
volumes of the liquid and gas. .

a Mg
Thus = —— = =
pz Vl2 ‘]I p q
where p is the density of the liquid. For water p; = 3-3 x 10” atm

2.197 The Vandar Waal’s equation can be written as (for one mole)
(V) = RT_ _ e
P V-b y?
At the critical point P
av i
0= RT +2:41 - RT =2a
V-by V?  (v-by V°
2RT 6a - RT _ 3a
v-b? v (v-b® V*

2
and (3_22) vanish. Thus
oV .
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Solving these simultaneously we get on division

Vob= 2V, Ve3buV
This is the critical molar volume. Putting this back
RT,, _ _2a or T. = 8a
4b>  27b3 Cr 27bR
RT,, a 4a a a

Finall = - = - =
g P V-5 V2T 2762 952 2757

P, Cr VMC’ a/9% 3
From these we see that RT,, T 8a/27b 8

Pe,  a/27b® 1
RT,, 8a/27b 8b
T,  0082x304

Thus b= R 8P, = 3x8 - 0 -043 litre/mol
(RT.,)  64a 27 5 atm litre>
and —PT =55 a= a(RTCr) /Pey = 359 (mol)?

Specific volume is molar volume divided by molecular weight. Thus

Vimer  3RTe, 3 x 082 x 562 litre cc
V'Cr- = - —= 471 —
M " 8Mp, 8x18x41 g g
p+—=|(V,-b)= RT
Vum
P+ :
or szvm-b=8——1:—-
PCr VMCr 3TCr
or n+—2—|x[v- b =§r
pC,V,,,2 Vimer] 37
Vv
where n=2 v= "',1:==i
Pcyr Vier cr
or n+27b2 V—l-g‘t or n+i --1--—8~t
Vbzl 3 3 2 v2 3 3
1 3 1 3
When n= 12andv-§,'c--8x24x6-2

251

(a) The ciritical Volume V, ., is the maximum volume in the liquid phase and the minimum

volume in the gaseous. Thus

- 10(8)0 x 3 x 4030 litre =~ S litre

V.

max
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2.202

2.203

2.204

2.205

(b) The critical pressure is the maximum possible pressure in the vapour phase in equilibrium
with liquid phase. Thus
-4 _ 5-47
Prmax ™ 57527 27%03% 03

= 225atmosphere

8 a 8 3-62
Tor= 27bR ™ 27" 043 x 082 ~ "MK
M 44

Per™ 35 T a3 gm/c.c. = 0-34gm/c.c.

The vessel is such that either vapour or liquid of mass m occupies it at critical point. Then
its volume will be

m 3RT., m
Ver = MVMCr" 8 Pcr M

The corresponding volume in liquid phase at room temperature is

Ve
P
where p = density of liquid ether at room tmeperature. Thus
v _ 8Mpc,

N= ——= = 0254
Ve 3RIcp

using the given data (and p = 720gm per litre)
We apply the relation (T = constant)

1§ ds-f dU+f pdV

to the cycle 1234531. Pa

Here _ff ds-f dU=0

So § pav=o

This implies that the areas I and II are equal.
This reasoning is inapplicable to the cycle 1231,
for example. This cycle is irreversible because
it involves the irreversible transition from a
single phase to a two-phase state at the point 3. >\

When a portion of supercool water turns into ice some heat is liberated, which should
heat it upto ice point. Neglecting the variation of specific heat of water, -the fraction of
water turning inot ice is clearly

_cld_ o
fmile02s

where ¢ = specific heat of water and q ~ latent heat of fusion of ice, Clearly
f=1att =-80C



2.206 From the Claussius-Clapeyron (C-C)equations

ar_7("2-"1)

dp a2
q,,is the specific latent heat absorbed in 1 — 2 (1 = solid, 2 = liquid)

AT= 7V Vi) pp 23X, atmxem®x K

s 333 joule

, 100N 1076 m?
atm X cm! m?

Joule = Joule

=10"!, AT= --0075K

2.207 Here 1 = liquid, 2 = Steam
T(WwV,-VvV,
AT = AP
a1

912 AT 2250 09 3, _ 3
or V = TAp___373 x10 3 m’/g= 17m’/kg

2.208 From C-C equations

dl= 912 - 912
ar 1(V,-V) TV,

Assuming the saturated vapour to be ideal gas

1 _m - Mg
V'z— RT’ Thus Ap= RszAT

and P= Dy (1 + 1%?2- A T) = 1-04 atmosphere

2.209 From C-C equation, neglecting the voolume of the liquid

dj 912 M
ﬁ T‘j’ R_I%p’ g =q91)

o dp _ Mg dT
p RTT
m MpV

Now pv MRT or m= for a perfect gas

dm _E dar

m

Mg _\dT _ (18x2250 .\ 15 _
-(RT_l)T-(8-3x373—1) = A8 %

So (V is Const = specific volume)

253
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2.210 From C-C equation

P 9 ﬂq_P
dr” TV, RT
grating Inp= constant - RT
s el

This is reasonable for [T - Ty| << T, and far below critical temperature.

2.211 As before (2.206) the lowering of melting point is given by

ar- TAV

q
The superheated ice will then melt in part. The fraction that will melt is

CTAV'

n= p =~ 03

2.212 (a) The equations of the transition lines are

log p = 905 — % Solid gas

1310

= 678 - T Liquid gas
At the triple point they intersect. Thus
490 490
227 = T, or T, = 227 216K

corresponding p,, is 5.14 atmosphere.

In the formula log p= a —% we compare b with the corresponding term in the equation
in 2.210. Then
2'3(;3 % So, 2303~ M4

2-303 x 1800 x 831
Dsublimation ™ 44

Inp=ax2303-

or, = 783 )J/gm

2-303 x 1310 x 8-31
qliquid—gm = 44

= 570 J/gm

Finally g, _ jiguia= 213 J/gm on subtraction

T,

2213 dT _mq L,a
AS fch+T2-m(cln +T2

373 2250

3
=10 (4181 283 373

) 72kI/K
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I I; g,
2214 AS= ’Tl—i'ClanT;
333 373 .
= 273+4181n283~ 8:56 J/°K

2.215 ¢ = specific heat of copper = 0~39'—J-—-Suppose all ice does not melt, then

g'K
heat rejected = 90 x 0-39 (90 - 0) = 31597
heat gained by ice = 50 x 2-09 x 3 + x x 333
Thus x=85gm
The hypothesis is correct and final temperature will be T = 273K.
Hence change in entropy of copper piece

273
= ] — -
mc n363 10J/K.

2.216 (a) Here t, = 60°C. Suppose the final temperature is ¢ °C. Then

heat lost by water = m,c (£, - t)

heat gained by ice = m, q,,+m, c (t-1t,), if all ice melts
In this case m, g, = m,x 418 (60 - 1), for m; = m,
So the final temperature will be 0°C and only some ice will melt.
Then 100 x 4-18 (60) = m'; x 333

m'; = 753 gm = amount of ice that will melt

Finally AS = 753 x %%—g— +100 x 418 1In %;—33-

™) I +m clnz‘l
T, 2 T,
(I,-T1) T,

n "t

AS =

ol 1-mk|. sk
= m2 Tl - - In Tl =
() If myct,>m,q, then all ice will melt as one can check and the final temperature
can be obtained like this

myc(Tp-1)= mygu+mc(T-T;)

(my T+ my Ty) € = my gy = (my +my) cT

T, T, T

oo
myT,+m T, - lcq"'
or T= = 280 K
my iy
m T
and AS = 1q+c(mllnz--m21n—2-)-19]/K



T, Mg,
2217 AS= -—q-l- mclIn 2+—-q-—"i
T, T T,
where Mg,,= m(q2+c(T2—T1)>‘

- _1.._..1_ T2 - 1- 2
q2 Tl T2 Tl Tl
= (0-2245 + 02564 ~ 0-48J/K

2.218 When heat dQ is given to the vapour its temperature will change by dT, pressure by dp
and volume by dV, it being assumed that the vapour remains saturated.
Then by C-C equation

dj
31; - TTEV,—(VWPM >> V'), or dp= i%,—dT
on the other hand, pV’ = %.
So pdV' A4 @ - M
Hence pdv' = (-I-{— - 1) ar
finally dQ = CdT = dU + pdV'’

T g q
-chT+(M T)dT C,dT - 7dT

(Cp, Cy refer to unit mass here). Thus

C= cp-%
For water C, = .S O with y= 132 and M= 18
Yy-1 M
So C,= 190J/gmK
and C= -413)J/gm°K= - 74]J/mole K

2.219 The required entropy change can be calculated along a process in which the water 1s
heated from 7, to T, and then allowed to evaporate. The entropy change for this is

T,
AS=C,ln-2+ 2
Tl T2

where g = specific latent heat of vaporization.
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2.7 TRANSPORT PHENOMENA

2220

2221

2.222

2.223

2.224

2.225

(a) The fraction of gas molecules which traverses distances exceeding the mean free path
without collision is just the probability to traverse the distance s = A without collision.

Thus P=el= %- 0-37

(b) This probability is
P=el-e2=023
From the formula
L e 4 or A= AL
n Inm
(a) Let P (t) = probability of no collision in the interval (0, 7). Then

P(t+d)y=P()(1-ad)
or %?- -aP() or P(t)= e~ **
where we have used-P (0) = 1
(b) The mean interval between collision is also the mean interval of no collision. Then

0 1r@ 1
<= aTM) @
fe"‘”dt
0
1 kT
a )\,- -
® V2 =d?n \/fnd‘zp
138 x 10" 2 x 273 -8
= = 6'2 10
V2 % (037 x 10~ %)% x 10° X "
A 62x1078
T= et 454 s= -136ns
A=62x10m

(b) M= 136x10*s = 3-8 hours
The mean distance between molecules is of the order

6

This is about 18.5 times smaller than the mean free path calculated in 2.223 (a) above.

We know that the Vander Waal’s constant b is four times the molecular volume. Thus
173
b= 41\/‘4%d3 or d= (—éb—)

15 1
. -3
(2—:5‘%) - (Qi) x 10~° meters = 3-34 x 10~° meters
X

2nN,

273
kT, 2xN
Hence A= (———-0 )( u A)

Vanpy|\ 3
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2.226

2.227

2.228

2.229

2.230

The volocity of sound in N, is

ViE . \/1EL

P M
so, 1‘_- " YRTO - —Iz.%.._.__
v 6nd2poNA

M
or, v=nd*pyN, AT?(YZTO
3 kT
(a) A>l lfp<m—l
Now ‘/.2_—1::‘-2—1 for O, of Ois 0-7Pa.

(b) The corresponding n is obtained by dividing by kT and is 1-84 x 10® per

m = 1-8414per c.c. and the corresponding mean distance is -

n1/3'
1072 -
-W- 1-8x10”™ m =~ 0-18 pm.
1 1 <v >
@ [ VI Y

=V2rdin<ws>= 74x 105! (see 2.223)
(b) Total number of collisions is

lnv =~ 10x10®scem ™3

2
Note, the factor % When two molecules collide we must not count it twice.
1
a) A= ———
@ V2 nd’n

d is a constant and n is a constant for an isochoric process so A is constant for an isochoric
process.

5 <v>_ Mn aﬁ

A= 1 k—Ta T for an isobaric process.
V2 rd*p

<y > ﬁ

1 : g
V= N - 7T for an isobaric process.

(a) In an isochoric process A is constant and

vaVT aVpV aVp aVn

kT ; ; : ;
®) A= W must decrease n times in an isothermal process and v must increase
nd“p .

n times because <v > is constant in an isothermal process.




2.231

2.232

289

1 1.V

@ Ao =>TVN
Tl/Z
Thus AaV and va-T,-

But in an adiabatic process (y = %here)

TV'~!a constant so ZVY3 = constant

or TV aV-Y5 Thus va v-%*
T
ha=
®) F
) T
But p(— = constant or —ap Y or Tap'
p p
Thus rap Ve p=37
R TS

s
v-<v_>ap apm 21-p27 -pm

A oVT

(© AaV
But TV?3 = constant or Va T~ 3?2
Thus raT 32
2
vaTo:T3

In the polytropic process of index n
pV" = constant, TV"~! = constant and p' ™" T" = constant

@@ raV
2 1-n -n+1

T 2 p-1 2
va‘v | 4 1 4 v

1
() ka%, T"ap"! or Tap'™»

s0 Aap~V*
V> p 1_l+l_ nel
v _A GV]-'GP 2 2r=pD nw
T n
9 Aa= paT"!
(© 7P
L Ll 1
raT nl_ T n-1 Tl—n
p n _l n+l
va aTl-l 2 _ T2(n—1)
vT
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2.233 (a) The number of collisions between the molecules in a unit volume is

2234

2.235

lnv- 1 ud2n2<v>aﬁ-
2 V2 v?

This remains constant in the poly process pV'3 = constant
Using (2.122) the molar specific heat for the polytropic process

pV® = constant,

. 1 1
is C-R&-l-a-l)

1 1 5 1 11
Thus C=R(Y_1+4)-R(2+4)- 4R

It can also be written as %R (1+2i)where i=5

() In this case f‘{-- constant and so pV~ ' = constant
1 1 5.1
so C-R(‘{-1+2)-R(5+2)-3R
. R ..
It can also be written as ‘i(l+1)

‘We can assume that all molecules, incident on the hole, leak out. Then,

-dN= -d(nV) = -}n<v>Sdt

or dns et
4v/S <v> T
. "y 8RT
Integrating n= nye "*. Hence <v>= V v

If the temperature of the compartment 2 is v times more than that of compartment 1, it
must contain i times less number of molecules since pressure must be the same when
the big hole is open. If M = mass of the gas in 1 than the mass of the gas in 2 must be

%. So immediately after the big hole is closed.

Mo M
mV "2 mWy

where m = mass of each molecule and ng, ng are concentrations in 1 and 2. After the

0
ny

big hole is closed the pressures will differ and concentration will become n; and n, where

M
no+n,= m(l +M)
On the other hand
n <y >=n,<v,> ie n= \/rTnz
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Thus nz'(1+\/'rT)- m’:"’l (1+1‘|)-ng(1+n)
1+
So kv
2.236 We know

1 1 1
= —<Y>Ap= T<V> moVT
=3 P= 3> V2 na?

Thus 1 changing a times implies T changing o’times.

On the other hand
1 1\ /BE __iT
D 3<v>k 3Vam ﬁndzp
/2

Thus D changing § times means -7%- changing f times
o
So p must change — times

B

2237 Da‘i'—-fuvﬁ, n«VT

(a) D will increase n times
1 will remain constant if T is constant

372 3/2
(b) Daip_ai’”;’—-pmvm

navpV
Thus D will increase n>? times, M will increase n'? times, if p is constant
2238 paVVT, naVT

In an adiabatic process

TV~ ! = constant, or T V1=
; 1.
Now V is decreased n times. Thus

3=y

3- 2
DaVi= (l) - (—1—)
n n

-y -5
(1) T

4/5

naofV? a|=

: : vs,.
So D decreases n*’times and m increase n ' “times.

2239 (a) DaVVT aVpV?

Thus D remains constant in the process st = constant
So polytropic index n= 3

®) naVT aVpV
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So m remains constant in the 1sothermal process
pV = constant, n= 1, here

(c) Heat conductivity k = 1y C,,

and C,, is a constant for the ideal gas

Thus n= 1 here also,

LB m 2. [miT 1
2200 n=3V 0 = =3V 5 2

v4
2\ (men\”* 2 o2 (4 %831 x273 x 1073
or d=|— = x 10
3"] gts 3
5 12

x 189 x> x 36 x 10*
4
-107% (3 - 18,9) (4 xS 273) ~ 0-178 nm

n° x -36
2241 x= -;—<v>)»pcv

8 kT 1 Cy

1
=-= ————mn—,
3 % V2 nd?n M

Cy
C, is the specific heat capacity which is ) Now C,, is the same for all monoatomic

gases such as He and A. Thus

KHe ‘]
or — 8'7 = =
Ka ;MH dH
d, 87
—= —= = 1:658 = 1-7
dy V1o
2.242 In this case
N £ 4
135 =4nn0
nn
3
or NIZI;AR-‘htnm or N, = _r|_2nN(;)R

To deerease Ny, n times 1 must be decreased n times. Now 1) does not depend on pressure

until the pressure is so low that the mean free path equals, say, -;—AR Then the mean free

path is fixed and M decreases with pressure. The mean free path cquals -;—AR when

1

——=——m= AR (n, = concentration
Vandin " AR (0 )



2.243

224

2.245

2.246

263

Corresponding pressure is p V2 kT
° md’AR
The sought prcssuri/i_g n times less
2kT 10-3
= —————= 707 x —————5 =~ 0-71 P:
P= d?nAR 10-%x1073"

The answer is qualitative and depends on the choice %AR for the mean free path.

We neglect the moment of inertia of the gas in a shell. Then the moment of friction forces
on a unit length of the cylinder must be a constant as a function of r.

do N (1 1

So, I -t s
0 2nr n N, or @(r) 47”](’% r2)
and oo Ly oMo
IRETY 1 4ro P

We consider two adjoining layers. The angular velocity gradient is -(;;)- So the moment of

the frictional force is
a

4
= . P, L L]
N fr 2nrdr nry oh
0

In the ultrararefied gas we must determine 1 by taking A = %h. Then

L\ L, mp_ 1 [ET
N=3Viox X283 Varr

1 oatp\/EM

so, N= 304 p RT
Take an infinitesimal section of length dx and apply Poiseuilles equation to this. Then

dV -n=m at p

dt 8n ox
From the formula pV=RT- Aﬂl

pdV = %Tdm

4

or L xa M pdp

dr " VT T8RT dx
This equation implies that if the flow is isothermal then p % must be a constant and so
|72-7i
equals 21 in magnitude.

_ na'M IP%'PH
B=T6nrRT" 1

Thus,
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2.247 Let T = temperature of the interface.
Then heat flowing from left = heat flowing into right in equilibrium.

(Kl T, L& Tz)

T,-T  T-T, L 4§
Thus, x, = K, or T=
4 ) K1 K
1,22
L
2.248 We have
. TI—T- . T-T, . T,-T,
7 LA L+,
or using the previcus result
7, kT,
Ky L v h T,-T,
<=IT, - =K
5 K K L+l
1,1
Lo h
2(1,-T.
Kl—i;(l- ? T,-T, L+l
. Lx K -Kll+l2 o s L b
b KK
2.249 By definition the heat flux (per unit area) is
. dar d InT,/T,
Q= -de-—adxlnT= constant =+« ]
x, T
Integrating InT==In—+InT
1T
where T = temperature at the end x = 0
21
S T=T T, 40 alnT,/T,
] =T T, and 0 = ]
2.250 Suppose the chunks have temperatures T, T, at time ¢ and 7, -dT,, T, +dT, at time
dt+1
KS
Thus daT= - X3 (L L) ATdr where AT= T,-T,
l1\c, ¢,

s L_ks(l 1
Hence AT = (AT) e where = ] ( c, + Cz)



2251 0= L. -A\/—aT

ox
2, o2
--3A ™ , (A = constant )
( TV2_ 1)
'3 ]
Thus T4 constant—-);-(Tf/z-T;/z)
or using T=T, atx=0
- 32
v2_ py2, 372 T _q.% I _
T°*=T; I(T )or(Tl) 1*1( T) 1]
.23

i
1\/8RT _ 1 Ry r7ip~
2252 k= 2V =5 =—5—mn——= ——
3 oM V2nd’n M 333724°YMN,
Then from the previous problem

2R (1) -1Y?) 3
= y l‘ cre.
1= T2 a2 m MN, !

= 27°C = 300K= T= 2

(1,+T)

2.253 At this pressure and average temparature

== 2330x 10 °’m = 23:3mm > > 5-0mm = /

\/_ nd2
The gas is ultrathin and we write A = El here
T,-T
Then q= K%- X 21 1

1, MP R p<v> ]

1
K= 3<v>xgIxprxiTy M 6T(y-1)

where

and ‘I'ﬁ(% Ty)

\/8RT T+
<v>= E.Wchaveused I,-T, << 2

T
L here.

where

265
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2.254 In equilibrium 2mr x LA -A = constant. So T= B - .
dr 2mx

But T= T, when r= R, and F= T,. when r =R,

TZ-TI r

From this we find T= T, +

2.255 In equilibrium 4n 7%« % = —A = constant

A1
T-B+4m<r

Using T= T, when r= R, and T= T, when r= R,,

T=T+T2_Tl(l 1)
1

1_1|r R
R, R,
2.256 The heat flux vector is — k grad T and its divergence equals w. Thus
vir--%
K
or -l-—a-(r Q—I:) =-Zin cylindrical coordinates.
r or ar K
or T-B+Alnr—§;—r2
Since T is finite at 7= 0,A= 0. Also T= T, atr= R
w 2
so B=T,+ KR
W p2_.2
Thus T= T0+E(R -r°)

r here is the distance from the axis of wire (axial radius).
2.257 Here again

vir- %
K

So in spherical polar coordinates,

19 ( 20T\ _w 28T w3
r ar(’ ar)_ Korr or 3Kr i
or T==B—':‘———‘—v—r2
r 6k
Again A=0and B= Ty+ R’

so finally T= T0+6L:;-(R2—r2)



PART THREE

ELECTRODYNAMICS

3.1 CONSTANT ELECTRIC FIELD IN VACUUM

2 2
3.1 F, (for electorns) = '—-——2—‘1 and F_= 17
a ( ) dmeyr rop
Thus —— (for electrons) =
Fe ( ) dmegym

-19 ~y2
- (1602x10"7C) - 4x102

(9 1109) x 667 x 10~ ' m? [ (kg - s%) x (911 x 10~ * kg’
X

F, q2
—— (for proton) = Tee o

Similarl
y F & TEgym

. -19 ~y2
_ (1-602 x 10~ C) PIES

( 1 ) x 6:67 x 10" m>/(kg - s?) x (1672 x 10~ 7 kg)?

9 x 10°
For Fd- F,r

2
4 _ym o4 ¥
4Jl:€0r2 P m

: EETNE Y
- VesTx10 m (kg =5) . 086x 1072 C/kg
9x 10

x 6:023 x 102

3.2 Total number of atoms in the sphere of mass 1 gm = 63%54

6:023 x 10”
63-54
Now the charge on the sphere = Total nuclear charge — Total electronic charge

So the total nuclear charge A = x 16 x 107 x 29



